Skip to main content
Log in

Absorption of the biomimetic chromium cation triaqua-μ3-oxo-μ-hexapropionatotrichromium(III) in rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The cation [Cr3O(O2CCH2CH3)6(H2O)3]+ has been shown in vitro to mimic to the oligopeptide chromodulin’s ability to stimulate the tyrosine kinase activity of insulin receptor and shown in healthy and type 2 diabetic model rats to increase insulin sensitivity and decrease plasma total and low-density lipoprotein cholesterol and triglycerides concentrations. However, the degree to which the complex is absorbed after gavage administration to rats had not been previously determined. The biomimetic cation at nutritional supplement levels is absorbed with greater than 60% efficiency, and at pharmacological levels, it is absorbed with greater than 40% efficiency, an order of magnitude greater absorption than that of CrCl3, Cr nicotinate, or Cr picolinate, currently marketed nutritional supplements. The difference in degree of absorption is readily explained by the stability and solubility of the cation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Vincent, The bioinorganic chemistry of chromium(III). Polyhedron 20, 1–26 (2001).

    Article  CAS  Google Scholar 

  2. P. Trumbo, A. A. Yates, S. Schlicker, et al., Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet. Assoc. 101, 294–301 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. M. H. Pittler, C. Stevinson, and E. Ernst, Chromium picolinate for reducing body weight: meta-analysis of randomized trials. Int. J. Obes. 27, 522–529 (2003).

    Article  CAS  Google Scholar 

  4. S. L. Nissen and R. L. Sharp, Effect of dietary supplements on lean mass and strength gains with resistance exercise: a meta-analysis. J. Appl. Physiol. 94, 651–659 (2003).

    PubMed  CAS  Google Scholar 

  5. J. B. Vincent, The potential value and potential toxicity of chromium picolinate as a nutritional supplement, weight loss agent, and muscle development agent. Sports Med. 33, 213–230 (2003).

    Article  PubMed  Google Scholar 

  6. M. D. Althuis, N. E. Jordan, E. A. Ludington, et al., Glucose and insulin responses to dietary chromium supplements: A meta-analysis. Am. J. Clin. Nutr. 76, 148–155 (2002).

    PubMed  CAS  Google Scholar 

  7. R. A. Anderson, N. A. Bryden, and M. M. Polansky, Lack of toxicity of chromium chloride and chromium picolinate in rats. J. Am. Coll. Nutr. 16, 273–279 (1997).

    PubMed  CAS  Google Scholar 

  8. Y. Sun, K. Mallya, J. Ramirez, et al., The biomimetic [Cr3O(O2CCH2CH3)6(H2O)3]+ decreases cholesterol and triglycerides in rats: towards chromium-containing therapeutics. J. Biol. Inorg. Chem. 4, 838–845 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. Y. Sun, B. J. Clodfelder, A. A. Shute, et al., The biomimetic [Cr3O(O2CCH2CH3)6(H2O)3]+ decreases plasma insulin, cholesterol and triglycerides in healthy and type II diabetic rats but not type I diabetic rats. J. Biol. Inorg. Chem. 7, 852–862 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. J. B. Vincent, Elucidating a biological role for chromium at a molecular level. Acc. Chem. Res. 33, 503–510 (2002).

    Article  Google Scholar 

  11. C. M. Davis, A. C. Royer, and J. B. Vincent, Synthetic multinuclear chromium assembly activates insulin receptor kinase activity: functional model for low-molecular-weight chromium-binding substance. Inorg. Chem. 36, 5316–5320 (1997).

    Article  CAS  Google Scholar 

  12. O. Wada, G. Y. Wu, A. Yamamoto, et al., Purification and chromium-excretory function of low-molecular-weight, chromium-binding substances. Environ. Res. 32, 228–239 (1983).

    Article  PubMed  CAS  Google Scholar 

  13. A. A. Shute and J. B. Vincent, The stability of the biomimetic cation triaqua-μ-oxohexapropionatotrichromium(III) in vivo in rats. Polyhedron 20, 2241–2252 (2001).

    Article  CAS  Google Scholar 

  14. A. A. Shute and J. B. Vincent, The fate of the biomimetic cation triaqua-μ-oxohexapropionatotrichromium(III) in rats. J. Inorg. Biochem. 89, 272–278 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. A. Earnshaw, B. N. Figgis, and J. Lewis, Chemistry of polynuclear compounds. Part VI. Magnetic properties of trimer chromium and iron carboxylates. J. Chem. Soc. A 1656–1663 (1966).

  16. R. A. Anderson and M. M. Polansky, Dietary and metabolic effects of trivalent chromium retention and distribution in rats. Biol. Trace Element Res. 50, 97–108 (1995).

    CAS  Google Scholar 

  17. M. L. Davis-Whiteneck, M. S. Bernice, B. O. Adeleye, et al., Biliary excretion of 51chromium in bile-duct cannulated rats. Nutr. Res. 16, 1009–1015 (1996).

    Article  Google Scholar 

  18. R. A. Anderson and A. S. Kozlovsky, Chromium intake, absorption and excretion of subjects consuming self-selected diets. Am. J. Clin. Nutr. 41, 1177–1183 (1985).

    PubMed  CAS  Google Scholar 

  19. K. L. Olin, D. M. Stearns, W. H. Armstrong, et al., Comparative retention/absorption of 51chromium (51Cr) from 51Cr chloride, 51Cr nicotinate and 51Cr picolinate in a rat model. Trace Elements Electrolytes 11, 182–186 (1994).

    CAS  Google Scholar 

  20. R. A. Anderson, N. A. Bryden, M. M. Polansky, et al., Dietary chromium effects on tissue chromium concentrations and chromium absorption in rats. J. Trace Elements Exp. Med. 9, 11–25 (1996).

    Article  CAS  Google Scholar 

  21. K. F. Kingry, A. C. Royer, and J. B. Vincent, Nuclear magnetic resonance studies of chromium(III) pyridinecarboxylate complexes. J. Inorg. Biochem. 72, 79–88 (1998).

    Article  CAS  Google Scholar 

  22. G. W. Evans and D. J. Pouchnik, Composition and biological activity of chromium-pyridine carboxylate complexes. J. Inorg. Biochem. 49, 177–187 (1993).

    Article  PubMed  CAS  Google Scholar 

  23. N. E. Chakov, R. A. Collins, and J. B. Vincent, A re-investigation of the electronic spectra of chromium(III) picolinate complexes and high yield synthesis and characterization of Cr2(μ-OH)2(pic)4·5H2O (Hpic=picolinic acid). Polyhedron 18, 2891–2897 (1999).

    Article  CAS  Google Scholar 

  24. W. T. Cefalu, Z. Q. Wang, X. H. Zhang, et al., Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats. J. Nutr. 132, 1107–1114 (2002).

    PubMed  CAS  Google Scholar 

  25. J. K. Speetjens, A. Parand, M. W. Crowder, et al., Low-molecular-weight chromium-binding substance and biomimetic [Cr3O(O2CCH2CH3)6(H2O)3]+ do not cleave DNA under physiologically-relevant conditions. Polyhedron 18, 2617–2624 (1999).

    Article  CAS  Google Scholar 

  26. D. M. Stearns, S. M. Silveira, K. K. Wolf, et al., Chromium(III) tris(picolinate) is mutagenic at the hypoxanthine (guanine) phopshoribosyl transferase locus in Chinese hamster ovary cells. Mutat. Res. 513, 135–142 (2002).

    PubMed  CAS  Google Scholar 

  27. D. D. D. Hepburn, J. Xiao, S. Bindom, et al., Nutritional supplement chromium picolinate causes sterility and lethal mutations in Drosophila melanogaster. Proc. Natl. Acad. Sci., USA 100, 3766–3771 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clodfelder, B.J., Chang, C. & Vincent, J.B. Absorption of the biomimetic chromium cation triaqua-μ3-oxo-μ-hexapropionatotrichromium(III) in rats. Biol Trace Elem Res 98, 159–169 (2004). https://doi.org/10.1385/BTER:98:2:159

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:98:2:159

Index Entries

Navigation