Skip to main content

Development of a Mammalian Tet-On Expression Cell Line

Glucosylceramide Synthase Regulates TNF-α-Induced Apoptosis

  • Protocol
Cytokine Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 249))

  • 565 Accesses

Abstract

Tumor necrosis factor-α (TNF-α) is one of the most pleiotropic of cytokines, acting as a host defense factor in myriad immunological and inflammatory responses and antitumor activity (13). The cytotoxic effects of TNF-α are primarily mediated through TNF-R1 and the receptor-associated proteins, TNF-R1-associated death domain protein (TRADD) and Fas-associated death domain (FADD/MORT1) (35). Ceramide generation and caspase activation represent potential regulation points of apoptotic signaling by TNF-α (6,7). Increased ceramide formation via sphingomyelinase represents an early event in the apoptotic cascade of TNF-α (6,8,9). In MCF-7 breast cancer cells, ceramide is one of the essential molecules in TNF-α-induced apoptosis (1012). Increased ceramide generation induced by the P-glycoprotein blocker PSC 833, restores TNF-α-induced apoptosis in KG1a leukemia cells (13), whereas loss of ceramide production is a cause of cellular resistance to apoptosis induced by TNF-α (14). Glucosylceramide synthase (GCS), converting ceramide into glucosylceramide (15), exerts strong influence over cellular ceramide levels and is thus a major modulator of programmed cell death (16). Introducing the GCS gene into TNF-α-sensitive MCF-7 cells greatly diminishes cellular response to TNF-α cytotoxicity (12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, B. B. and Natarajan, K. (1996) Tumor necrosis factors: developments during the last decade. Eur. Cytokine Netw. 7, 93–124.

    PubMed  CAS  Google Scholar 

  2. Fiers, W. (1991) Tumor necrosis factor. Characterization at the molecular, cellular and in vivo level. FEBS Lett. 285, 199–212.

    Article  PubMed  CAS  Google Scholar 

  3. Larrick, J. W. and Wright, S. C. (1990) Cytotoxic mechanism of tumor necrosis factor-α. FASEB J. 4, 3215–3223.

    PubMed  CAS  Google Scholar 

  4. Vandenabeele, P., Declercq, W., Beyaert, R., and Fiers, T. (1995) Two tumor necrosis factor receptors: structure and function. Trends Cell Biol. 5, 392–399.

    Article  PubMed  CAS  Google Scholar 

  5. Nagata, S. (1997) Apoptosis by death factor. Cell 88, 355–365.

    Article  PubMed  CAS  Google Scholar 

  6. Hannun, Y. A. (1996) Function of ceramide in coordinating cellular responses to stress. Science, 274, 1855–1859.

    Article  PubMed  CAS  Google Scholar 

  7. Nicholson, D. W. and Thormberry, N. A. (1997) Caspase: killer proteases. Trends Biochem. Sci. 22, 299–306.

    Article  PubMed  CAS  Google Scholar 

  8. Pena, L. A., Fuks, Z., and Kolesnick, R. (1997) Stress-induced apoptosis and the sphingomyelin pathways. Biochem. Pharmacol. 53, 615–621.

    Article  PubMed  CAS  Google Scholar 

  9. Wiegmann, K., Schutze, S., Machchleidt, T., Witte, D., and Kronke, M. (1994) Functional dichotomy of neutral and acidic sphingomyelinase in tumor necrosis factor signaling. Cell 78, 1005–1015.

    Article  PubMed  CAS  Google Scholar 

  10. Cai, Z., Bettaieb, A., Mahdani, N. E., et al. (1997) Alteration of the sphingomyelin/ceramide pathway is associated with resistance of human breast carcinoma MCF7 cells to tumor necrosis factor-α-mediated cytotoxicity. J. Biol. Chem. 272, 6918–6926.

    Article  PubMed  CAS  Google Scholar 

  11. Burow, M. E., Weldon, C. B., Tang, Y., et al. (1998) Differences in susceptibility to tumor necrosis factor-a induced apoptosis among MCF-7 breast cancer cell variants. Cancer Res. 58, 4940–4946.

    PubMed  CAS  Google Scholar 

  12. Liu, Y. Y., Han, T. Y., Giuliano, A. E., Ichikawa, S., Hirabayashi, Y., and Cabot, M. C. (1999) Glycosylation of ceramide potentiates cellular resistance to tumor necrosis factor-α-induced apoptosis. Exp. Cell Res. 252, 464–470.

    Article  PubMed  CAS  Google Scholar 

  13. Bezombes, C., Maestre, N., Laurent, G., Levade, T., Bettaieb, A., and Jaffrezou J. P. (1998) Restoration of TNF-α-induced ceramide generation and apoptosis in resistant human leukemia KG1a cells by the P-glycoprotein blocker PSC 833. FASEB J. 12, 101–109.

    PubMed  CAS  Google Scholar 

  14. Zyad A., Benard J., Tursz T., Clarke R., and Chouaib S. (1994) Resistance to TNF-α and adriamycin in the human breast cancer MCF-7 cell line: relationship to MDR1, MnSOD and TNF gene expression. Cancer Res. 54, 825–831.

    PubMed  CAS  Google Scholar 

  15. Basu, S., Kaufeman, B., and Roseman, S. (1968) Enzymatic synthesis of ceramide-glucose and ceramide-lactose by glycosyltransferases from embryonic chicken brain. J. Biol. Chem. 243, 5802–5804.

    PubMed  CAS  Google Scholar 

  16. Senchenkov, A. and Cabot, M. C. (2001) Targeting ceramide metabolism-a strategy for overcoming drug resistance. J. Natl. Cancer Inst. 93, 347–357.

    Article  PubMed  CAS  Google Scholar 

  17. Goseen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., and Bujard, H. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769.

    Article  Google Scholar 

  18. Resnitzky, D., Gossen, M., Bujard, H., and Reed, S. I. (1994) Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol. Cell Biol. 14, 1669–1679.

    PubMed  CAS  Google Scholar 

  19. Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551.

    Article  PubMed  CAS  Google Scholar 

  20. Yin, D. X., Zhu, L., and Schimke, R. T. (1996) Tetracycline-controlled gene expression system achieves high-level and quantitative control of gene expression. Anal. Biochem. 235, 195–201.

    Article  PubMed  CAS  Google Scholar 

  21. Faris, M., Kokot, N., Lee, L., and Nel, A. (1996) Regulation of interleukin-2 transcription by inducible stable expression of dominant negative and dominant active mitogen-activated protein kinase kinase kinase in Jurkat T cells. Evidence for the importance of Ras in a pathway that is controlled by dual receptor stimulation. J. Biol. Chem. 271, 27,366–27,373.

    Article  PubMed  CAS  Google Scholar 

  22. Liu, Y. Y., Han, T. Y., Giuliano, A. E., and Cabot, M. C. (1999) Expression of glucosylceramide synthase, converting ceramide to glucosylceramide confers adriamycin resistance in human breast cancer cells. J. Biol. Chem. 274, 1140–1146.

    Article  PubMed  CAS  Google Scholar 

  23. Ichikawa, S., Sakiyama, H., Suzuki, G., Hidari, K. I. P., and Hirabayashi, Y. (1996) Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis. Proc. Natl. Acad. Sci. USA. 93, 4638–4643.

    Article  PubMed  CAS  Google Scholar 

  24. Liu, Y. Y., Han, T. Y., Giuliano, A. E., Hansen, R., and Cabot, M. C. (2000) Uncoupling ceramide glycosylation by transfection of glucosylceramide synthase antisense reverses adriamycin resistance. J. Biol. Chem. 275, 7138–7143.

    Article  PubMed  CAS  Google Scholar 

  25. Zhu, H. J., Iaria, J., and Sizeland, A. M. (1999) Smad7 differentially regulates transforming growth factor b-mediated signaling pathways. J. Biol. Chem. 274, 32,258–32,264.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Liu, YY., Cabot, M.C. (2004). Development of a Mammalian Tet-On Expression Cell Line. In: De Ley, M. (eds) Cytokine Protocols. Methods in Molecular Biology, vol 249. Humana Press. https://doi.org/10.1385/1-59259-667-3:177

Download citation

  • DOI: https://doi.org/10.1385/1-59259-667-3:177

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-948-3

  • Online ISBN: 978-1-59259-667-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics