Skip to main content
Log in

Regulation of L-arginine transport and metabolism in vascular smooth muscle cells

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

L-Arginine is a semi-essential amino acid that is metabolized to important regulatory molecules. L-Arginine is transported into vascular smooth muscle cells (SMC) by the cationic amino acid transporter (CAT) family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline. Inflammatory mediators, growth factors, and hemodynamic forces stimulate the transport of L-arginine in vascular SMC by inducing CAT gene expression. However, they exert highly specific and divergent regulatory effects on L-arginine metabolism. Inflammatory cytokines induce the expression of inducible NO synthase (iNOS) and direct the metabolism of L-arginine to the antiproliferative gas, NO. In contrast, growth factors stimulate the expression of arginase I and ornithine decarboxylase (ODC) and channel the metabolism of L-arginine to grwoth stimulatory polyamines. Alternatively, cyclic mechanical strain blocks both iNOS and ODC activity and stimulates arginase I gene expression, directing the metabolism of L-arginine to the formation of L-proline and collagen. Thus, specific biochemical and biophysical stimuli that are found in the circulation regulate the transport and metabolism of L-arginine in vascular SMC. The ability of these physiologically relevant stimuli to upregulate L-arginine transport and generate specific L-arginine metabolites modulates SMC function and may influence the development of vascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbul, B. (1986) Arginine: biochemistry, physiology, and therapeutic implications. J. Parenter. Enteral Nutr. 10, 277–238.

    Google Scholar 

  2. Wu, G. and Morris, S. M., Jr. (1998) Argine metabolism: nitrix oxide and beyond. Biochem. J. 336, 1–17.

    PubMed  CAS  Google Scholar 

  3. Tarry, W. C. and Markhoul, R. G. (1994) L-arginine improves endothelial-dependent vasorelaxation and reduced intimal hyperplasia after balloon injury. Arterioscler. Thromb. 14, 938–943.

    PubMed  CAS  Google Scholar 

  4. Mamon, M., Vallet, B., Bauters, C., Wernert, N., McFadden, E. P., Lablanche, J. M., et al. (1994) Long-term oral administration of L-arginine reduces neointimal thickening and enhances endothelium-dependent acetylcholine-induced relaxation after arterial injury. Circulation 90, 1357–1362.

    Google Scholar 

  5. Cooke, J. P., Singer, A. H., Tsao, P., Zera, P., Rowan, R. A., and Billingham, M. E. (1992) Antiatherogenic effects of L-arginine in the hypercholestrolemic rabbit. J. Clin. Invest. 90, 1168–1172.

    PubMed  CAS  Google Scholar 

  6. Singer, A. H., Tsao, P., Wang, B. Y., Bloch, D. A., and Cooke, J. P. (1995) Discordant effects of dietary L-arginine on vascular structure and reactivity in hypercholestrolemic rabbits. J. Cardiovasc. Pharmacol. 25, 710–716.

    PubMed  CAS  Google Scholar 

  7. Drexler, H., Zeiher, A. M., Meinzer, K., and Just, H. (1991) Correction of endothelial dysfunction in coronary microcirculation of hypercholestrolaemic patients by L-arginine. Lancet 67, 1301–1308.

    Google Scholar 

  8. Creager, M. A., Gallagher, S. M., Girerd, X. J., Dzau, V. J., and Cooke, J. P. (1992) L-arginine improves endothelium-dependent dilatation of hypercholestrolemic young adults. J. Clin. Invest. 90, 1248–1253.

    PubMed  CAS  Google Scholar 

  9. Clarkson, P., Adams, M. R., Powe, A. J., Donald, A. E., McRedie, R., Robinson, J., et al. (1996) Oral L-arginine improves endothelial-dependent dilatation in hypercholestrolemic young adults. J. Clin. Invest. 97, 1989–1994.

    PubMed  CAS  Google Scholar 

  10. Palacin, M., Estevez, R., Bertran, J., and Zorzano, A. (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol. Rev. 78, 969–1054.

    PubMed  CAS  Google Scholar 

  11. Deves, R. and Boyd, C. A. R. (1998) Transporters of cationic amino acids in animal cells: discovery, structure, and function. Physiol. Rev. 78, 487–545.

    PubMed  CAS  Google Scholar 

  12. Closs, E. I. (1996) CATs, a family of three distinct mammalian cationic amino acid transporters. Amino Acids 11, 193–208.

    CAS  Google Scholar 

  13. Low, B. C., Ross, I. K., and Grigor, M. R. (1993) Characterization of system L and system y+ amino acid transport activity in cultured vascular smooth muscle cells. J. Cell. Physiol. 156, 626–634.

    PubMed  CAS  Google Scholar 

  14. Durante, W., Liao, L., and Schafer, A. I. (1995) Differential regulation of L-arginine transport and inducible NOS in cultured vascular smooth muscle cells. Am. J. Physiol. 268, H1158-H1164.

    PubMed  CAS  Google Scholar 

  15. Greene, B., Pacitti, A. J., and Souby, W. W. (1993) Characterization of L-arginine transport by pulmonary artery endothelial cells. Am. J. Physiol. 264, L351-L356.

    PubMed  CAS  Google Scholar 

  16. White, M. F. (1985) The transport of cationic amino acids across the plasma membrane of mammalian cells. Biochim. Biophys. Acta. 822, 355–374.

    PubMed  CAS  Google Scholar 

  17. Albritton, L. M., Tseng, L., Scadden, D., and Cunningham, J. M. (1989) A putative murine ectotopic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell 57, 659–634.

    PubMed  CAS  Google Scholar 

  18. MacLeod, C. L., Finley, K. D., Kakuda, D. K., Kozak, D. K., and Wilkinson, M. F. (1990) Activated T cells express a novel gene on chromosome 8 that is closely related to the murine ectotropic retroviral receptor. Mol. Cell Biol. 10, 3663–3674.

    PubMed  CAS  Google Scholar 

  19. Closs, E. I., Lyons, C. R., Kelly, C., and Cunningham, J. M. (1993) Characterization of the third member of the MCAT family of cationic amino acid transporters: identification of a domain that determines the transport properties of the MCAT proteins. J. Biol. Chem. 268, 20,796–20,800.

    CAS  Google Scholar 

  20. Closs, E. I., Albritton, M., Kim, J. W., and Cunningham, J. M. (1993) Identification of a low affinity, high capacity transporter of cationic amino acids in mouse liver. J. Biol. Chem. 268, 7538–7544.

    PubMed  CAS  Google Scholar 

  21. Hosakawa, H., Sawamura, T., Kobayashi, S., Ninomiya, H., Miwa, S., and Masaki, T. (1997) Cloning and characterization of a brain-specific cationic amino acid transporter. J. Biol. Chem. 272, 8712–8722.

    Google Scholar 

  22. Ito, K. and Groudine, M. (1997) A new member of the cationic amino acid transporter family is preferentially expressed in adult mouse brain. J. Biol. Chem. 272, 26,780–26,786.

    CAS  Google Scholar 

  23. Sperandeo, M. P., Borsani, G., Incerti, B., Zollo, M., Rossi, E., Zuffardi, O., et al. (1998) The gene encoding a cationic amino acid transporter (SLC7A4) maps to the region deleted in the velocardiofacial syndrome. Genomics 49, 230–236.

    PubMed  CAS  Google Scholar 

  24. Kim, J. W., Closs, E. I., Albritton, L. M., and Cunningham, J. M. (1991) Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature 352, 725–728.

    PubMed  CAS  Google Scholar 

  25. Low, B. C. and Grigor, M. R. (1995) Angiotensin II stimulates system y+ and cationic amino acid transporter gene expression in cultured vascular smooth muscle cells. J. Biol. Chem. 270, 27,577–27,583.

    CAS  Google Scholar 

  26. Durante, W., Liao, L., Iftikhar, I., Cheng, K., and Schafer AI (1996) Platelet-derived growth factor regulates vascular smooth muscle cell proliferation by inducing cationic amino acid transporter gene expression. J. Biol. Chem. 271, 11,838–11,843.

    CAS  Google Scholar 

  27. Gill, D. J., Low, B. C., and Grigor, M. R. (1996) Interleukin-1β and tumor necrosis factor-α stimulate the cat-2 gene of the L-arginine transporter in cultured vascular smooth muscle cells. J. Biol. Chem. 271 11,280–11283.

    CAS  Google Scholar 

  28. Hattori, Y., Kasai K, and Gross, S. S. (1999) Cationic amino acid transporter gene expression in cultured vascular smooth muscle cells and in rats. Am. J. Physiol. 276, H2020-H2028.

    PubMed  CAS  Google Scholar 

  29. Baydoun, A. R., Wileman, S. M., Wheeler-Jones, C. P. D., Marber, M. S., Mann, G. E., Pearson, J. D., and Closs, E. I. (1999) Transmembrane signalling mechanisms regulating expression of cationic amino acid transporters and inducible nitric oxide synthase in rat vascular smooth muscle cells. Biochem. J. 344, 265–272.

    PubMed  CAS  Google Scholar 

  30. Durante, W., Liao, L., and Schafer, A. I. (1996) Selective induction of a cationic amino acid transporter by tumor necrosis factor-α in vascular endothelium. Proc. Assoc. Am. Physicians 108, 356–361.

    PubMed  CAS  Google Scholar 

  31. Irie, K., Tsukahara, F., Fujii, E., Uchida, Y., Yoshioka, T., He, W-R., et al. (1997) Cationic amino acid transporter-2 mRNA induction by tumor necrosis factor-α in vascular endothelium. Eur. J. Pharmacol. 339, 289–293.

    PubMed  CAS  Google Scholar 

  32. Escobales, N., Rivera-Correa, M., Altieri, P. I., and Rodriguez, J. F. (2000) Relationship between NO synthesis, arginine transport, and intracellular L-arginine levels in vascular smooth muscle cells. Amino Acids 19, 451–468.

    PubMed  CAS  Google Scholar 

  33. Schott, C. A., Gray, G. A., and Stoclet, J-C. (1993) Dependence of endotoxin-induced vascular hyporeactivity on extracellular L-arginine. Br. J. Pharmacol. 108, 38–43.

    PubMed  CAS  Google Scholar 

  34. Palmer, R. M. J., Ashton, A. S., and Moncada, S. (1998) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664–666.

    Google Scholar 

  35. Hecker, M., Sessa, W. C., Harris, H. J., Angard, E. E., and Vane, J. R. (1990) The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine. Proc. Natl. Acad. Sci. USA 87, 8612–8616.

    PubMed  CAS  Google Scholar 

  36. Sessa, W. C. (1994) The nitric oxide synthase family of proteins. J. Vasc. Res. 31, 131–143.

    Article  PubMed  CAS  Google Scholar 

  37. Baek, K. J., Thiel, B. A., Lucas, S., and Steuhr, D. J. (1993) Macrophage nitric oxide synthase subunits. Purification, characterization, and role of prosthetic groups and substrate in regulating their association into a dimeric enzyme. J. Biol. Chem. 268, 21,120–21,129.

    CAS  Google Scholar 

  38. Gruetter, C. A., Barry, B. K., McNamara D. B., Gruetter, D. Y., Kadowitz, P. J., and Ignarro, L. J. (1979) Relaxation of bovine coronary arterial guanylate cyclase by nitric oxide, nitroprosside, and a carcinogenic nitrosoamine. J. Cyclic Nucleotide Res. 5, 211–224.

    PubMed  CAS  Google Scholar 

  39. Mellion, B. T., Ignarro, L. J., Ohlstein, E. H., Pontecorvo, E. G., Hyman, A. L., and Kadowitz, P. J. (1981), Evidence for the inhibitory role of guanosine 3′,5′-cyclic monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood 57, 946–955.

    PubMed  CAS  Google Scholar 

  40. Radomski, M. W., Palmer, R. M. J., and Moncada, S. (1987). Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 2, 1057–1088.

    PubMed  CAS  Google Scholar 

  41. Garg, U. C. and Hassid, A. (1989) Nitric oxide-generating vasodilators and 8-Bromo-cyclic GMP inhibits mitogenesis and proliferation of cultured vascular smooth muscle cells. J. Clin. Invest. 83, 1774–1777.

    PubMed  CAS  Google Scholar 

  42. Sarkar, R., Meinberg, E. G., Stanley, J. C., Gordon, D., and Webb, R. C. (1996) Nitric oxide reversibly inhibits migration of cultured vascular smooth muscle cells. Circ. Res. 78, 225–230.

    PubMed  CAS  Google Scholar 

  43. Kolpakov, V., Gordon, D., and Kulik, T. J. (1995) Nitric oxide-generating compounds inhibit total protein and collagen synthesis in cultured vascular smooth muscle cells. Circ. Res. 76, 305–309.

    PubMed  CAS  Google Scholar 

  44. Kawamoto, S., Amaya, Y., Murakami, K., Tokunaga, F., Iwanaga, S., Kobayashi, K., et al. (1987) Complete nucleotide sequence of cDNA and deduced amino acid sequence of the rat liver arginase. J. Biol. Chem. 262, 6280–6283.

    PubMed  CAS  Google Scholar 

  45. Dizikes, G. J., Grody, W. W., Kern, R. M., and Cederbaum, S. D. (1986) Isolation of human liver arginase cDNA and demonstration of nonhomology between the two human arginase genes. Biochem. Biophys. Res. Commun. 141, 53–59.

    PubMed  CAS  Google Scholar 

  46. Gotoh, T., Sonoki, T., Nagasaki, A., Tereda, K., Takiguchi, M., and Mori, M. (1996) Molecular cloning of cDNA for nonhepatic mitochondrial arginase (arginase II) and comparison of its induction with nitric oxide synthase in a murine macrophage-like cell line. FEBS Lett. 395, 119–122.

    PubMed  CAS  Google Scholar 

  47. Vockley, J. G., Jenkinson, C. P., Shukla, H., Kern, R. M., Grody, W. W., and Cederbaum, S. D. (1996) Cloning and characterization of the human type II arginase gene. Genomics 2, 118–123.

    Google Scholar 

  48. Spector, E. B., Jenkinson, C. P., Grigor, M. R., Kern, R. M., and Cederbaum, S. D. (1994) Subcellular location and differential antibody specificity of arginase in tissue culture and whole animals. Int. J. Dev. Neurosci. 12, 337–342.

    PubMed  CAS  Google Scholar 

  49. Jenkinson, C. P., Grody, W. W., and Cederbaum, S. D. (1996) comparative properties of arginases. Comp. Biochem. Physiol. 114B, 107–132.

    CAS  Google Scholar 

  50. Tabor, C. W. and Tabor, H. (1984) Polyamines. Annu. Rev. Biochem. 53, 749–790.

    PubMed  CAS  Google Scholar 

  51. Thyberg, J. and Fredholm, B. B. (1987) Induction of ornithine decarboxylase activity and putrescine synthesis in arterial smooth muscle cells stimulated with platelet-derived growth factor. Exp. Cell Res. 170, 160–169.

    PubMed  CAS  Google Scholar 

  52. Majesky, M. W., Schwartz, S. M., Clowes, M. M., and Clowes, A. W. (1987) Heparin regulates smooth muscle cell S phase entry in the injured rat carotid artery. Circ. Res. 61, 296–300.

    PubMed  CAS  Google Scholar 

  53. Endean, E. D., Kispert, J. F., Martin, K. W., and O'Connor, W. (1991) Intimal hyperplasia is reduced by ornithine decarboxylase inhibition. J. Surg. Res. 50, 634–637.

    PubMed  CAS  Google Scholar 

  54. Strecker, H. J. (1965) Purification and properties of rat liver ornithine γ-transaminase. J. Biol. Chem. 240, 1225–1230.

    PubMed  CAS  Google Scholar 

  55. Durante, W., Liao, L., Reyna, S. V., Peyton, K. J. and Schafer, A. I. (2000) Physiological cyclic stretch directs L-arginine transport and metabolism to collagen synthesis in vascular smooth muscle. FASEB J. 14, 1775–1783.

    PubMed  CAS  Google Scholar 

  56. Durante, W., Liao, L., Reyna, S. V., Peyton, K. J., and Schafer, A. I. (2001) Transforming growth factor-β1 stimulates L-arginine transport and metabolism in vascular smooth muscle cells: role in polyamine and collagen synthesis. Circulation 103, 1121–1127.

    PubMed  CAS  Google Scholar 

  57. Li, G., Regunathan, S., Barrow, C. J., Eshragi, J., Cooper, R., and Reis D. J. (1994) Agmatine: an endogenous clonidine displacing substance in the brain. Science 263, 966–969.

    PubMed  CAS  Google Scholar 

  58. Morrissey, J., Ulvarez, U., Kizer, N., and Klahr, S. (1995) Partial cloning and characterization of an arginine decarboxylase in the kidney. Kidney Int. 47, 1458–1461.

    PubMed  CAS  Google Scholar 

  59. Regunathan, S. and Reis, D. J. (2000) Characterization of arginine decarboxylase in rat brain and liver: distinction from ornithine decarboxylase. J. Neurochem. 74, 2201–2208.

    PubMed  CAS  Google Scholar 

  60. Regunathan, S., Youngson, C., Raasch, W., Wang, H., and Reis, D. J. (1996) Imidazoline receptors and agmatine in blood vessels: a novel system inhibiting vascular smooth muscle cell proliferation. J. Pharmacol. Exp. Ther. 276, 1272–1282.

    PubMed  CAS  Google Scholar 

  61. Gao, Y., Gumusel, B., Koves, G., Prasad, A., Hao, Q., Hyman, A., and Lippton, H. (1995) Agmatine: a novel endogenous vasodilator substance. Life Sci. 57, PL83-PL86.

    PubMed  CAS  Google Scholar 

  62. Satriano, J., Matsufuji, S., and Murakami, Y. (1998) Agmatine suppresses proliferation by frameshift induction of antizyme and attenuation of cellular polyamine levels. J. Biol. Chem. 273, 15,313–15,316.

    CAS  Google Scholar 

  63. Durante, W., Liao, L., Iftikhar, I., O'Brien, W. E., and Schafer, A. I. (1996) Differential regulation of L-arginine transport and nitric oxide production by vascular smooth muscle and endothelium. Circ. Res. 78, 1075–1082.

    PubMed  CAS  Google Scholar 

  64. Nicholson, B., Manner, C. K., Kleeman, J., and MacLeod, C. L. (2000) The L-arginine transporter CAT-2 is required for sustained nitric oxide production by macrophages. FASEB J. 14, 349a.

    Google Scholar 

  65. Busse, R. and Mulsch, A. (1990) Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells. FEBS Lett. 275, 87–90.

    PubMed  CAS  Google Scholar 

  66. Beasley, D. J., Schwartz, J. H., and Brenner, B. M. (1991) Interleukin-1 induces prolonged L-arginine-dependent cyclic guanosine monophosphate and nitrite production in rat vascular smooth muscle cells. J. Clin. Invest. 87, 602–608.

    PubMed  CAS  Google Scholar 

  67. Durante, W., Schini, V. B., Scott-Burden, T., Junquero, D. C., Kroll, M. H., and Vanhoutte, P. M., Schafer, A. I. (1991) Inhibition of platelet activation by an L-arginine derived substance released by cultured vascular smooth muscle cells treated with IL-1β. Am. J. Physiol. 261, H2024-H2030.

    PubMed  CAS  Google Scholar 

  68. McDonald, K. K., Zharikov, S., Block, E. R., and Kilberg, M. S. (1997) A caveolar complex between the cationic amino acid transporter 1 and endothelial nitric oxide synthase may explain the “arginine paradox”. J. Biol. Chem. 272, 31,213–31,216.

    CAS  Google Scholar 

  69. Ogonowski, A. A., Kaesemeyer, W. H., Jin, L., Ganapathy, V., Leibach, F. H., and Caldwell, R. W. (2000) Effects of NO donors and synthase agonists on endothelial cell uptake of L-arg and superoxide production. Am. J. Physiol. 278, C136-C143.

    CAS  Google Scholar 

  70. Patel, J. M., Abeles, A. J., and Block, E. R. (1996) Nitric oxide exposure and sulfhydryl modulation alter L-arginine transport in cultured pulmonary artery endothelial cells. Free Radic. Biol. Med. 20, 629–637.

    PubMed  CAS  Google Scholar 

  71. Geng, Y. J., Wu, Q., Muszynski, M., Hansson, G. K., and Libby, P. (1996) Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-gamma, tumor necrosis factor-alpha, and interleukin-1beta. Arterioscler. Thromb. Vasc. Biol. 16, 19–27.

    PubMed  CAS  Google Scholar 

  72. Hattori, Y., Campbell, E. B., and Gross, S. S. (1994) Argininosuccinate synthetase mRNA and activity are induced by immunostimulants in vascular smooth muscle: role in the regeneration of arginine for nitric oxide synthesis. J. Biol. Chem. 269, 9405–9408.

    PubMed  CAS  Google Scholar 

  73. Xie, L. and Gross, S. S. (1997) Argininosuccinate synthetase overexpression in vascular smooth muscle cells potentiates immunostimulant-induced NO production. J. Biol. Chem. 272, 16,624–16,630.

    CAS  Google Scholar 

  74. Boucher, J. L., Custot, J., Vadon, S., Delaforge, Lepoivre, M., Tenu, J. P., et al. (1994) Nω-Hydroxy-L-arginine, an intermediate in the L-arginine to nitric oxide pathway, is a strong inhibitor of liver and macrophage arginase. Biochem. Biophys. Res. Commun. 203, 1614–1621.

    PubMed  CAS  Google Scholar 

  75. Daghigh, F., Fukuto, J. M., and Ash, D. E. (1994) Inhibition of rat liver arginase by an intermediate in NO biosynthesis, NG-hydroxy-L-arginine: implications for the regulation of NO biosynthesis by arginase. Biochem. Biophys. Res. Commun. 202, 174–180.

    PubMed  CAS  Google Scholar 

  76. Buga, G. M., Singh, R., Pervin, A., Rogers, N. E., Schmitz, D. A., Jenkinson, C. P., et al. (1996) Arginase activity in endothelial cells: inhibition by NG-hydroxy-L-arginine during high-output NO production. Am. J. Physiol. 271, H1988-H1998.

    PubMed  CAS  Google Scholar 

  77. Satriano, J., Ishizuka, S., Archer, D. C., Blantz, R. C., and Kelly, C. J. (1999) Regulation of intracellular polyamine biosynthesis and transport by NO and cytokines TNF-α and IFN-γ. Am. J. Physiol. 276, C892-C899.

    PubMed  CAS  Google Scholar 

  78. Buga, G. M., Wei, L. H., Bauer, P. M., Fukuto, J. M., and Ignarro, L. J. (1998) NG-hydroxy-L-arginine and nitric oxide inhibit Caco-2 tumor cell proliferation by distinct mechanisms. Am. J. Physiol. 275, R1256-R1264.

    PubMed  CAS  Google Scholar 

  79. Bauer, P. M., Fukuto, J. M., Buga, G. M., Pegg, A. E., and Ignarro, L. J. (1999) Nitric oxide inhibits ornithine decarboxylase by S-nitrosylation. Biochem. Biophys. Res. Commun. 262, 355–358.

    PubMed  CAS  Google Scholar 

  80. Forstermann, U., Closs, E. I., Pollock, J. S., Nakane, M., Schwartz, P., Gath, I., and Kleinhart, H. (1994) Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23, 1121–1131.

    PubMed  CAS  Google Scholar 

  81. Hishikawa, K., Nakaki, T., Suzuki, H., Kato, R., and Saruta, T. (1992) L-arginine as an antihypertensive agent. J. Cardiovasc. Pharmacol. 20(Suppl. 12), S196-S197.

    PubMed  Google Scholar 

  82. Ceremuzynski, L., Chamiec, T., and Herbaczynska-Cedro, K. (1997) Effect of supplemental oral L-arginine arginine on exercise capacity in patients with stable angina pectoris. Am. J. Cardiol. 80, 331–333.

    PubMed  CAS  Google Scholar 

  83. Tousoulis, D., Davies, G. J., Tentolouris, C., Crake, T., and Toutouzas, P. (1997) Coronary stenosis dilatation induced by L-arginine. Lancet 349, 1812–1813.

    PubMed  CAS  Google Scholar 

  84. Closs, E. I., Scheld, J.-S., Sharafi, M., and Fostermann, U. (2000) Substrate supply for nitric oxide synthase in macrophages and endothelial cells: role of cationic amino acid transporters. Mol. Pharmacol. 57, 68–74.

    PubMed  CAS  Google Scholar 

  85. Vallance, P., Leone, A., Calver, A., Collier, J., and Moncada, S. (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339, 572–575.

    PubMed  CAS  Google Scholar 

  86. Ito, A., Tsao, P. S., Adimoolam, S., Kimoto, M., Ogawa, T., and Cooke, J. P. (1999) Novel mechanism for endothelial dysfunction. Dysregulation of dimethylarginine dimethylaminohydrolase. Circulation 99, 3092–3095.

    PubMed  CAS  Google Scholar 

  87. Closs, E. I., Basha, F. Z., Habermeier, A., and Fostermann, U. (1997) Interference of L-arginine analogues with L-arginine transport mediated by the y+ carrier hCAT-2B. Nitric Oxide 1, 65–73.

    PubMed  CAS  Google Scholar 

  88. Miyazaki, H., Matsuoka, H., Cooke, J. P., Usui, M., Ueda, S., Okuda, S., and Imaizumi, T. (1999) Endogenous nitric oxide synthase inhibitor: a novel marker of atherosclerosis of atherosclerosis. Circulation 99, 1141–1146.

    PubMed  CAS  Google Scholar 

  89. Boger, R. H. and Bode-Boger, S. M. (2000) Asymmetric dimethylarginine, derangements of the endothelial nitric oxide synthase pathway, and cardiovascular disease. Semin. Thromb. Hemost. 26, 539–545.

    PubMed  CAS  Google Scholar 

  90. Tsikas, D., Boger, R. H., Sandmann, J., Bode-Boger, S. M., and Frolich, J. C. (2000) Endogenous nitric oxide synthase inhibitors are responsible for the L-arginine paradox. FEBS Lett. 478, 1–3.

    PubMed  CAS  Google Scholar 

  91. Arnal, J. F., Munzel, T., Venema, R. C., James, N. L., Bai, C. L., Mitch, W. E., and Harrison, D. G. (1995) Interactions between L-arginine and L-glutamine change endothelial NO production: an effect independent of NO synthase substrate availability. J. Clin. Invest. 95, 2565–2572.

    PubMed  CAS  Google Scholar 

  92. Gugliano, D., Marfella, R., Verrazzo, G., Acampora, R., Coppola, L., Cozzolino, D., and D'Onofrio, F. (1997) The vascular effects of L-arginine in humans. The role of endogenous insulin. J. Clin. Invest. 99, 433–438.

    Google Scholar 

  93. Kurz, S. and Harrison, D. G. (1997) Insulin and the arginine paradox. J. Clin. Invest. 99, 369–370.

    Article  PubMed  CAS  Google Scholar 

  94. Durante, W., Liao, L., Peyton, K. J., and Schafer, A. I. (1998) Thrombin stimulates vascular smooth muscle cell polyamine synthesis by inducing cationic amino acid transporter and ornithine decarboxylase gene expression. Circ. Res. 83, 217–223.

    PubMed  CAS  Google Scholar 

  95. Durante, W., Liao, L., Peyton, K. J., and Schafer, A. I. (1997) Lysophosphatidylcholine regulates cationic amino acid transport and metabolism in vascular smooth muscle cells: role in polyamine biosynthesis. J. Biol. Chem. 272, 30,154–30,159.

    CAS  Google Scholar 

  96. Schini, V. B., Durante, W., Elizondo, E., Scott-Burden, T., Schafer, A. I., and Vanhoutte, P. M. (1992) The induction of nitric oxide synthase activity is inhibited by TGF-β1, PDGFAA, and PDGFAB in vascular smooth muscle cells. Eur. J. Pharmacol. 216, 379–383.

    PubMed  CAS  Google Scholar 

  97. Schini, V. B., Catovksy, S., Durante, W., Scott-Burden, T., Schafer, A. I., and Vanhoutte, P. M. (1993) Thrombin inhibits induction of nitric oxide synthesis in vascular smooth muscle cells. Am. J. Physiol. 264, H611-H616.

    PubMed  CAS  Google Scholar 

  98. Durante, W., Schini, V. B., Kroll, M. H., Catovsky, S., Scott-Burden, T., White, J. G., et al. (1994) Platelets inhibit the induction of nitric oxide synthesis by interleukin-1β in vascular smooth muscle cells. Blood 83, 1831–1838.

    PubMed  CAS  Google Scholar 

  99. Nakayama, I., Kawahara, Y., Tsuda, T., Okuda, M., and Yokoyama, M. (1994) Angiotensin II inhibits cytokine-stimulated inducible nitric oxide synthase expression in vascular smooth muscle cells. J. Biol. Chem. 269, 11,628–11,633.

    CAS  Google Scholar 

  100. Perrella, M. A., Yoshizumi, M., Fen, Z., Tsai, J. C., Hsieh, C-M., Kourembanas, S., and Lee, M-E. (1994) Transforming growth factor-β1, but not dexamethasone, down-regulates nitric oxide synthase mRNA after its induction by interleukin-1β in rat smooth muscle cells. J. Biol. Chem. 269, 14,595–14,600.

    CAS  Google Scholar 

  101. Durante, W., Kroll, M. H., Orloff, G. J., Cunningham, J. M., Scott-Burden, T., Vanhoutte, P. M., and Schafer, A. I. (1996) Regulation of interleukin-1β-stimulated inducible nitric oxide synthase expression in cultured vascular smooth muscle cells by hemostatic proteins. Biochem. Pharmacol. 51, 847–853.

    PubMed  CAS  Google Scholar 

  102. Pegg, A. (1988) Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy. Cancer Res. 48, 759–774.

    PubMed  CAS  Google Scholar 

  103. Yoshimoto, T., Yoshimoto, E., and Meruelo, D. (1992) Enhanced gene expression of the murine ecotropic retroviral receptor and its human homolog in proliferating cells. J. Virol. 66, 4377–4381.

    PubMed  CAS  Google Scholar 

  104. Wu, G. Y., Robinson, D., Kung, H. L., and Hatzglou, M. (1994) Hormonal regulation of the gene for the type C ecotropic retrovirus receptor in rat liver cells. J. Virol. 68, 1615–1623.

    PubMed  CAS  Google Scholar 

  105. Perkins, C. P., Mar, V., Shutter, J. R., Del Castillo, J., Danilenko, D. M., Medlock, E. S., et al. (1997) Anemia and perinatal death result from loss of the murine ecotropic retrovirus receptor MCAT-1. Gene Dev. 11, 914–925.

    PubMed  CAS  Google Scholar 

  106. Louis, C. A., Reichner, J. S., Henry, W. L. Jr., Mastrofrancesco, B., Gotoh, T., Mori, M., and Albina, J. E. (1998) Distict arginase isoforms expressed in primary and transformed macrophages: regulation by oxygen tension. Am. J. Physiol. 274, R775-R782.

    PubMed  CAS  Google Scholar 

  107. Wei, L. H., Jacobs, A. T., Morris, S. M. Jr., and Ignarro, L. J. (2000) IL-4 and IL-13 upregulate arginase I expression by cAMP and JAK/STAT pathways in vascular smooth muscle cells. Am. J. Physiol. 279, C248-C256.

    CAS  Google Scholar 

  108. Resnick, N. and Gimbrone, M. A. Jr. (1995) Hemodynamic forces are complex regulators of endothelial gene expression. FASEB J. 9, 874–882.

    PubMed  CAS  Google Scholar 

  109. Dartsch, P. C. and Hammerle, H. (1986) Orientation response of arterial smooth muscle cells to mechanical stimulation. Eur. J. Cell Biol. 41, 339–346.

    PubMed  CAS  Google Scholar 

  110. Reusch, P., Wagdy, H., Reusch, R., Wilson, E., and Ives, H. E. (1996) Mechanical strain increases smooth muscle and decreases nonmuscle myosin expression in vascular smooth muscle cells. Circ. Res. 79, 1046–1053.

    PubMed  CAS  Google Scholar 

  111. Wang, D. M. and Tarbell, J. M. (1995) Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells. J. Biomech. Eng. 117, 358–363.

    PubMed  CAS  Google Scholar 

  112. Tada, S. and Tarbell, J. M. (2000) Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells. Am. J. Physiol. 278, H1589-H1597.

    CAS  Google Scholar 

  113. Posch, K., Schmidt, K., and Graier, W. F. (1999) Selective stimulation of L-arginine uptake contributes to shear stress-induced formation of nitric oxide. Life Sci. 64, 663–670.

    PubMed  CAS  Google Scholar 

  114. Gosgnach, W., Messika-Zeitoun, D., Gonzalez, W., Philipe, M., and Michel, J. B. (2000) Shear stress induces iNOS expression in cultured smooth muscle cells: role of oxidative stress. Am. J. Physiol. 279, C1880-C1888.

    CAS  Google Scholar 

  115. Strecker, H. J. (1965) Purification and properties of rat liver ornithine δ-transaminase. J. Biol. Chem. 240, 1225–1230.

    PubMed  CAS  Google Scholar 

  116. Leung, D. Y., Glagov, S., and Mathews, M. B. (1976) Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 191, 475–477.

    PubMed  CAS  Google Scholar 

  117. Kulik, T. J. and Alvarado, S. P. (1993) Effect of stretch on growth and collagen synthesis in cultured rat and lamb pulmonary arterial smooth muscle cells. J. Cell. Physiol. 157, 615–624.

    PubMed  CAS  Google Scholar 

  118. Li, Q., Muragaki, Y., Hatamura, I., Ueno, H., and Ooshima, A. (1998) Stretch-induced collagen synthesis in cultured smooth muscle cells from rabbit aorta media and possible involvement of angiotensin II and transforming growth factor-β1. J. Vasc. Res. 35, 93–103.

    PubMed  CAS  Google Scholar 

  119. Yang, J. H., Briggs, W. H., Libby, P., and Lee, R. T. (1998) Small mechanical strains selectively suppress matrix metalloproteinase-1 expression by human vascular smooth muscle cells. J. Biol. Chem. 273, 6550–6555.

    PubMed  CAS  Google Scholar 

  120. Wilson, E., Mai, Q., Sudhir, K., Weiss, R. H., and Ives, H. E. (1993) Mechanical strain induced growth of vascular smooth muscle cells via autocrine action of PDGF. J. Cell Biol. 123, 741–747.

    PubMed  CAS  Google Scholar 

  121. Mills, I., Cohen, R. C., Kamal, K., Li, G., Shin, T., Du, W., and Sumpio, B. E. (1997) Strain activation of bovine aortic smooth muscle cell proliferation and alignment: study of strain dependency and the role of protein kinase A and C signaling pathways. J. Cell. Physiol. 170, 228–234.

    PubMed  CAS  Google Scholar 

  122. Dethlefsen, S. M., Shepro, D., and Amore, P. A. (1996) Comparison of the effect of mechanical stimulation on venous and arterial smooth muscle cells in vitro. J. Vasc. Res. 35, 93–103.

    Google Scholar 

  123. Hipper, A. and Isenberg, G. (2000) Cyclic mechanical strain decreases the DNA synthesis of vascular smooth muscle cells. Pflugers Arch. 440, 19–27.

    PubMed  CAS  Google Scholar 

  124. Chapman, G. B., Durante, W., Hellums, J. D., and Schafer, A. I. (2000) Physiological cyclic stretch causes cell cycle arrest in cultured vascular smooth muscle cells. Am. J. Physiol. 278, H748-H754.

    CAS  Google Scholar 

  125. MacMicking, J. D., Nathan, C., Hom, G., Chartrain, N., Fletcher, D. S., Xie, Q., et al. (1995) Altered response to bacterial infection and endotoxin shock in mice lacking inducible nitric oxide synthase. Cell 81, 641–650.

    PubMed  CAS  Google Scholar 

  126. Wang, T., Lawler, A. M., Steel, G., Sipila, I., Milam, A. H., and Valle, D. (1995) Mice lacking ornithine-δ-aminotransferase have paradoxical neonatal hypoornithinaemia and retinal degeneration. Nature Gen. 11, 185–190.

    Google Scholar 

  127. Shi, O., Morris, S. M. Jr., Zoghbi, H., Porter, C. W., and O'Brien, W. E. (2001) Generation of a mouse model for arginase II deficiency by targeted disruption of the arginase II gene. Mol. Cell. Biol. 21, 811–813.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durante, W. Regulation of L-arginine transport and metabolism in vascular smooth muscle cells. Cell Biochem Biophys 35, 19–34 (2001). https://doi.org/10.1385/CBB:35:1:19

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:35:1:19

Index Entries

Navigation