Skip to main content

Solid Supports in Enzyme-Linked Immunosorbent Assay and Other Solid-Phase Immunoassays

  • Protocol
Molecular Diagnosis of Infectious Diseases

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 94))

Abstract

Most modern immunoassays involve the use of synthetic solid phases to immobilize one of the reactants, often by simple adsorption. These solid-phase immunoassays (SPIs) involve ligand-receptor interactions that occur within a reaction volume close to the solution/solid-phase interface. As a consequence, the immunochemistry/biochemistry of these ligand-receptor interactions differ from their counterparts in solution. Nevertheless, mass law equations can be derived for measuring the antigen capture of solid-phase antibodies, for determining the affinity of solid phases for protein adsorption, and for estimating antibody affinity.

Many proteins adsorbed on polystyrene or silicone suffer adsorption-induced conformational changes (ACC) and are partially or largely denatured. Alternative methods for immobilizing proteins and virus, while preserving antigenicity, may yield only a modest increase in functional reactant concentration. Peptides and small recombinant proteins appear to benefit especially from nonadsorptive immobilization. Not all solid phases commonly used in SPIs have the same properties, the same capacity for reactant immobilization, cause the same level of denaturation, or experience the same level of nonspecific binding. Empiricism, adherence to a few practical rules of thumb, and avoidance of certain “old wives tales” can be valuable in the successful development of SPIs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Franz, B. and Stegemann, M. (1991) The kinetics of solid-phase microtiter immunoassays, in Immunochemistry of Solid-Phase Immunoassay (Butler, J. E., ed.), CRC Press, Boca Raton, FL, pp. 277–284.

    Google Scholar 

  2. Park, H. (1978) A new plastic receptable for solid-phase immunoassay. J. Immunol. Methods 20, 349–355.

    Article  PubMed  CAS  Google Scholar 

  3. Joshi, K. S., Hoffmann, L. G., and Butler, J. E. (1992) The immunochemistry of sandwich ELISAs. V. The capture antibody performance of polyclonal antibody-enriched fractions prepared by various methods. Mol. Immunol. 29, 971–981.

    Article  PubMed  CAS  Google Scholar 

  4. Butler, J. E., Lü, E. P., Navarro, P., and Christiansen, B. (1997) Comparative studies on the interaction of proteins with polydimethylsiloxane elastomer. I. Monolayer protein capture capacity (PCC) as a function of proteins pI, buffer pH and buffer ionic strength. J. Mol. Recognit. 10, 36–51.

    Article  PubMed  CAS  Google Scholar 

  5. Azimzadeh, A. and van Regenmortel, M. H. V. (1990) Antibody affinity measurements. J. Mol. Recognit. 3, 108–116.

    Article  PubMed  CAS  Google Scholar 

  6. Metzger, H. (1992) Transmembrane signalling: the joy of aggregation. J. Immunol. 149, 1477–1487.

    PubMed  CAS  Google Scholar 

  7. Butler, J. E., Ni, L., Nessler, R., et al. (1992) The physical and functional behavior of capture antibodies adsorbed on polystyrene. J. Immunol. Methods 150, 77–90.

    Article  PubMed  CAS  Google Scholar 

  8. Davies, J., Dawkes, A. C., Haymes, A. G., et al. (1994) A scanning tunnelling microscopy comparison of passive antibody adsorption and biotinylated linkage to streptavidin on microtiter wells. J. Immunol. Methods 167, 263–269.

    Article  PubMed  CAS  Google Scholar 

  9. Ehrlich, P. H., Moyle, W. R., and Moustafa, Z. A. (1983) Further characterization of cooperative interactions of monoclonal antibodies. J. Immunol. Methods 131, 1906–1912.

    CAS  Google Scholar 

  10. Lehtonen, O. P. (1981) Immunoreactivity of solid phase hapten binding plasmacytoma protein (ABPC 24). Mol. Immunol. 18, 323–329.

    Article  PubMed  CAS  Google Scholar 

  11. Butler, J. E., Feldbush, T. L., McGivern, P. L., and Steward, N. (1978) The enzyme-linked immunosorbent assay (ELISA): a measurement of antibody concentration or affinity? Immunochemistry 15, 131–136.

    Article  PubMed  CAS  Google Scholar 

  12. Dierks, S., Butler, J. E., and Richerson, H. B. (1986) Altered recognition of surface-adsorbed compared to antigen bound antibodies in the ELISA. Mol. Immunol. 23, 403–411.

    Article  PubMed  CAS  Google Scholar 

  13. Butler, J. E. (1994) ELISA, in Immunochemistry (van Regenmortel, M. H. V. and van Oss, C. J., eds.), Marcel Dekker, New York, pp. 759–803.

    Google Scholar 

  14. Cantarero, L. A., Butler, J. E., and Osborne, J. W. (1980) The binding characteristics of various proteins to polystyrene and their significance for solid-phase immunoassays. Anal. Biochem. 105, 375–383.

    Article  PubMed  CAS  Google Scholar 

  15. Butler, J. E., Ni, L., Brown, W. R., et al. (1993) The immunochemistry of sandwich ELISAs. VI. Greater than 90% of monoclonal and 75% of polyclonal anti-fluorrescyl capture antibodies (CAbs) are denatured by passive adsorption. Mol. Immunol. 30, 1165–1175.

    Article  PubMed  CAS  Google Scholar 

  16. Butler, J. E., Navarro, P., and Lü, E. P. (1997) Comparative studies on the interaction of proteins with a polydimethylsiloxane elastomer. II. The comparative antigenicity of primary and secondary adsorbed IgG1 and IgG2a and their non-adsorbed counterparts. J. Mol. Recognit. 10, 52–62.

    Article  PubMed  CAS  Google Scholar 

  17. Koertge, T. E. and Butler, J. E. (1985) The relationship between the binding of primary antibody to solid-phase antigen in microtiter plates and its detection by the ELISA. J. Immunol. Methods 83, 283–299.

    Article  PubMed  CAS  Google Scholar 

  18. Michaeli, I., Absolm, D. R., and van Oss, C. J. (1980) Diffusion of adsorbed protein with the plane of adsorption. J. Colloid Interface Sci. 77, 586–587.

    Article  CAS  Google Scholar 

  19. Nygren, H. (1988) Experimental demonstration of lateral cohesion in a layer of adsorbed protein and layers of gold-antibody complexes bound to surface immunobilized antigen. J. Immunol. Methods 114, 107–114.

    Article  PubMed  CAS  Google Scholar 

  20. Nygren, H., Werthen, M., Czerkinsky, C., and Stenberg, M. (1985) Dissociation of antibodies bound to surface-immobilized antigen. J. Immunol. Methods 85, 87–95.

    Article  PubMed  CAS  Google Scholar 

  21. Mason, D. W. and Williams, A. F. (1980) The kinetics of antibody binding to membrane antigens in solution and at the cell surface. Biochem. J. 187, 1–20.

    PubMed  CAS  Google Scholar 

  22. Stenberg, M. and Nygren, H. (1982) A receptor ligand reaction studied by a novel analytica tool—the isoscope ellipsometer. Anal. Biochem. 127, 183–192.

    Article  PubMed  CAS  Google Scholar 

  23. Crothers, D. M. and Metzger, H. (19720) The influence of polyvalency on the binding properties of antibodies. Immunochemistry 9, 341–357.

    Article  PubMed  CAS  Google Scholar 

  24. Azimzadeh, A. and Regenmoretl, M. H.V. (1991) Measurement of affinity of viral monoclonal-antibodies by ELISA titration of free antibody in equilibrium mixtures. J. Immunol. Methods 141, 199–208.

    Article  PubMed  CAS  Google Scholar 

  25. Berson, S. A. and Yallow, R. S. (1959) Quantitative aspects of the reaction between insulin and insulin binding antibody. J. Clin. Invest. 38, 1996–2016.

    Article  PubMed  CAS  Google Scholar 

  26. Andresen, L. O., Klausen, J., Barfod, K., and Sorensen, V. (2002) Detection of antibodies to Actinobacillus pleuropneumoniae serotype 12 in pig serum using a blocking enzyme-linked immunosorbent assay. Vet. Microbiol. 89, 61–67.

    Article  PubMed  CAS  Google Scholar 

  27. Gutierrez, J. E., Dolcini, G. L., Arroyo, G. H., Rodriguez Dubra, C., Ferrer, J. F., and Esteban, E. N. (2001) Development and evaluation of a highly sensitive and specific blocking enzyme-linked immunosorbent assay and polymerase chain reaction assay for diagnosis of bovine leukemia virus infection in cattle. Am. J. Vet. Res. 62, 1571–1577.

    Google Scholar 

  28. Chenard, G., Giedema, K., Moonen, P., Schrijiver, R. S., and Dekker, A. (2003) A solid phase blocking ELISA for detection of type O foot-and-mouth disease virus antibodies suitable for mass serology. J. Virol. Methods 107, 89–98.

    Article  PubMed  CAS  Google Scholar 

  29. Catt, K. and Tregear, G. W. (1967) Solid-phase radioimmunoassay immunoassay in antibody coated tubes. Science 158, 1570–1572.

    Article  PubMed  CAS  Google Scholar 

  30. Peterson, J. D., Kim, J. Y., Melvold, R. W., Miller, S. D., and Waltenbaugh, C. (1989) A rapid method for quantitation of anti-viral antibodies. J. Immunol. Methods 119, 83–94.

    Article  PubMed  CAS  Google Scholar 

  31. Qian, W., Yao, D., Yu, F., et al. (2000) Immobilization of antibodies on ultraflat polystyrene surface. Clin. Chem. 46, 1456–1463.

    PubMed  CAS  Google Scholar 

  32. Bull, H. B. (1956) Adsorption of bovine serum albumin on glass. Biochem. Biophys. Acta 19, 464–471.

    Article  PubMed  CAS  Google Scholar 

  33. Karush, F. (1978) The affinity of antibody: range, variability and role of multivalence, in Immunochemistry, an Advanced Textbook (Glynn, L. E. and Steward, M. W., eds.), Wiley, Chichester, pp. 233–262.

    Google Scholar 

  34. Matusda, T., Takano, H., Hayashi, K., et al. (1984) The blood interface with segmented polyurethanes multi-layer protein passivation mechanism. Trans. Am. Soc. Artif. Intern. Organs 30, 353–358.

    Google Scholar 

  35. Stevens, P. W. and Kelso, D. M. Estimation of the protein-binding capacity of microplate wells using sequential ELISAs. J. Immunol. Methods 178, 59–70.

    Google Scholar 

  36. van Erp, R., Linders, Y. E., van Sommeren, A. P., and Gribnau, T. C. (1992) Characterization of monoclonal antibodies physically adsorbed onto polystyrene latex particles. J. Immunol. Methods 152, 191–199.

    Article  PubMed  Google Scholar 

  37. Plant, A. L., Locascio-Brown, L., Haller, W., and Durst, R. A. (1991) Immobilization of binding proteins on nonporous supports. Comparison of protein loading, activity and stability. Appl. Biochem. Biotechnol. 20, 83–98.

    Google Scholar 

  38. Oreskes, I. and Singer, J. M. (1961) The mechanism of particulate carrier reactions: adsorption of human γ-globulin to polystyrene latex particles. J. Immunol. 86, 338–344.

    PubMed  CAS  Google Scholar 

  39. Kochwa, S., Brownell, M., Rosenfield, R. E., and Wasserman, L. R. (1967) Adsorption of proteins by polystyrene particles. I. Molecular unfolding and acquired immunogenicity of IgG. J. Immunol. 99, 981–986.

    PubMed  CAS  Google Scholar 

  40. Nyilas, E., Chiu, T.-H., and Herzlinger, G. A. (1974) Thermodynamics of native protein/foreign surface interactions. I. Colorimetry of the human γ-globulin/glass system. Trans. Am. Soc. Artif. Intern. Organs 20, 480–490.

    PubMed  Google Scholar 

  41. Kennel, S. (1982) Binding of monoclonal antibody in fluid phase and bound to a solid support. J. Immunol. Methods 55, 1–12.

    Article  PubMed  CAS  Google Scholar 

  42. Friquet, B., Djavadji-Ohaniance, L., and Goldberg, M. E. (1984) Some monoclonal antibodies raised with a native protein bind preferentially to the denatured antigen. Mol. Immunol. 21, 673–677.

    Article  Google Scholar 

  43. Holland, Z. and Katchaliski-Katzir, E. (1986) Use of monoclonal antibodies to detect conformational alterations in lactate dehydrogenase isoenzyme 5 on heat denaturation and on adsorption on polystyrene plates. Mol. Immunol. 23, 927–934.

    Article  Google Scholar 

  44. Suter, M. and Butler, J. E. (1986) The immunochemistry of sandwich ELISAs. II. A novel system prevents denaturation of capture antibodies. Immunol. Lett. 13, 313–317.

    Article  PubMed  CAS  Google Scholar 

  45. Darst, S. A., Rovertson, C. R., and Berzofsky, J. A. (1988) Adsorption of the protein antigen myoglobin affects the binding of conformation-specific monoclonal antibodies. J. Biophys. Soc. 53, 533–539.

    Article  CAS  Google Scholar 

  46. Kennel, S. J, Chen, J. P, Lankford, P. I., and Foote, L. J. (1981) Monoclonal antibodies from rats immunized with fragment D of human fibrinogen. Thromb. Res. 22, 3090–320.

    Article  Google Scholar 

  47. Shmani, V. V., Nikolayeva, T. A., Winokurova, L. G., and Litoshka, A. A. (2001) Oriented antibody immobilization to polystyrene macrocarriers for immunoassay modified with hydrazide derivatives of poly (meth) acrylic acid. BMC Biotechnol. 1, 4.

    Article  Google Scholar 

  48. Zeiss, C. R., Pruzansky, J. J., Patterson, R., and Roberts, M. (1973) A solid phase radio-immunoassay for the quantitation of human reagenic antibody against ragweed antigen. J. Immunol. 110, 414–421.

    PubMed  CAS  Google Scholar 

  49. Herrmann, J. E., Hendry, R. M., and Collins, M. F. (1979) Factors involved in enzyme-linked immunoassay for viruses and evaluation of the method for identification of enteroviruses. J. Clin. Microbiol. 10, 210–217.

    PubMed  CAS  Google Scholar 

  50. Peterman, J. H., Tarcha, P. J., Chu, V. P., and Butler, J. E. (1988) The immunochemistry of sandwich ELISAs. IV. The antigen capture capacity of antibody covalently attached to bromoacetyl polystyrene. J. Immunol. Methods 111, 271–275.

    Article  PubMed  CAS  Google Scholar 

  51. Bugari, G., Poiesi, G., Beretta, A., Ghielmi, A., and Albertini, A. (1990) Quantitative immunoenzymatic assay of human lutropin, with use of a bi-specific monoclonal antibody. Clin. Chem. 36, 47–52.

    PubMed  CAS  Google Scholar 

  52. Robinson, J. E., Holton, O., Liu, J., McMurdo, H., Murciano, A., and Gohd, R. (1990) A novel enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies to HIV-1 envelope glycoproteins based on immobilization of viral glycoproteins in microtiter wells coated with concanavalin A. J. Immunol. Methods 132, 63–71.

    Article  PubMed  CAS  Google Scholar 

  53. Baumann, S., Grob, P., Stuard, F., Pertlik, D., Ackermann, M., and Suter, M. (1998) Indirect immobilization of recombinant proteins to a solid phase using the albumin binding domain of streptococcal protein G and immobilized albumin. J. Immunol. Methods 221, 95–106.

    Article  PubMed  CAS  Google Scholar 

  54. Butler, J. E. (1991) The behavior of antigens and antibodies immobilized on a solid-phase, in Structure of Antigens (Van Regenmortel, H. M. V., ed.), CRC Press, Boca Raton, FL, pp. 208–258.

    Google Scholar 

  55. Spoljar, B. H. and Tomasic, J. (2000) A novel ELISA for determination of polysaccharide specific immunoglobulins. Vaccine 19, 924–930.

    Article  PubMed  CAS  Google Scholar 

  56. Takahashi, K., Fukada, M., Kawai, M., and Yokochi, T. (1992) Detection of lipopolysaccharide (LPS) and identification of its serotype by an enzyme-linked immunosorbent assay (ELISA) using poly-L-lysine. J. Immunol. Methods 153, 67–71.

    Article  PubMed  CAS  Google Scholar 

  57. Shirahama, H. and Suzawa, T. (1985) Adsorption of bovine serum albumin onto styrene/acrylic acid copolymer latex. Colloid Polymer Sci. 263, 141–146.

    Article  CAS  Google Scholar 

  58. Lauritzen, E., Masson, M., Rubin, I., and Holm, A. (1990) Dot immunobinding and immunoblotting of picogram and nanogram quantities of small peptides on activated nitrocellulose. J. Immunol. Methods 131, 257–267.

    Article  PubMed  CAS  Google Scholar 

  59. Søndergaard-Andersen, J., Lauritzen, E., Lind, K., and Holm, A. (1990) Covalently liked peptides for enzyme-linked immunosorbent assay. J. Immunol. Methods 131, 99–104.

    Article  Google Scholar 

  60. Grantstrom, M., Wretlind, B., Markman, B., and Cryz, S. (19898) Enzyme-linked immunosorbent assay to evaluate the immunogenicity of a polyvalent Klebsiella capsular polysaccharide vaccine in humans. J. Clin. Microbiol. 26, 2257–2261.

    Google Scholar 

  61. Geysen, H. M., Meloen, R. H., and Barteling, S. J. (1984) Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. USA 81, 3998–4002.

    Article  PubMed  CAS  Google Scholar 

  62. Boudet, F., Theze, J., and Zouali, M. (1991) UV-treated polystyrene microtitre plates for use in an ELISA to measure antibodies against synthetic peptides. 142, 73–82.

    CAS  Google Scholar 

  63. Dagenais, P., Desprez, B., Albeit, J., and Escher, E. (1994) Direct covalent attachment of small peptide antigens to enzyme-linked immunosorbent assay plates using radiation and carbodimide activation. Anal. Biochem. 222, 149–155.

    Article  PubMed  CAS  Google Scholar 

  64. Hofstetter, O., Hofstetter, H., Then, D., Schurig, V., and Green, B. S. (1997) Direct binding of low molecular weight haptens to ELISA plates. J. Immunol. Methods 210, 89–92.

    Article  PubMed  CAS  Google Scholar 

  65. Bora, U., Chugh, L., and Nahar, P. (2002) Covalent immobilization of proteins onto photoactivated polystyrene microtiter plates for enzyme-linked immunosorbent assay procedures. J. Immunol. Methods 268, 171–177.

    Article  PubMed  CAS  Google Scholar 

  66. Gregorius, K., Mouritsen, S., and Elsner, H. I. (1995) Hydrocoating: a new method for coupling biomolecules to solid phases. J. Immunol. Methods 181, 65–73.

    Article  PubMed  CAS  Google Scholar 

  67. Loomans, E. E., Petersen-van Ettehoven, A., Bloemers, H. P., and Schielen, W. J. (1997) Direct coating of poly (lys) or acetyp-thio-acetyl peptides to polystyrene: the effects in an enzyme-linked immunosorbent assay. Anal. Biochem. 248, 117–129.

    Google Scholar 

  68. Gregorius, K. and Theisen, M. (2001) In situ deprotection: a method for covalent immobilization of peptides with well-defined orientation for use in solid phase immunoassays such as enzyme-linked immunosorbent assay. Anal. Biochem. 299, 84–91.

    Article  PubMed  CAS  Google Scholar 

  69. LaCroix, M., Dionne, G., Zrein, M., Dwyer, R. J., and Chalifour, R. J. (1991) The use of synthetic peptides as solid-phase antigens, in Immunochemistry of Solid-Phase Immunoassay (Butler, J. E., ed.), Boca Raton, FL, pp. 261–268.

    Google Scholar 

  70. Palfree, R. G. and Elliott, B. E. (1982) An enzyme linked immunosorbent assay (ELISA) for detergent solubilized Ia glycoproteins using nitrocellulose membrane discs. J. Immunol. Methods 52, 395–408.

    Article  PubMed  CAS  Google Scholar 

  71. Drexler, G., Eichinger, A., Wolf, C., and Sieghart, W. (1986) A rapid and simple method for efficient coating of microtiter plates using low amounts of antigen in the presence of detergent. J. Immunol. Methods 95, 117–122.

    Article  PubMed  CAS  Google Scholar 

  72. Czerkinsky, C., Rees, A. S., Burgmeier, L. A., and Challacombe, S. J. (1983) The detection and specificity of class specific antibodies to whole bacterial cells using a solid phase radioimmunoassay. Clin. Exp. Immunol. 53, 192–200.

    PubMed  CAS  Google Scholar 

  73. Butler, J. E., Weber, P., Sinkora, M., et al. (2002) Antibody repertoire development in fetal and neonatal piglets. VIII. Colonization is required for newborn piglets to make serum antibodies to T-dependent and type 2 T-independent antigens. J. Immunol. 169, 6822–6830.

    PubMed  CAS  Google Scholar 

  74. Verschoor, J. A., Meiring, M.J., van Wyngaardt, S., and Weyer, K. (1990) Polystyrene, poly-L-lysine and nylon as adsorptive surfaces for the binding of whole cells of Mycobacterium tuberculosis H37 RV to ELISA plates. J. Immunoassay 11, 413–428.

    Article  PubMed  CAS  Google Scholar 

  75. Ngai, P. K., Ackermann, F., Wendt, H., Savoca, R., and Bosshard, H. R. (1993) Protein A antibody-capture ELISA (PACE): an ELISA format to avoid denaturation of surface-adsorbed antigens. J. Immunol. Methods 158, 267–276.

    Article  PubMed  CAS  Google Scholar 

  76. Schwab, C. and Bosshard, H. R. (1992) Caveats for the use of surface-adsorbed protein antigen to test the specificity of antibodies. J. Immunol. Methods 147, 125–134.

    PubMed  CAS  Google Scholar 

  77. Rodda, D. J. and Yamazaki, H. (1994) Poly(vinyl alcohol) as a blocking agent in enzyme immunoassay. Immunol. Invest. 23, 421–428.

    Article  PubMed  CAS  Google Scholar 

  78. Qualtiere, L. F., Anderson, A. C., and Meyer, P. (1997) Effects of ionic and non-ionic detergents on antigen-antibody reaction. J. Immunol. 119, 1645–1651.

    Google Scholar 

  79. Avrameas, S. and Terynich, K. T. (1993) The natural autoantibody system: between hypotheses and facts. Mol. Immunol. 30, 1133–1142.

    Article  PubMed  CAS  Google Scholar 

  80. Cafruny, W. A., Heruth, D.A., Jaqua, M. J., and Plagemann, P. G. W. (1986) Immunoglobulins that bind uncoated ELISA plate surfaces: appearance in mice during infection with lactate dehydrogenase-elevating virus and in human anti-nuclear antibody positive serum. J. Med. Virol. 19, 175–186.

    Article  PubMed  CAS  Google Scholar 

  81. Voss, E. W. Jr. (1990) Anti-fluorescein antibodies as structure-function models to examine fundamental immunological and spectroscopic principles. Comments Mol. Cell Biophys. 6, 197–221.

    Google Scholar 

  82. Azimzadeh, A., Weiss, E., and van Regenmortel, M. H. (1992) Measurement of affinity of viral monoclonal antibodies using Fab′-peroxidase conjugate. Influence of antibody concentration on apparent affinity. Mol. Immunol. 29, 601–608.

    Article  PubMed  CAS  Google Scholar 

  83. Butler, J. E. and Hamilton, R. G. (1991) Quantitation of specific antibodies: methods of expression, standards, solid-phase considerations and specific applications, in Immunochemistry of Solid-Phase Immunoassays (Butler, J. E., ed.), CRC Press, Boca Raton, FL, pp. 173–198.

    Google Scholar 

  84. Butler, J. E., Spradling, J. E., Peterman, J. H., Joshi, K. S., and Challacombe, S. J. (1990) Humoral immunity in root caries in an elderly population. I. Development of reliable solid-phase immunoassays for routine measurement of antibodies to oral bacteria and quantitation of secretory immunoglobulin. Oral Microbial Immunol. 5, 98–107.

    Article  CAS  Google Scholar 

  85. Wolf, L. E., Lappe, M., Peterson, R. D., and Ezrailson, E. G. (1993) Human immune response to polydimethylsiloxane (silicone): screening studies in a breast implant populations. FASEB J. 7, 1265–1268.

    PubMed  CAS  Google Scholar 

  86. Goldblum, R. M., Pelley, R. P., O’Donnell, A. A., Pyron, D., and Heggers, J. R. (1992) Antibodies to silicone elastomers and reactions to ventriculoperitoneal shunts. Lancet 340, 519–513.

    Article  Google Scholar 

  87. Friguet, B., Chaffotte, A, F., Djavadi-Ohaniance, L., and Goldberg, M. E. (1984) Measurements of the true affinity constant of antigen-antibody complexes by enzyme-linked immunosorbent assay. J. Immunol. Methods 77, 305–319.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Butler, J.E. (2004). Solid Supports in Enzyme-Linked Immunosorbent Assay and Other Solid-Phase Immunoassays. In: Decler, J., Reischl, U. (eds) Molecular Diagnosis of Infectious Diseases. Methods in Molecular Medicine™, vol 94. Humana Press. https://doi.org/10.1385/1-59259-679-7:333

Download citation

  • DOI: https://doi.org/10.1385/1-59259-679-7:333

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-221-6

  • Online ISBN: 978-1-59259-679-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics