Skip to main content
Log in

Biosynthesis of (R)-3-hydroxyalkanoic acids by metabolically engineered Escherichia coli

  • Session 2—Introduction to Microbial Catalysis and Engineering
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An efficient system for the production of (R)-hydroxyalkanoicacids (RHAs) was developed in natural polyhydroxyalkanoate (PHA)-producing bacteria and recombinant Escherichia coli. Acidic alcoholysis of purified PHA and in vivo depolymerization of PHA accumulated in the cells allowed the production of RHAs. In recombinant E. coli, RHA production was achieved by removing CoA from (R)-3-hydroxyacyl-CoA and by in vivo depolymerization of PHA. When the recombinant E. coli harboring the Ralstonia eutropha PHA biosynthesis genes and the depolymerase gene was cultured in a complex or a chemically defined medium containing glucose, (R)-3-hydroxybutyric acid (R3HB) was produced as monomers and dimers. R3HB dimers could be efficiently converted to monomers by mild alkaline heat treatment. A stable recombinant E. coli strain in which the R. eutropha PHA biosynthesis genes were integrated into the chromosome disrupting the pta gene was constructed and examined for the production of R3HB. When the R. eutropha intracellular depolymerase gene was expressed by using a stable plasmid containing the hok/sok locus of plasmid R1, R3HB could be efficiently produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, A. J. and Dawes E. A. (1990), Microbiol. Rev. 54, 450–472.

    PubMed  CAS  Google Scholar 

  2. Doi, Y. (1990), Microbial Polyesters, VCH, New York, NY.

    Google Scholar 

  3. Lee, S. Y. (1996), Biotechnol. Bioeng. 49, 1–14.

    Article  CAS  ADS  Google Scholar 

  4. Steinbüchel, A. and Fuchtenbusch, B. (1998), Trends Biotechnol. 16, 419–427.

    Article  PubMed  Google Scholar 

  5. Steinbüchel, A. and Valentin, H. E. (1995), FEMS Microbiol. Lett. 128, 219–228.

    Article  Google Scholar 

  6. Chiba, T. and Nakai, T. (1985), Chem. Lett., 651–654.

  7. Schnurrenberger, P., Hungerbühler, E., and Seebach, D. (1987), Liebigs Ann. Chem., 733–744.

  8. Yu, D., Ellis, H. M., Lee, E.-C., Jenkins, N. A., Copeland, N. G., and Court, D. L. (2000), Proc. Natl. Acad. Sci. USA 97, 5978–5983.

    Article  PubMed  CAS  ADS  Google Scholar 

  9. Lee, Y., Park, S. H., Lim, I. T., Han, K. and Lee, S. Y. (2000), Enzyme Microb. Technol. 27, 33–36.

    Article  PubMed  CAS  Google Scholar 

  10. Seebach, D., Beck, A. K., Breitschuh, R., and Job, K. (1992), Org. Synth. 71 39–47.

    Article  Google Scholar 

  11. Seebach, D. and Zuger, M. F. (1982), Helvetica Chim. Acta. 65, 495–503.

    Article  CAS  Google Scholar 

  12. Peoples, O. P. and Sinskey, A. J. (1989), J. Biol. Chem. 264, 15,298–15,303.

    CAS  Google Scholar 

  13. Schubert, P., Steinbüchel, A., and Schlegel, H. G. (1988), J. Bacteriol. 170, 5837–5847.

    PubMed  CAS  Google Scholar 

  14. Slater, S. C., Voige, W. H., and Dennis, D. (1988), J. Bacteriol. 170, 4431–4436.

    PubMed  CAS  Google Scholar 

  15. Lee, S. Y., Lee, Y., and Wang, F. (1999), Biotechnol. Bioeng. 65, 363–368.

    Article  PubMed  CAS  Google Scholar 

  16. Gao, H. J., Wu, Q., and Chen, G. Q. (2002), FEMS Microbiol. Lett. 213, 59–65.

    PubMed  CAS  Google Scholar 

  17. Zhao, K., Tian, G., Zheng, Z., Chen, J. C., and Chen, G. Q. (2003), FEMS Microbiol. Lett. 218, 59–64.

    PubMed  CAS  Google Scholar 

  18. Lee, S. Y. and Lee, Y. (2003), Appl. Environ. Microbiol. 69, 3421–3426.

    Article  PubMed  CAS  Google Scholar 

  19. Hasegawa, J., Ogura, M., Kanama, H., Noda, N., Kawaharada, H., and Watanabe, K.. (1982), J. Ferment. Technol. 60, 501–508.

    CAS  Google Scholar 

  20. Deol, B. S., Ridley, D. D., and Simpson, G. W., (1976), Aust. J. Chem. 29, 2459–2467.

    Article  CAS  Google Scholar 

  21. Mochizuki, N., Sugai, T., and Ohta, H. (1994), Biosci. Biotech. Biochem. 58, 1666–1670

    Article  CAS  Google Scholar 

  22. de Roo, G., Kellerhals, M. B., Ren, Q., Witholt, B., and Kessler, B. (2002), Biotechnol. Bioeng. 77, 717–722.

    Article  PubMed  Google Scholar 

  23. Choi, J., and Lee, S. Y. (1999), Biotechnol. Bioeng. 62, 546–553.

    Article  PubMed  CAS  Google Scholar 

  24. Madison, L. L. and Huisman, G. W. (1999), Microbiol. Mol. Biol. Rev. 63, 21–53.

    PubMed  CAS  Google Scholar 

  25. Saegusa, H., Shiraki, M., Kanai, C. and Saito, T. (2001), J. Bacteriol. 183, 94–100.

    Article  PubMed  CAS  Google Scholar 

  26. Miltenberger, K. and Aktiengesellschaft, H. (1985–1996), in Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed., Arpe, H.-J. et al., eds., Wiley-VCH, Weinheim, Berlin, Germany, pp. 507–517.

    Google Scholar 

  27. Gerdes, K. (1988), Bio/Technology 6, 1402–1405.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Yup Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S.J., Lee, S.Y. & Lee, Y. Biosynthesis of (R)-3-hydroxyalkanoic acids by metabolically engineered Escherichia coli . Appl Biochem Biotechnol 114, 373–379 (2004). https://doi.org/10.1385/ABAB:114:1-3:373

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:114:1-3:373

Index Entries

Navigation