Skip to main content
Log in

Influence of silicon on cobalt, zinc, and magnesium in baker's yeast, Saccharomyces cerevisiae

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Silicon (Si, as silicate) is involved in numerous important structure and function roles in a wide range of organisms, including man. Silicate availability influences metal concentrations within various cell and tissue types, but, as yet, clear mechanisms for such an influence have been discovered only within the diatoms and sponges. In this study, the influence of silicate on the intracellular accumulation of metals was investigated in baker's yeast (Saccharomyces cerevisiae). It was found that at concentrations up to 10 mM, silicate did not influence the growth rate of S. cerevisiae within a standard complete medium. However, an 11% growth inhibition was observed when silicate was present at 100 mM. Intracellular metal concentrations were investigated in yeast cultures grown without added silicate (−Si) or with the addition of 10 mM silicate (+Si). Decreased amounts of Co (52%), Mn (35%), and Fe (20%) were found within +Si-grown yeast cultures as compared to −Si-grown ones, whereas increased amounts of Mo (56%) and Mg (38%) were found. The amounts of Zn and K were apparently unaffected by the presence of silicon. +Si enhanced the yeast growth rate for low-Zn2+ medium, but it decreased the growth rate under conditions of a low Mg2+ medium and did not alter the growth rates in high Zn2+ and Co2+ media. +Si doubled the uptake rate of Co2+ but did not influence that of Zn2+. We propose that a possible explanation for these results is that polysilicate formation at the cell wall changes the cell wall binding capacity for metal ions. The toxicity of silicate was compared to germanium (Ge, as GeO2), a member of the same group of elements as Si (group 14). Hence, Si and Ge are chemically similar, but silicate starts to polymerize to oligomers above 5 mM, whereas Ge salts remain as monomers at such concentrations. Ge proved to be far more toxic to yeast than Si and no influence of Si on Ge toxicity was found. We propose that these results relate to differences in cellular uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Petzold and W. Hinz, Silikatchemie, Einführung in die Grundlagen, VEB Deutsche Verlag für Grundstoffindustrie, Leipzig (1978) (in German).

    Google Scholar 

  2. R. K. Iler, The Chemistry of Silica, J Wiley, New York (1979).

    Google Scholar 

  3. E. Epstein, Silicon, Annu. Rev. Plant Physiol. 50, 641–664 (1999).

    Article  CAS  Google Scholar 

  4. D. Evered and M. O'Connor, Silicon Biochemistry, Wiley, Chechester (1986).

    Google Scholar 

  5. T. L. Simpson and B. E. Volcan, Silicon and Siliceous Structures in Biological Systems, Springer-Verlag, New York (1981).

    Google Scholar 

  6. J. D. Birchall, The role of silicon in biology, Chem. Brit. 26(2), 141–144 (1990).

    CAS  Google Scholar 

  7. C. D. Seaborn and F. H. Nielsen, Silicon deprivation and arginine and cysteine supplementation affect bone collagen and bone plasma trace mineral concentrations in rats, J. Trace Elements Exp. Med. 15, 113–122 (2002).

    Article  CAS  Google Scholar 

  8. V. Martin-Jezequel, M. Hildebrand and M. A. Brzezinski, Silicon metabolism in diatoms: implications for growth, J. Phys. C 36, 821–840 (2000).

    CAS  Google Scholar 

  9. W. E. G. Muller, A. Krasko, G. Le Pennec, and H. C. Schröder, Biochemistry and cell biology of silica formation in sponges, Microsc. Res. Tech. 62, 368–377 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. D. Neumann and U. zur Nieden, Silicon and heavy metal tolerance of higher plants, Phytochemistry 56, 685–692 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. D. Neumann and C. de Figueiredo, A novel mechanism of silicon uptake, Protoplasma 220, 59–67 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. G. M. Walker, Yeast Physiology and Biotechnology, Wiley, Chichester (1998).

    Google Scholar 

  13. C. Verduyn, E. Postma, A. Scheffers, and J. P. van Dijken, Effect of benzoic acid on the metabolic fluxes in yeast: a continuous-culture study on the regulation of respiration and alcoholic fermentation, Yeast 8, 501–517 (1992).

    Article  PubMed  CAS  Google Scholar 

  14. L. Bisconti, M. Pepi, S. Mangani, and F. Baldi, Reduction of vanadate to vanadyl by a strain of Saccharomyces cerevisiae, Biometals 10, 239–246 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. M. Blaauw, The holistic analysis of gamma-ray spectra in instrumental neutron activation analysis, PhD thesis, University of Technology, Delft, The Netherlands (1993).

    Google Scholar 

  16. M. I. van Dyke, H. Lee, and J. T. Trevors, Germanium toxicity in selected bacterial and yeast strains, J. Ind. Microbiol. 4, 299–306 (1989).

    Article  Google Scholar 

  17. G. A. Taylor, G. R. L. Pullen, A. B. Keith, and J. A. Edwardson, Ge-68 as a possible marker for silicon transport in rat brain, Neurochem. Res. 17, 1181–1185 (1992).

    Article  PubMed  CAS  Google Scholar 

  18. S. D. Kinrade, R. J. Hamilton, A. S. Schach, and C. T. G. Knight, Aqueous hypervalent silicon complexes with aliphatic sugar acids, J. Chem. Soc. Dalton Trans. 7, 961–963 (2001).

    Article  Google Scholar 

  19. S. D. Kinrade, J. W. Del Nin, A. S. Schach, T. A. Sloan, K. L. Wilson, and C. T. G. Knight, Stable five- and six-coordinated silicate anions in aqueous solution, Science 285, 1542–1545 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. J. B. Lambert, G. Lu, S. R. Singer, and V. M. Kolb, Silicate complexes of sugars in aqueous solution, J. Am. Chem. Soc. 126, 9611–9625 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. D. Brady, A. D. Stoll, L. Starke, and J. R. Duncan, Chemical and enzymatic extraction of heavy-metal binding polymers from isolated cell-walls of Saccharomyces cerevisiae, Biotech. Bioengineering 44, 297–302, (1994).

    Article  CAS  Google Scholar 

  22. E. G. Davidova and S. G. Kasparova, Adsorption of metals by yeast cell walls, Microbiology 61, 716–719 (1992).

    Google Scholar 

  23. H. Sentenac and C. Grignon, A model for predicting ionic equilibrium concentrations in cell-walls, Plant Physiol. 68, 415–419 (1981).

    Article  PubMed  CAS  Google Scholar 

  24. P. R. Norris and D. P. Kelly, Accumulation of metals by bacteria and yeasts, Dev. Ind. Microbiol. 20, 299–308 (1979).

    Google Scholar 

  25. C. White and G. M. Gadd, The uptake and cellular distribution of zinc in Saccharomyces cerevisiae, J. Gen. Microbiol. 133 727–737, (1987).

    CAS  Google Scholar 

  26. G. B. Alexander, The polymerization of monosilicic acid, J. Am. Chem. Soc. 76, 2095–2096 (1954).

    Article  Google Scholar 

  27. W. Schwieger, W. Heyer, E. Wolf, and K.-H. Berg, Zur Synthese von kristallinen Metallsilikathydraten mit Schichtstruktur, Z. Anorg. Chem. 548, 204–216 (1987) (in German).

    Article  CAS  Google Scholar 

  28. W. L. Marshall and J. M. Warakomski, Amorphous silica solubilities: II. Effect of aqueous salt solutions at 25°C, Geochim. Cosmochim. Acta 44, 915–924 (1980).

    Article  CAS  Google Scholar 

  29. J. de Kok, C. van der Schoot M. Veldhuizen, and H. T. Wolterbeek, The uptake of zinc by erythrocytes under near-physiological conditions, Biol. Trace Element Res. 38, 13–26 (1993).

    Google Scholar 

  30. J. B. Fein, S. Scott, and N. Rivera, The effect of Fe on Si adsorption by Bacillus subtilis cell walls: insights into non-metabolic bacterial precipitation of silicate minerals, Chem. Geol. 182, 265–273 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brasser, H.J., Krijger, G.C., van Meerten, T.G. et al. Influence of silicon on cobalt, zinc, and magnesium in baker's yeast, Saccharomyces cerevisiae . Biol Trace Elem Res 112, 175–189 (2006). https://doi.org/10.1385/BTER:112:2:175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:112:2:175

Index Entries

Navigation