Skip to main content

Bioinformatic Tools for Gene and Protein Sequence Analysis

  • Protocol
Book cover Medical Biomethods Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The rapid development of efficient, automated DNA-sequencing methods has strongly advanced the genome-sequencing era, culminating in the determination of the entire human genome in 2001 (1,2). An enormous amount of DNA sequence data are available and databases still grow exponentially (see Fig. 1). Analysis of this overwhelming amount of data, including hundreds of genomes from both prokaryotes and eukaryotes, has given rise to the field of bioinformatics. Development of bioinformatic tools has evolved rapidly in order to identify genes that encode functional proteins or RNA. This is an important task, considering that even in the best studied bacterium Escherichia coli more than 30‰ of the identified open reading frames (ORFs) represent hypothetical genes with no known function. Future challenges of genome-sequence analysis will include the understanding of diseases, gene regulation, and metabolic pathway reconstruction. In addition, a set of methods for protein analysis summarized under the term proteomics holds tremendous potential for biomedicine and biotechnology (141). The large number of bioinformatic tools that have been made available to scientists during the last few years has presented the problem of which to use and how best to obtain scientifically valid answers (3). In this chapter, we will provide a guide for the most efficient way to analyze a given sequence or to collect information regarding a gene, protein, structure, or interaction of interest by applying current publicly available software and databases that mainly use the World Wide Web. All links to services or download sites are given in the text or listed in Table 1; the succession of tools is briefly summarized in Fig. 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Venter, J. C. et al (2001) The sequence of the human genome. Science 291, 1304–1351.

    PubMed  CAS  Google Scholar 

  2. Lander, E. S. et al (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.

    PubMed  CAS  Google Scholar 

  3. Rehm B.H. (2001) Bioinformatic tools for DNA/protein sequence analysis, functional assignment of genes and protein classification. Appl. Microbiol. Biotechnol. 57, 579–592.

    PubMed  CAS  Google Scholar 

  4. Ewing, B., Hillier, L., Wendl, M. C., and Green, P. (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185.

    PubMed  CAS  Google Scholar 

  5. Ewing, B. and Green, P. (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194.

    PubMed  CAS  Google Scholar 

  6. Huang, X. and Madan, A. (1999) CAP3: A DNA sequence assembly program. Genome Res. 9, 868–877.

    PubMed  CAS  Google Scholar 

  7. Gordon, D., Abajian, C., and Green, P. (1998) Consed: a graphical tool for sequence finishing. Genome Res. 8, 195–202.

    PubMed  CAS  Google Scholar 

  8. Staden, R. (1996) The Staden Sequence Analysis Package. Mol. Biotech. 5, 233–241.

    CAS  Google Scholar 

  9. Staden, R. (1984) Computer methods to locate signals in nucleic acid sequences. Nucleic Acids Res. 12, 505–519.

    PubMed  CAS  Google Scholar 

  10. Claverie, J.-M. (1997) Computational methods for the identification of genes in vertebrate genomic sequences. Hum. Mol. Genet. 6, 1735–1744.

    PubMed  CAS  Google Scholar 

  11. Guigo, R. (1997) Computational gene identification: an open problem. Comput. Chem. 21, 215–222.

    PubMed  CAS  Google Scholar 

  12. Krogh, A. (1998) In Computational Methods in Molecular Biology (Salzberg, S. L., Searls, D., and Kasif, S., eds.), Elsevier, Amsterdam.

    Google Scholar 

  13. Krogh, A. (1998) In Guide to Human Genome Computing (Bishop, M. J., ed.), 2nd ed. Academic, New York, pp. 261–274.

    Google Scholar 

  14. Delcher, A. L., Harmon, D., Kasif, S., White, O., and Salzberg, S. L. (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 27, 4636–4641.

    PubMed  CAS  Google Scholar 

  15. Guigo, R., Agarwal, P., Abril, J. F., Burset, M., and Fickett, J. W. (2000) An assessment of gene prediction accuracy in large DNA sequences. Genome Res. 10, 1631–1642.

    PubMed  CAS  Google Scholar 

  16. Krogh, A. (2000) Using database matches with for HMMGene for automated gene detection in Drosophila. Genome Res. 10, 523–5

    PubMed  CAS  Google Scholar 

  17. Shibuya, T. and Rigoutsos, I. (2002) Dictionary-driven prokaryotic gene finding. Nucleic Acids Res. 30, 2710–2725.

    PubMed  CAS  Google Scholar 

  18. Pedersen, J. S. and Hein, J. (2003) Gene finding with a hidden Markov model of genome structure and evolution. Bioinformatics 19, 219–227.

    PubMed  CAS  Google Scholar 

  19. Guo, F. B., Ou, H. Y., and Zhang, C. T. (2003) ZCURVE: a new system for recognizing proteincoding genes in bacterial and archaeal genomes. Nucleic Acids Res. 31, 1780–1789.

    PubMed  CAS  Google Scholar 

  20. Larsen, T. S., Krogh, A. (2003) EasyGene—a prokaryotic gene finder that ranks ORFs by statistical significance. BMC Bioinformat. 4, 21.

    Google Scholar 

  21. Gelfand, M. S. (1995) Prediction of function in DNA sequence analysis. J. Comput. Biol. 2, 87–115.

    PubMed  CAS  Google Scholar 

  22. Sherriff, A. and Ott, J. (2001) Applications of neural networks for gene finding. Adv. Genet. 42, 287–297.

    PubMed  CAS  Google Scholar 

  23. Fickett, J. W. (1996) Finding genes by computer: the state of the art. Trends Genet. 12, 316–320.

    PubMed  CAS  Google Scholar 

  24. Zhang, C. T., Wang, J., and Zhang, R. (2002) Using a Euclid distance discriminant method to find protein coding genes in the yeast genome. Comput. Chem. 26, 195–206.

    PubMed  CAS  Google Scholar 

  25. Bajic, V. B. and Seah, S. H. (2003) Dragon gene start finder: an advanced system for finding approximate locations of the start of gene transcriptional units. Genome Res. 13, 1923–1929.

    PubMed  CAS  Google Scholar 

  26. Zhang, M. Q. (1998) Statistical features of human exons and their flanking regions. Hum. Mol. Genet. 7, 919–932.

    PubMed  CAS  Google Scholar 

  27. Searls, D. B. (1992) The linguistics of DNA. Am. Sci. 80, 579–591.

    Google Scholar 

  28. Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998) Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic acids. Cambridge University Press, Cambridge.

    Google Scholar 

  29. Krogh, A., Mian, I. S., and Haussler, D. (1994) A hidden Markov model that finds genes in E. coli DNA. Nucleic Acids Res. 22, 4768–4778.

    PubMed  CAS  Google Scholar 

  30. Cole, S. T., Brosch, R., Parkhill, J., et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.

    PubMed  CAS  Google Scholar 

  31. Thomas, A. and Skolnick, M. (1994) A probabilistic model for detecting coding regions in DNA sequences. IMA J. Math. Appl. Med. Biol. 11, 149–160.

    PubMed  CAS  Google Scholar 

  32. Henderson, J., Salzberg, S., and Fasman, K. (1997) Finding genes in DNA with a hidden Markov model. J. Comput. Biol. 4, 127–141.

    PubMed  CAS  Google Scholar 

  33. Lukashin, A. V. and Borodovsky, M. (1998) GeneMark hmm: new solutions for gene finding. Nucleic Acids Res. 26, 1107–1115.

    PubMed  CAS  Google Scholar 

  34. Salzberg, S. L., Pertea, M., Delcher, A. L., Gardner, M. J., and Tettelin, H. (1999) Interpolated Markov models for eukaryotic gene finding. Genomics 59, 24–31.

    PubMed  CAS  Google Scholar 

  35. Badger, J. H. and Olsen, G. J. (1999) CRITICA: coding region identification tool invoking comparative analysis. Mol. Biol. Evol. 16, 512–524.

    PubMed  CAS  Google Scholar 

  36. Bocs, S., Cruveiller, S., Vallenet, D., Nuel, G., and Medigue, C. (2003) AMIGene: annotation of microbial genes. Nucleic Acids Res. 31, 3723–6.

    PubMed  CAS  Google Scholar 

  37. Besemer, J., Lomsadze, A., and Borodovsky, M. (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 29, 2607–2618.

    PubMed  CAS  Google Scholar 

  38. Yeramian, E. and Jones, L. (2003) GeneFizz: a web tool to compare genetic (coding/non-coding) and physical (helix/coil) segmentations of DNA sequences. Gene discovery and evolutionary perspectives. Nucleic Acids Res. 31, 3843–3849.

    PubMed  CAS  Google Scholar 

  39. Kotlar, D. and Lavner, Y. (2003) Gene prediction by spectral rotation measure: a new method for identifying protein-coding regions. Genome Res. 13, 1930–1937.

    PubMed  CAS  Google Scholar 

  40. Snyder, E. and Stormo, G. (1995) Identification of protein coding regions in genomic DNA. J. Mol. Biol. 248, 1–18.

    PubMed  CAS  Google Scholar 

  41. Reese, M. G., Eeckman, F. H., Kulp, D., and Haussler, D. (1997) Improved splice site detection in Genie. J. Comput. Biol. 4, 311–323.

    PubMed  CAS  Google Scholar 

  42. Burge, C. and Karlin, S. (1997) Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94.

    PubMed  CAS  Google Scholar 

  43. Xu, Y. and Überbacher, E. C. (1997) Automated gene identification in large-scale genomic sequences. J. Comput. Biol. 4, 325–338.

    PubMed  CAS  Google Scholar 

  44. Gelfand, M. S., Mironov, A. A., and Pevzner, P. A. (1996) Gene recognition via spliced sequence alignment. Proc. Natl. Acad. Sci. USA 93, 9061–9066.

    PubMed  CAS  Google Scholar 

  45. Foissac, S., Bardou, P., Moisan, A., Cros, M. J., and Schiex, T. (2003) EUGENE’HOM: a generic similarity-based gene finder using multiple homologous sequences. Nucleic Acids Res. 31, 3742–3745.

    PubMed  CAS  Google Scholar 

  46. Smith, T. E. and Waterman, M. S. (1981) Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197.

    PubMed  CAS  Google Scholar 

  47. Yada, T., Takagi, T., Totoki, Y., Sakaki, Y., and Takaeda Y. (2003) DIGIT: a novel gene finding program by combining gene-finders. Pac. Symp. Biocomput. 2003, 375–387.

    Google Scholar 

  48. Quandt, K., Frech, K., Karas, H., Wingender, E., and Werner, T. (1995) MatInd and MatInspector-new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 23, 4878–4884.

    PubMed  CAS  Google Scholar 

  49. Prestridge, D. S. (1991) SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. CABIOS 7, 203–206.

    PubMed  CAS  Google Scholar 

  50. Wingender, E., Chen, X., Hehl, R., et al. (2000) TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res. 28, 316–319.

    PubMed  CAS  Google Scholar 

  51. Prestridge, D. S. (1995) Predicting Pol II Promoter Sequences Using Transcription Factor Binding Sites. J. Mol. Biol. 249, 923–932.

    PubMed  CAS  Google Scholar 

  52. Eddy, S. R. (1996) Hidden Markov models. Curr. Opin. Struct. Biol. 6, 361–365.

    PubMed  CAS  Google Scholar 

  53. Eddy, S. R. (1998) Profile hidden Markov models. Bioinformatics 14, 755–763.

    PubMed  CAS  Google Scholar 

  54. Baldi, R. and Brunak, S. (1998) Bioinformatics: The Machine Learning Approach. MIT Press, Boston, MA.

    Google Scholar 

  55. Korenberg, M. J., David, R., Hunter, I. W., and Solomon, J. E. (2000) Automatic classification of protein sequences into structure/function groups via parallel cascade identification: a feasibility study. Ann. Biomed. Eng. 28, 803–811.

    PubMed  CAS  Google Scholar 

  56. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    PubMed  CAS  Google Scholar 

  57. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    PubMed  CAS  Google Scholar 

  58. Nicholas, K. B., Nicholas, H. B., Jr., and Deerfield, D. W., II. (1997) GeneDoc: analysis and visualization of genetic variation. EMBNEW.NEWS 4, 14.

    Google Scholar 

  59. Lake, J. A. (1994) Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc. Natl. Acad. Sci. USA 91, 1451–1459.

    Google Scholar 

  60. Lockhart, P. J., Steel, M. A., Hendy, M. D., and Penny, D. (1994) Recovering evolutionary trees under a more realistic model of sequence. Mol. Biol. Evol. 11, 605–612.

    PubMed  CAS  Google Scholar 

  61. Brocchieri, L. (2001) Phylogenetic inferences from molecular sequences: review and critique. Theor. Popul. Biol. 59, 27–40.

    PubMed  CAS  Google Scholar 

  62. Stewart, C.-B. (1993) The powers and pitfalls of parsimony. Nature 361, 603–607.

    PubMed  CAS  Google Scholar 

  63. Attwood, T. K., Beck, M. E., Flower, D. R., Scordis, P., and Selley, J. N. (1998) The PRINTS protein fingerprint database in its fifth year. Nucleic Acids Res. 26, 304–308.

    PubMed  CAS  Google Scholar 

  64. Page, R. D. (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357–358.

    PubMed  CAS  Google Scholar 

  65. Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., and Bairoch A. (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31, 3784–3788.

    PubMed  CAS  Google Scholar 

  66. Rost, B. (1996) PHD: predicting one-dimensional protein structure by profile based neural networks. Methods Enzymol. 266, 525–539.

    PubMed  CAS  Google Scholar 

  67. Eyrich, V. A. and Rost, B. (2003) META-PP: single interface to crucial prediction servers. Nucleic Acids Res. 31, 3308–3310.

    PubMed  CAS  Google Scholar 

  68. Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G. (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1–6.

    PubMed  CAS  Google Scholar 

  69. Hansen, J. E., Lund, O., Tolstrup, N, Gooley, A. A., Williams, K. L., and Brunak, S. (1998) NetOglyc: Prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconjugate J. 15, 115–130.

    CAS  Google Scholar 

  70. Hansen, J. E., Lund, O., Rapacki, K., and Brunak, S. (1997) O-glycbase version 2.0-A revised database of O-glycosylated proteins. Nucleic Acids Res. 25, 278–282.

    PubMed  CAS  Google Scholar 

  71. Hansen, J. E., Lund, O., Rapacki, K., et al. (1995) Prediction of O-glycosylation of mammalian proteins: specificity patterns of UDP-GalNAc:-polypeptide N-acetylgalactosaminyltransferase. Biochem. J. 308, 801–813.

    PubMed  CAS  Google Scholar 

  72. Blom, N., Gammeltoft, S., and Brunak, S. (1999) Sequence-and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294, 1351–1362.

    PubMed  CAS  Google Scholar 

  73. Blom, N., Hansen, J., Blaas, D., and Brunak, S. (1996) Cleavage site analysis in picornaviral polyproteins: Discovering cellular targets by neural networks. Protein Sci. 5, 2203–2216.

    PubMed  CAS  Google Scholar 

  74. Emanuelsson, O., Nielsen, H., and von Heijne, G. (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 8, 978–984.

    PubMed  CAS  Google Scholar 

  75. Cuff, J. A. and Barton, G. J. (1999) Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins 34, 508–519.

    PubMed  CAS  Google Scholar 

  76. Sonnhammer, E. L. L. von Heijne, G., and Krogh, A. (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. in Proceedings of the Sixth Intern Conference on Intelligent Systems for Molecular Biology (ISMB98), pp. 175–182.

    Google Scholar 

  77. von Heijne, G. (1992) Membrane protein structure prediction, hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 225, 487–494.

    Google Scholar 

  78. Karplus, K., Barrett, C., and Hughey, R. (1998) Hidden markov models for detecting remote protein homologies. Bioinformatics 14, 846–856.

    PubMed  CAS  Google Scholar 

  79. Cserzo, M., Wallin, E., Simon, I., von Heijne, G., and Elofsson, A. (1997) Prediction of transmembrane alpha-helices in procariotic membrane proteins: the dense alignment surface method. Protein Eng. 10, 673–676.

    PubMed  CAS  Google Scholar 

  80. Fischer, D. and Eisenberg, D. A. (1996) Fold recognition using sequence-derived properties. Protein Sci. 5, 947–955.

    PubMed  CAS  Google Scholar 

  81. Elofsson, A., Fischer, D., Rice, D. W., LeGrand, S., and Eisenberg, D. A. (1996) Study of combined structure-sequence profiles. Folding Design 1, 451–461.

    PubMed  CAS  Google Scholar 

  82. Karplus, K., Karchin, R., Draper, J., et al. (2003) Combining local-structure, fold-recognition, and new-fold methods for protein structure prediction. Proteins 53(Suppl 6), 491–496.

    PubMed  CAS  Google Scholar 

  83. Peitsch, M. C. (1995) Protein modelling by E-mail. BioTechnology 13, 658–660.

    CAS  Google Scholar 

  84. Peitsch, M. C. (1996) ProMod and Swiss-Model: internet-based tools for automated comparative protein modelling. Biochem. Soc. Trans. 24, 274–279.

    PubMed  CAS  Google Scholar 

  85. Guex, N. and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis 18, 2714–2723.

    PubMed  CAS  Google Scholar 

  86. Lund, O., Frimand, K., Gorodkin, J., et al. (1997) Protein distance constraints predicted by neural networks and probability density functions. Protein Eng. 10, 1241–1248.

    PubMed  CAS  Google Scholar 

  87. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    PubMed  CAS  Google Scholar 

  88. Altschul, S. F. (1991) Amino acid substitution matrices from an information theoretic perspective. J. Mol. Biol. 219, 555–565.

    PubMed  CAS  Google Scholar 

  89. Altschul, S. F. and Gish, W. (1996) Local alignment statistics. Methods Enzymol. 266, 460–480.

    PubMed  CAS  Google Scholar 

  90. Rost, B., Schneider, R., and Sander, C. (1997) Protein fold recognition by prediction-based threading. J. Mol. Biol. 270, 471–480.

    PubMed  CAS  Google Scholar 

  91. Dayhoff, M. O., Barker, W. C., and Hunt, L. T. (1983) Establishing homologies in protein sequences. Methods Enzymol. 91, 524–545.

    PubMed  CAS  Google Scholar 

  92. Henikoff, S. and Henikoff, J. G. (1992) Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89, 10,915–10,919.

    PubMed  CAS  Google Scholar 

  93. Pearson, W. R. (1995) Comparison of methods for searching protein sequence databases. Protein Sci. 4, 1145–1160.

    PubMed  CAS  Google Scholar 

  94. Karlin, S. and Altschul, S. E. (1990) Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA 87, 2264–2268.

    PubMed  CAS  Google Scholar 

  95. Wootton, J. C. (1994) Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput. Chem. 18, 269–285.

    PubMed  CAS  Google Scholar 

  96. Altschul, S. F., Madden, T. L., Schäffer, A. A., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    PubMed  CAS  Google Scholar 

  97. Pearson, W. R. and Lipman, D. J. (1988) Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85, 2444–2448.

    PubMed  CAS  Google Scholar 

  98. Martin, A. C., Orengo, C. A., Hutchinson, E. G., et al. (1998) Protein folds and functions. Structure 6, 875–884.

    PubMed  CAS  Google Scholar 

  99. McGuffin, L. J., Bryson, K., and Jones, D. T. (2001) What are the baselines for protein fold recognition? Bioinformatics 17, 63–72.

    PubMed  CAS  Google Scholar 

  100. Bairoch, A. (1991) PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res. 19, 2241–2245.

    PubMed  CAS  Google Scholar 

  101. Bairoch, A., Bucher, P., and Hofmann, K. (1997) The PROSITE database, its status in 1997. Nucleic Acids Res. 25, 217–221.

    PubMed  CAS  Google Scholar 

  102. Bucher, P., Karplus, K., Moeri, N., and Hofmann, K. (1996) A flexible motif search technique based on generalized profiles. Comput. Chem. 20, 3–23.

    PubMed  CAS  Google Scholar 

  103. Sonnhammer, E. L. and Kahn, D. (1994) Modular arrangement of proteins as inferred from analysis of homology. Protein Sci. 3, 482–492.

    PubMed  CAS  Google Scholar 

  104. Corpet, F., Gouzy, J., and Kahn, D. (1998) The ProDom database of protein domain families. Nucleic Acids Res. 26, 323–326.

    PubMed  CAS  Google Scholar 

  105. Sonnhammer, E. L., Eddy, S. R., and Durbin, R. (1997) Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 28, 405–420.

    PubMed  CAS  Google Scholar 

  106. Bateman, A., Birney, E., Cerruti, L., et al. (2002) The Pfam protein families database. Nucleic Acids Res. 30, 276–280.

    PubMed  CAS  Google Scholar 

  107. Apweiler, R., Attwood, T. K., Bairoch, A., et al. (2001) The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res. 29, 37–40.

    PubMed  CAS  Google Scholar 

  108. Mulder, N. J., Apweiler, R., Attwood, T. K., et al. (2003) The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res. 31, 315–8.

    PubMed  CAS  Google Scholar 

  109. Rawlings, N. D., O’Brien, E., and Barrett, A.J. (2002) MEROPS: the protease database. Nucleic Acids Res. 30, 343–346.

    PubMed  CAS  Google Scholar 

  110. Storm, C. E. and Sonnhammer, E. L. (2001) NIFAS: visual analysis of domain evolution in proteins. Bioinformatics 17, 343–348.

    PubMed  CAS  Google Scholar 

  111. Schultz, J., Milpetz, F., Bork, P., and Ponting, C. P. (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 95, 5857–5864.

    PubMed  CAS  Google Scholar 

  112. Schultz, J., Copley, R. R., Doerks, T., Ponting, C. P., and Bork, P. (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 28, 231–234.

    PubMed  CAS  Google Scholar 

  113. Letunic, I., Goodstadt, L., Dickens, N. J., et al. (2002) Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res. 30, 242–244.

    PubMed  CAS  Google Scholar 

  114. Pietrokovski, S., Henikoff, J.G. and Henikoff, S, (1996) The Blocks database-a system for protein classification. Nucleic Acids Res. 24, 197–200.

    PubMed  CAS  Google Scholar 

  115. Attwood, T. K., Flower, D. R., Lewis, A. P., et al. (1999) PRINTS prepares for the new millennium. Nucleic Acids Res. 27, 220–225.

    PubMed  CAS  Google Scholar 

  116. Silverstein, K. A., Shoop, E., Johnson, J. E., and Retzel, E. F. (2001) MetaFam: a unified classification of protein families. I. Overview and statistics. Bioinformatics 17, 249–261.

    PubMed  CAS  Google Scholar 

  117. Yuan, Y. P., Eulenstein, O., Vingron, M., and Bork, P. (1998) Towards detection of orthologues in sequence databases. Bioinformatics 14, 285–289.

    PubMed  CAS  Google Scholar 

  118. Bernstein, F. C., Koetzle, T. F., Williams, G. J., et al. (1977) The Protein Data Bank. A computerbased archival file for macromolecular structures. Eur. J. Biochem. 80, 319–324.

    PubMed  CAS  Google Scholar 

  119. Berman, H. M., Westbrook, J., Feng, Z., et al. (2000) The Protein Data Bank. Nucleic Acids Res. 28, 235–242.

    PubMed  CAS  Google Scholar 

  120. Murzin, A.G., Brenner, S. E., Hubbard, T., and Chothia, C. (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540.

    PubMed  CAS  Google Scholar 

  121. Orengo, C. A., Michie, A. D., Jones, S., Jones, D. T., Swindells, M. B., and Thornton, J. M. (1997) CATH-a Hierarchic classification of protein domain structures. Structure 5, 1093–1108.

    PubMed  CAS  Google Scholar 

  122. Pearl, F. M. G, Lee, D., Bray, J. E, Sillitoe, I., Todd, A. E., Harrison, A. P., Thornton, J. M., and Orengo, C.A. (2000) Assigning genomic sequences to CATH. Nucleic Acids Res. 28, 277–282.

    PubMed  CAS  Google Scholar 

  123. Peitsch, M. C. and Jongeneel, V. (1993) A 3-dimensional model for the CD40 ligand predicts that it is a compact trimer similar to the tumor necrosis factors. Int. Immunol. 5, 233–238.

    PubMed  CAS  Google Scholar 

  124. Schwede, T., Kopp, J., Guex, N., and Peitsch, M. C. (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385.

    PubMed  CAS  Google Scholar 

  125. Guex, N. and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723.

    PubMed  CAS  Google Scholar 

  126. Combet, C., Jambon, M., Deleage, G., and Geourjon, C. (2002) Geno3D: automatic comparative molecular modelling of protein. Bioinformatics 18, 213–214.

    PubMed  CAS  Google Scholar 

  127. Lambert, C., Leonard, N., De Bolle, X., and Depiereux, E. (2002) ESyPred3D: prediction of proteins 3D structures. Bioinformatics 18, 1250–1256.

    PubMed  CAS  Google Scholar 

  128. Bader, G. D., Betel, D., and Hogue, C. W. (2003) BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 31, 248–250.

    PubMed  CAS  Google Scholar 

  129. Xenarios, I., Rice, D. W., Salwinski, L., Baron, M. K., Marcotte, E. M., and Eisenberg, D. (2000) DIP: The Database of Interacting Proteins. Nucleic Acids Res. 28, 289–291.

    PubMed  CAS  Google Scholar 

  130. Levinthal, C., Wodak, S. J., Kahn, P., and Dadivanian, A. K. (1975) Hemoglobin interaction in sickle cell fibers. I. Theoretical approaches to the molecular contacts. Proc. Natl. Acad. Sci. USA 72, 1330–1334.

    PubMed  CAS  Google Scholar 

  131. Wodak, S. J. and Janin, J. (1978) Computer analysis of protein-protein interaction. J. Mol. Biol. 124, 323–342.

    PubMed  CAS  Google Scholar 

  132. Janin, J., Henrick, K., Moult, J., et al. (2003) CAPRI: a Critical Assessment of PRedicted Interactions. Proteins 52, 2–9.

    PubMed  CAS  Google Scholar 

  133. Taylor, R. D., Jewsbury, P. J., and Essex, J. W. (2002) A review of protein-small molecule docking methods. J. Comput. Aided Mol. Des. 16, 151–166.

    PubMed  CAS  Google Scholar 

  134. Read, T. D., Peterson, S. N., Tourasse, N., et al. (2003) The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423, 81–86.

    PubMed  CAS  Google Scholar 

  135. Ivanova, N., Sorokin, A., Anderson, I., et al. (2003) Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423, 87–91.

    PubMed  CAS  Google Scholar 

  136. Smith, D. R. (1996) Microbial pathogen genomes-new strategies for identifying therapeutics and vaccine targets. Trends Biotechnol. 14, 290–293.

    PubMed  CAS  Google Scholar 

  137. Tatusov, R. L., Koonin, E. V., and Lipman, D. J. (1997) A genomic perspective on protein families. Science 278, 631–637.

    PubMed  CAS  Google Scholar 

  138. Tatusov, R. L., Natale, D. A., Garkavtsev, I. V., et al. (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29, 22–28.

    PubMed  CAS  Google Scholar 

  139. Wheeler, D. L., Church, D. M., Federhen, S., et al. (2003) Database resources of the National Center for Biotechnology. Nucleic Acids Res. 31, 28–33.

    PubMed  CAS  Google Scholar 

  140. Edgar, R., Domrachev, M., and Lash, A.E. (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210.

    PubMed  CAS  Google Scholar 

  141. Rehm, B. H. A. and Reinecke, F. (2004) Evaluation of proteomic techniques: applications and potential. Curr. Proteomics 1, 103–111.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Rehm, B.H.A., Reinecke, F. (2005). Bioinformatic Tools for Gene and Protein Sequence Analysis. In: Walker, J.M., Rapley, R. (eds) Medical Biomethods Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-870-6:387

Download citation

  • DOI: https://doi.org/10.1385/1-59259-870-6:387

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-288-9

  • Online ISBN: 978-1-59259-870-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics