Skip to main content
Log in

Growth and pectinase production by Aspergillus mexican strain protoplast regenerated under acidic stress

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Protoplasts from Aspergillus sp. FP-180 and Aspergillus awamori NRRL-3112 were released and regenerated at extreme acidic conditions. The best conditions for protoplast release were 0.8 M KCI, pH 5.8, and 3h of digestion using mycelia from 12- to 16-h cultures from either Aspergillus sp. FP-180 or A. awamori NRRL-3112. The addition of fresh mycelia to an ongoing digestion after 1 h increased protoplast 4.5–5 times. A regeneration efficiency of 90% was attained at pH 6.0, and it was possible to regenerate protoplasts at pH 1.7 with a regeneration efficiency of 0.5% for Aspergillus sp. FP-180. The LpH-10 strain, derived from protoplast from Aspergillus sp FP-180, was able to regenerate at pH 1.7 and grow at pH values as low as 1.5, values at which the original strain is unable to grow. Regeneratio at extreme pH improved the performance of LpH-10 strain. It showed atwofold increase in cell growth at pH 2.0 in liquid culture and a higher pectinolytic activity in relation to that produced by the original strian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peberdy, J. F. (1979), Annu. Rev. Microbiol. 33, 21–39.

    Article  CAS  Google Scholar 

  2. Deane, E. E., Whipps, J. M., Lynch, J. M., and Peberdy, J. F. (1999), Enzyme Microb. Technol. 24, 419–424.

    Article  CAS  Google Scholar 

  3. Manczinger, L., Komonyi, O., Antal, Z., and Ferenczy, L. (1997), J. Microbiol. Methods 29, 207–210.

    Article  CAS  Google Scholar 

  4. Thammarongtham, C., Turner, G., Moir, A. J., Tanticharoen, M., and Cheevadhanarak, S. (2001), J. Mol. Microbiol. Biotechnol. 3(4), 611–617.

    CAS  Google Scholar 

  5. Peér, S. and Chet, I. (1990), Can. J. Microbiol. 36, 6–9.

    Article  Google Scholar 

  6. Ogawa, K., Ohara, H., and Toyoma, N. (1998), Agric. Biol. Chem. 52, 337–342.

    Google Scholar 

  7. Ushijima, S., Nakadai, T., and Uchida, K. (1990), Agric. Biol. Chem. 54, 1667–1676.

    CAS  Google Scholar 

  8. de Groot, M. J. A., Bundock, P., Hooykaas, P. J. J., and Beijersbergen, G. M. (1998), Nat. Biotechnol. 16 839–842.

    Article  Google Scholar 

  9. Anjani Kumari, J. and Panda, T. (1992), Enzyme Microb. Technol. 14, 241–248.

    Article  Google Scholar 

  10. Robinson, H. L. and Deacon, J. W. (2001), Mycol. Res. 105, 1295–1303.

    Google Scholar 

  11. Necas, O. and Svodova, A. (1985), in Fungal Protoplasts: Applications in Biochemistry and Genetics, Peberdy, J. F. and Ferenczy, L., eds., Marcel-Dekker, New York, pp. 115–133.

    Google Scholar 

  12. Ruiz-Herrera, J. (1991), Fungal Cell Wall: Structure, Synthesis, and Assembly, CRC Press, Boca Raton, FL.

    Google Scholar 

  13. Burnett, J. H. (1979), in Fungal Walls and Hyphal Growth, Burnett, J. H. and Trinci, A. P. J., eds., Cambridge University Press, London, pp. 1–25.

    Google Scholar 

  14. Wessels, C. G. H., Mol, P. C., Sietsma, J. H., and Vermeulen, C. A. (1990), in Biochemistry of Cell Walls and Membranes in Fungi, Kunh, P. J., Trinci, A. P. J., Jung, M. J., Goosey, M. W., and Copping, L. G., eds., Springer-Verlag, Berlin, pp. 81–95.

    Google Scholar 

  15. Caddick, M. X., Brownlee, A. G., and Arst, H. N. (1986), Mol. Gen. Genet. 203, 346–353.

    Article  CAS  Google Scholar 

  16. Denison, S. H., Oreja, M., and Arst, H. N. (1995), J. Biol. Chem. 207, 28,519–28,522.

    Google Scholar 

  17. Kuwabara, H., Magae, Y., Kashiwagi, Y., Okada, G., and Sasaki, T. (1989), Enzyme Microb. Technol. 11, 696–699.

    Article  CAS  Google Scholar 

  18. Marinova, D. N. (1994), Lett. Appl. Microbiol. 18, 30,31.

    Google Scholar 

  19. Aguilar, G. and Huitron, C. (1990), Biotechnol. Lett. 12, 655–660.

    Article  CAS  Google Scholar 

  20. Trejo-Aguilar, B. A., Visser, J., and Aguilar, G. (1996), in Pectin and Pectinases, Visser, J. and Voragen, A. G. J., eds., Elsevier Sciences, Amsterdam, pp. 915–920.

    Google Scholar 

  21. Delgado, L. (1998) MSc thesis, Universidad Nacional Autonoma de México, D. F. México.

  22. Miller, L. (1959), Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  23. Aguilar, G., Morlon-Guyot, J., Trejo-Aguilar, B., and Guyot, J. P. (2000), Enzyme Microb. Technol. 27, 406–413.

    Article  CAS  Google Scholar 

  24. Collings, A., Davis, B., and Mills, J. (1998), Microbios 53, 197–210.

    Google Scholar 

  25. Kitamoto, Y., Mori, N., Yamamoto, M., Ohiwa, T., and Ichikawa, Y. (1988), Appl. Microbiol. Biotechnol. 28, 445–450.

    Article  CAS  Google Scholar 

  26. Bartinki-Garcia, S. and Lippman, E. (1969), Science 165, 302–304.

    Article  Google Scholar 

  27. Sandhu, D. K., Wadhawa, V., and Bagga, P. S. (1989), Enzyme Microb. Technol. 11, 21–25

    Article  CAS  Google Scholar 

  28. Liu, W. and Zhu, W. M. (2000), Process Biochem. 35, 659–664.

    Article  CAS  Google Scholar 

  29. Peberdy, J. F. (1985), in Fungal Protoplasts: Application in Biochemistry and Genetics, Peberdy, J. F. and Ferenczy, E., eds., Marcel-Dekker, New York, pp. 31–44.

    Google Scholar 

  30. Polacheck, I. and Rosenberger, R. F. (1978), J. Bacteriol. 135, 741–747.

    CAS  Google Scholar 

  31. White, S., Berry, D. R., and McNeil, B. (1999), J. Biotechnol. 75, 173–185.

    Article  CAS  Google Scholar 

  32. Harvey, L. M., McNeil, B., Berry, D. R., and White, S. (1998), Enzyme Microb. Technol. 22, 446–458.

    Article  CAS  Google Scholar 

  33. Lakshmi, B. R. and Chandra, T. S. (1993), Enzyme Microb. Technol. 15, 699–702.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Aguilar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peraza, L., Ortiz, M.A., Peberdy, J.F. et al. Growth and pectinase production by Aspergillus mexican strain protoplast regenerated under acidic stress. Appl Biochem Biotechnol 111, 15–27 (2003). https://doi.org/10.1385/ABAB:111:1:15

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:111:1:15

Index Entries

Navigation