Skip to main content
Log in

Sorbitol can be produced not only chemically but also biotechnologically

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sorbitol, a polyol found in many fruits, is attracting increasing industrial interest as a sweetener, humectant, texturizer, and softener. It is principally produced by chemical means. The bacterium Zymomonas mobilis is able to produce sorbitol together with gluconic acid from fructose and glucose, respectively. This is possible in a one-step reaction via the enzyme glucose-fructose oxidoreductase, so far only known from Z. mobilis. The possibilities for the production of sorbitol by Z. mobilis are discussed also under the aspect of an industrial process and compared with the current chemical as well as other microbiologic processes. The production process by Z. mobilis shows economic possibilities for certain countries, such as Brazil, considering only the products sorbitol and ethanol as an important byproduct. For the other byproduct, gluconic acid, further studies for its partial substitution must be conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrow, K. D., Collins, J. G., Leigh, D. A., Rogers, P. L., and Warr, R. G. (1984), Appl. Microbiol. Biotechnol. 20, 225–232.

    Article  CAS  Google Scholar 

  2. Viikari, L. (1984), Appl. Microbiol. Biotechnol. 19, 252–255.

    Article  CAS  Google Scholar 

  3. Viikari, L. (1984), Appl. Microbiol. Biotechnol. 20, 118–123.

    Article  CAS  Google Scholar 

  4. Leigh, D., Scopes, R. K., and rogers, P. L. (1984), Appl. Microbiol. Biotechnol. 20, 413–415.

    Article  CAS  Google Scholar 

  5. Zachariou, M. and Scopes, R. K. (1986), J. Bacteriol. 167, 863–869.

    PubMed  CAS  Google Scholar 

  6. Budavari, S., O’Neil, M. J., Smith, A., Heckelman, P. E., and Kinneary, J. F., eds. (1996), The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 12th ed., Merck & Co., Whitehouse Station, NJ, pp. 1490, 1491.

    Google Scholar 

  7. Wrolstad, R. E. and Shallenberger, R. S. (1981), J. Assoc. Off. Anal. Chem. 64, 91–103.

    PubMed  CAS  Google Scholar 

  8. Albert, R., Strätz, A., and Vollheim, G. (1980), Chem. Eng. Technol. 52, 582–587.

    CAS  Google Scholar 

  9. Vogel, R. (2003), in Ullmann’s Encyclopedia of Industrial Chemistry, 6th ed., vol. 34, Wiley-VCH, Weinheim, Germany, pp. 492–498.

    Google Scholar 

  10. Haidegger, E. (1977), Starch 29, 430–435.

    Article  CAS  Google Scholar 

  11. Phillips, M. A. (1963), Br. Chem. Eng. 8, 767–769.

    CAS  Google Scholar 

  12. I. G. Farbenindustrie AG (Müller, J. and Hoffmann, U.) (1925), DR patent 544666.

  13. Atlas Powder Inc. (Kasehagen, L.) (1948), US patent 2,642,462.

  14. Kabushiki Kaisha Ueno Seiyaku Oyo Kenkyujo (Kunimi, Y., Tabata, A., and Fujita, Y.) (1989), EP patent 89301335. 9.

  15. VEB Deutsches Hydrierwerk Rodleben. (1987), DD patent 252003.

  16. VEB Deutsches Hydrierwerk Rodleben. (1990), DD patent 277176.

  17. Swings, J. and De Ley, J. (1977), Bacteriol. Rev. 41, 1–46.

    PubMed  CAS  Google Scholar 

  18. Holt, J. G., Krieg, N. R., Smath, P. H. A., Staley, J. T., and Williams, S. T., eds. (1994), Bergey’s Manual of Determinative Bacteriology, 9th ed., Williams & Wilkins, Baltimore, pp. 201–202.

    Google Scholar 

  19. Sahm, H., Bringer-Meyer, S., and Sprenger, G. (1998), in The Prokaryotes, 3rd ed., Dworkin, M., Stackebrandt, E., Falkows, S., Rosenberg, E., and Schleifer, K. H., eds., Springer, New York Electronic Publication (http://link. springer-ny. com:6335/), chap. 282.

    Google Scholar 

  20. Swings, J. and De Ley, J. (1984), in Bergey’s Manual of Systematic Bacteriology, vol. 1, Holt, J. G. and Krieg, N. R., eds., Williams & Wilkins, Baltimore, pp. 576–580.

    Google Scholar 

  21. Baratti, J. C. and Bu’Lock, J. D. (1986), Biotechnol. Adv. 4, 95–115.

    Article  PubMed  CAS  Google Scholar 

  22. Bringer-Meyer, S. and Sahm, H. (1988), FEMS Microbiol. Rev. 54, 131–142.

    Article  CAS  Google Scholar 

  23. Buchholz, S. E., Dooley, M. M., and Eveleigh, D. E. (1987), TIBTECH 5, 199–204.

    CAS  Google Scholar 

  24. Conway, T. (1992), FEMS Microbiol. Rev. 103, 1–28.

    Article  CAS  Google Scholar 

  25. Doelle, H. W., Kirk, L., Crittenden, R., and Toh, H. (1993), Crit. Rev. Biotechnol. 13, 57–98.

    PubMed  CAS  Google Scholar 

  26. Guanasekaran, P. and Raj, K. C. (1999), Curr. Sci. 77, 56–68.

    Google Scholar 

  27. Rogers, P. L., Lee, K. J., Skotnicki, M. L., and Tribe, D. E. (1982), Adv. Biochem. Eng. 23, 37–84.

    Google Scholar 

  28. Sahm, H., Bringer-Meyer, S., and Sprenger, G. (1992), in The Prokaryotes, vol. III(112), 2nd ed., Belows, A., Trüper, H. G., Dworkin, M., Harder, W., and Schleifer, K. H., eds., Springer, New York, pp. 2287–2301.

    Google Scholar 

  29. Sprenger, G. A. (1993), J. Biotechnol. 27, 225–237.

    Article  CAS  Google Scholar 

  30. Sprenger, G. A. (1996), FEMS Microbiol. Lett. 145, 301–307.

    Article  CAS  Google Scholar 

  31. Viikari, L. (1988), CRC Crit. Rev. Biotechnol. 7, 237–261.

    CAS  Google Scholar 

  32. Calazans, G. M. T., Lima, R. C., De França, F. P., and Lopes, C. E. (2000), Int. Biol. Macromol. 27, 245–247.

    Article  CAS  Google Scholar 

  33. De Paula Gomes, A. (1959), Rev. Inst. Antibiot. Univ. Recife 2, 77–81.

    Google Scholar 

  34. De Souza, C. and De Souza, L. A. G. (1973), Rev. Inst. Antibiot. Univ. Recife 13, 85–87.

    Google Scholar 

  35. Loos, H., Krämer, R., Sahm, H., and Sprenger, G. A. (1994), J. Bacteriol. 176, 7688–7693.

    PubMed  CAS  Google Scholar 

  36. Strohdeicher, M., Neuß, B., Bringer-Meyer, S., and Sahm, H. (1990), Arch. Microbiol. 154, 536–543.

    Article  CAS  Google Scholar 

  37. Strohdeicher, M., Schmitz, B., Bringer-Meyer, S., and Sahm, H. (1988), Appl. Microbiol. Biotechnol. 27, 378–382.

    Article  CAS  Google Scholar 

  38. Wecker, M. S. A. and Zall, R. R. (1987), Appl. Environ. Microbiol. 53, 2815–2820.

    PubMed  CAS  Google Scholar 

  39. Gibbs, M. and De Moss, R. D. (1951), Arch. Biochem. Biophys. 34, 478, 479.

    Article  CAS  Google Scholar 

  40. Gibbs, M. and De Moss, R. D. (1954), J. Biol. Chem. 207, 689–694.

    PubMed  CAS  Google Scholar 

  41. Kersters, K. and De Ley, J. (1968), J. Microbiol. Serol. 34, 393–408.

    CAS  Google Scholar 

  42. Stern, I. J., Wang, C. H., and Gilmou, C. M. (1960), J. Bacteriol. 79, 601–611.

    PubMed  CAS  Google Scholar 

  43. McGill, D. J. and Dawes, E. A. (1971), Biochem. J. 125, 1059–1068.

    PubMed  CAS  Google Scholar 

  44. McGill, D. J., Dawes, E. A., and Ribbons, D. W. (1965), Biochem. J. 97, 44, 45.

    Google Scholar 

  45. Belaich, J. P. and Senez, J. C. (1965), J. Gen. Microbiol. 70, 1195–1200.

    Google Scholar 

  46. Dawes, E. A., Ribbons, D. W., and Large, P. J. (1966), Biochem. J. 98, 795–803.

    PubMed  CAS  Google Scholar 

  47. Ait-Abdelkader, N., De Caro, A., Guzzo, J., Michel, G. P. F., and Baratti, J. C. (2000), Biotechnol. Lett. 22, 461–467.

    Article  CAS  Google Scholar 

  48. Bekers, M., Linde, R., Danilevich, A., Kaminska, E., Upite, D., Vigants, A., and Scherbaka, R. (1999), Food Biotechnol. 13, 107–119.

    Article  Google Scholar 

  49. Bekers, M., Ventina, E., Lankevics, J., Kaminska, E., Upite, D., and Vigants, A. (1997), Acta Biotechnol. 17, 265–275.

    Article  CAS  Google Scholar 

  50. Kannan, T. R., Sangiliyandi, G., and Gunasekaran, P. (1997), Biotechnol. Lett. 19, 661–664.

    Article  CAS  Google Scholar 

  51. Kannan, T. R., Sangiliyandi, G., and Gunasekaran, P. (1997), Indian J. Microbiol. 37, 53–57.

    Google Scholar 

  52. Kannan, T. R., Sangiliyandi, G., and Gunasekaran, P. (1998), Enzyme Microb. Technol. 22, 179–184.

    Article  CAS  Google Scholar 

  53. Song, K. B., Belghiti, H., and Rhee, S. L. (1996), Ann. NY Acad. Sci. 799, 601–607.

    Article  PubMed  CAS  Google Scholar 

  54. Vigants, A., Zikmanis, P., and Bekers, M. (1996), Acta Biotechnol. 16, 321–327.

    Article  CAS  Google Scholar 

  55. Bringer, S., Finn, R. K., and Sahm, H. (1984), Arch. Microbiol. 139, 376–381.

    Article  CAS  Google Scholar 

  56. Ishikawa, H., Nobayashi, H., and Tanaka, H. (1990), J. Ferment. Bioeng. 70, 34–40.

    Article  CAS  Google Scholar 

  57. Pankova, L. M., Shvinka, Y. E., Beker, M. E., and Slava, E. E. (1985), Mikrobiologiya 54, 141–145.

    CAS  Google Scholar 

  58. Barthel, T., Jonas, R., and Sahm, H. (1989), Arch. Microbiol. 153, 95–100.

    Article  CAS  Google Scholar 

  59. Tanaka, H., Ishikawa, H., Osuga, K., and Takagi, Y. (1989), J. Ferment. Bioeng. 69, 234–239.

    Article  Google Scholar 

  60. Favela Torres, E. and Baratti, J. (1987), Biomass 13, 75–85.

    Article  CAS  Google Scholar 

  61. Silveira, M. M., Wisbeck, E., Lemmel, C., Erzinger, G. S., Lopes da Costa, J. P., Bertasso, M., and Jonas, R. (1999), J. Biotechnol. 75, 99–103.

    Article  PubMed  CAS  Google Scholar 

  62. Loos, H., Völler, M., Rehr, B., Stierhof, Y. D., Sahm, H., and Sprenger, G. A. (1991), FEMS Microbiol. Lett. 84, 211–216.

    Article  CAS  Google Scholar 

  63. Hardman, M. J. and Scopes, R. K. (1988), Eur. J. Biochem. 173, 203–209.

    Article  PubMed  CAS  Google Scholar 

  64. Aldrich, H. C., McDowell, L., De FS Barbosa, M., Yomano, L. P., Scopes, R. K., and Ingram, L. O. (1992), J. Bacteriol. 174, 4504–4508.

    PubMed  CAS  Google Scholar 

  65. Halbig, D., Wiegert, T., Blaudeck, N., Freudl, R., and Sprenger, G. A. (1999), Eur. J. Biochem. 263, 543–551.

    Article  PubMed  CAS  Google Scholar 

  66. Kingston, R. L., Scopes, R. K., and Baker, E. N. (1996), Structure 4, 1413–1428.

    Article  PubMed  CAS  Google Scholar 

  67. Loos, H., Ermler, U., Sprenger, G. A., and Sahm, H. (1994), Protein Sci. 3, 2447–2449.

    Article  PubMed  CAS  Google Scholar 

  68. Loos, H., Sahm, H., and Sprenger, G. A. (1993), FEMS Microbiol. Lett. 107, 293–298.

    Article  PubMed  CAS  Google Scholar 

  69. Wiegert, T., Sahm, H., and Sprenger, G. A. (1996), Arch. Microbiol. 166, 32–41.

    Article  PubMed  CAS  Google Scholar 

  70. Weisser, P., Krämer, R., Sahm, H., and Sprenger, G. A. (1995), J. Bacteriol. 177, 3351–3354.

    PubMed  CAS  Google Scholar 

  71. Fürlinger, M., Haltrich, D., Kulbe, K. D., and Nidetzky, B. (1998), Eur. J. Biochem. 251, 955–963.

    Article  PubMed  Google Scholar 

  72. Gollhofer, D., Nidetzky, B., Fürlinger, M., and Kulbe, K. D. (1995), Enzyme Microb. Technol. 17, 235–240.

    Article  CAS  Google Scholar 

  73. Nidetzky, B., Fürlinger, M., Gollhofer, D., Haug, I., Haltrich, D., and Kulbe, K. D. (1997), Appl. Biochem. Biotechnol. 63–65, 173–188.

    Google Scholar 

  74. Nidetzky, B., Fürlinger, M., Gollhofer, D., Scopes, R. K., Haltrich, D., and Kulbe, K. D. (1997), Biotechnol. Bioeng. 53, 623–629.

    Article  CAS  Google Scholar 

  75. Fürlinger, M., Nidetzky, B., Scopes, R. K., Haltrich, D., and Kulbe, K. D. (1996), Ann. NY Acad. Sci. 799, 752–756.

    Article  Google Scholar 

  76. Fürlinger, M., Satory, M., Haltrich, D., Kulbe, K. D., and Nidetzky, B. (1998), J. Biochem. 124, 280–286.

    PubMed  Google Scholar 

  77. Satory, M., Fuerlinger, M., Haltrich, D., Kulbe, K. D., Pittner, F., and Nidetzky, B. (1997), Biotechnol. Lett. 19, 1205–1208.

    Article  CAS  Google Scholar 

  78. Chun, U. H. and Rogers, P. L. (1988), Appl. Microbiol. Biotechnol. 29, 19–24.

    Article  CAS  Google Scholar 

  79. Scopes, R. K., Rogers, P. L., and Leigh, D. A. (1988), US patent 4,755,467.

  80. Ichikawa, Y., Kitamoto, Y., Kato, N., and Mori, N. (1989), European patent application, EP 322,723.

  81. Rehr, B., Wilhelm, C., and Sahm, H. (1991), Appl. Microbiol. Biotechnol. 35, 144–148.

    Article  CAS  Google Scholar 

  82. Rehr, B. and Sahm, H. (1992), US patent 5,102,795.

  83. Rehr, B. and Sahm, H. (1993), US patent 5,190,869.

  84. Bringer-Meyer, S. and Sahm, H. (1991), US patent 5,017,485.

  85. Jang, K. H., Park, C., and Chun, U. H. (1992), Biotechnol. Lett. 14, 311–316.

    Article  CAS  Google Scholar 

  86. Jang, K. H., Jung, S. J., Chang, H. S., and Chun, U. H. (1996), Process Biochem. 31, 485–492.

    Article  CAS  Google Scholar 

  87. Ro, H. and Kim, H. (1991), Enzyme Microb. Technol. 13, 920–924.

    Article  CAS  Google Scholar 

  88. Kim, D. M. and Kim, H. S. (1992), Biotechnol. Bioeng. 39, 336–342.

    Article  CAS  Google Scholar 

  89. Silveira, M. M., Lopes da Costa, J. P., and Jonas, R. (1994), Brazilian patent PI 9.403.981-0.

  90. Wisbeck, E., Silveira, M. M., Ninow, J., and Jonas, R. (1997), J. Basic. Microbiol. 6, 445–449.

    Article  Google Scholar 

  91. Silveira, M. M., Wisbeck, E., Hoch, I., and Jonas, R. (2001), Appl. Microbiol. Biotechnol. 55, 442–445.

    Article  PubMed  CAS  Google Scholar 

  92. Silva-Martinez, M., Haltrich, D., Novalic, S., Kulbe, K. D., and Nidetzky, B. (1998), Appl. Biochem. Biotechnol. 70–72, 863–868.

    Article  Google Scholar 

  93. Tani, Y. and Vongsuvanlert, V. (1987), J. Ferment. Technol. 65, 405–411.

    Article  CAS  Google Scholar 

  94. Vongsuvanlert, V. and Tani, Y. (1988), Agric. Biol. Chem. 52, 419–426.

    CAS  Google Scholar 

  95. Duvnjak, Z., Turcotte, G., and Duan, Z. D. (1991), Appl. Microbiol. Biotechnol. 35, 711–715.

    Article  CAS  Google Scholar 

  96. Duvnjak, Z., Turcotte, G., and Duan, Z. D. (1991), J. Chem. Technol. Biotechnol. 52, 527–537.

    Article  CAS  Google Scholar 

  97. Hiroyuki, S. and Izumori, K. (1994), Seibutsu Kogaku Kaishi 72, 299–304.

    Google Scholar 

  98. Ferraz, H. C., Borges, C. P., and Alves, T. L. M. (2000), in Anais do 13° Simpósio Nacional de Fermentações, Universidade Federal de Rio de Janeiro, Terezópolis, Brazil.

    Google Scholar 

  99. Concatto, K., Carra, S., Malvessi, E., and Silveira, M. M. (2003), in Anais do XIV SINAFERM-Simpósio Nacional de Fermentações, CD-ROM, Universidade Federale de Santa Catarina, Florianópolis, SC, Brazil, T281.

    Google Scholar 

  100. Carra, S., Concatto, K., Malvessi, E., and Silveira, M. M. (2003), in Anais do XIV SINAFERM-Simpósio Nacional de Fermentações, CD-ROM, Florianópolis, SC, Brazil, T282.

    Google Scholar 

  101. Shepherd, R. E., Isaacson, Y., Chensny, L., Zhang, S., Kortes, R., and John, K. (1993), J. Inorg. Biochem. 49, 23–48.

    Article  PubMed  CAS  Google Scholar 

  102. Sumimoto, R. and Kamada, N. (1990), Transplant Proc. 22, 2198–2199.

    PubMed  CAS  Google Scholar 

  103. Southard, J. H. and Belzer, F. O. (1995), Annu. Rev. Med. 46, 243–247.

    Article  Google Scholar 

  104. Gerling, K.-G. and Wilke, D. (1991), US patent 5,069,808.

  105. Nemer, M. L. (2002), Les Nouvelles Estétiques, no. 69.

  106. Oster, B. and Fechtel, U. (2003), in Ullmann’s Encyclopedia of Industrial Chemistry, 6th ed., vol. 38, Wiley-VCH, Weinheim, Germany, pp. 218–231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Jonas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonas, R., Silveira, M.M. Sorbitol can be produced not only chemically but also biotechnologically. Appl Biochem Biotechnol 118, 321–336 (2004). https://doi.org/10.1385/ABAB:118:1-3:321

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:118:1-3:321

Index Entries

Navigation