Skip to main content

Monolayer Techniques for Studying Lipase Kinetics

  • Protocol
Lipase and Phospholipase Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 109))

Abstract

Kinetic analyses of lipases and phospholipases must take into account the fact that these enzymes generally catalyze their reactions at a lipid-water interface as opposed to catalysis in a monophasic aqueous environment. This chapter discusses the application of an important tool in the kinetic modeling of these unique enzymes, the monolayer technique. The purpose of this chapter is to give an overview of kinetic modeling as applied to interfacial enzyme lipolysis, a brief discussion of the monolayer technique for studying lipase kinetics, and some applications of the monolayer technique to study substrate composition and stereoselectivity, lipolytic inhibitors, interfacial binding and acylglycerol synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Small, D. M. (1968) A classification of biological lipids based upon their interaction in aqueous systems. J. Amer. Oil Chemists Soc. 45, 108–119.

    Article  CAS  Google Scholar 

  2. Hughes, A. (1935) The action of snake venoms on surface films. Biochem. J. 29, 437–444.

    PubMed  CAS  Google Scholar 

  3. Verger, R. and de Haas, G. H. (1976) Interfacial enzyme kinetics of lipolysis. Annual Review Biophys. Bioeng. 5, 77–117.

    Article  CAS  Google Scholar 

  4. Verger, R. (1980) Enzyme kinetics of lipolysis. Methods in Enzymology 64, 340–392.

    Article  PubMed  CAS  Google Scholar 

  5. Verger, R. and Pattus, F. (1982) Lipid-protein interactions in monolayers. Chem. Phys. Lipids 30, 189–227.

    Article  CAS  Google Scholar 

  6. Ransac, S., Moreau, H., Rivière, C, and Verger, R. (1991) Monolayer techniques for studying phospholipase kinetics. Methods Enzymol. 197, 49–65.

    Article  PubMed  CAS  Google Scholar 

  7. Piéroni, G., Gargouri, Y., Sarda, L., and Verger, R. (1990) Interactions of lipases with lipid monolayers. Facts and questions. Adv. Colloid Interface Sci. 32, 341–378.

    Article  PubMed  Google Scholar 

  8. Verger, R., Ferrato, F., Mansbach, C. M., and Piéroni, G. (1982) Novel intestinal phospholipase A2: Purification and some molecular characteristics. Biochemistry 21, 6883–6889.

    Article  PubMed  CAS  Google Scholar 

  9. Verger, R., Mieras, M. C. E., and de Haas, G. H. (1973) Action of phospholipase A at interfaces. J. Biol. Chem. 248, 4023–4034.

    PubMed  CAS  Google Scholar 

  10. Wieloch, T., Borgström, B., Piéroni, G., Pattus, F., and Verger, R. (1982) Product activation of pancreatic lipase. Lipolytic enzymes as probes for lipid/water interfaces. J. Biol. Chem. 257, 11,523–11,528.

    PubMed  CAS  Google Scholar 

  11. Ransac, S., Rogalska, E., Gargouri, Y., Deveer, A.M.T.J., Paltauf, F., de Haas, G. H., and Verger, R. (1990) Stereoselectivity of lipases. I. Hydrolysis of enantiomeric glyceride analogues by gastric and pancreatic lipases. A kinetic study using the monomolecular film technique. J. Biol. Chem. 265, 20,263–20,270.

    PubMed  CAS  Google Scholar 

  12. Ransac, S., Rivière, C, Gancet, C, Verger, R., and de Haas, G. H. (1990) Competitive inhibition of lipolytic enzymes. I. A kinetic model applicable to water-insoluble competitive inhibitors. Biochim. Biophys. Ada 1043, 57–66.

    CAS  Google Scholar 

  13. Ransac, S. (1991) Modulation des activités (phospho)lipasiques. Mise en oeuvre de la technique des films monomoléculaire pour l’étude d’inhibiteur spécifiques et la determination de la stéréo-sélectivité des enzymes lipolytiques. Thesis, University of Aix-Marseille II.

    Google Scholar 

  14. Raneva, V., Ivanova, T., Verger, R., and Panaiotov, 1. (1995) Comparative kinetics of phospholipase A2 action on liposomes and monolayers of phosphatidylcholine spread at the air-water interface. Colloids Surfaces B: Biointerfaces 3, 357–369.

    Article  CAS  Google Scholar 

  15. Ransac, S., Gargouri, Y., Moreau, H., and Verger, R. (1991) Inactivation of pancreatic and gastric lipases by tetrahydrolipstatin and alkyl-dithio-5-(2-nitrobenzoic acid). A kinetic study with 1, 2-didecanoyl-sn-glycerol monolayers. Eur. J. Biochem. 202, 395–400.

    Article  PubMed  CAS  Google Scholar 

  16. Ransac, S., Deveer, A. M. T. J., Rivière, C., Slotboom, A. J., Gancet, C., Verger, R., and de Haas, G. H. (1992) Competitive inhibition of lipolytic enzymes. V. A monolayer study using enantiomeric acylamino analogs of phospholipids as potent competitive inhibitors of porcine pancreatic phospholipase A2. Biochim. Biophys. Ada 1123, 92–100.

    CAS  Google Scholar 

  17. Dervichian, D. G. (1971) Methode d’étude des réactions enzymatiques sur une interface. Biochimie 53, 25–34.

    Article  PubMed  CAS  Google Scholar 

  18. Zografi, G., Verger, R., and de Haas, G. H. (1971) Kinetic analysis of the hydrolysis of lecithin monolayers by phospholipase A. Chem. Phys. Lipids 7, 185–206.

    Article  PubMed  CAS  Google Scholar 

  19. Verger, R. and de Haas, G. H. (1973) Enzyme reactions in a membrane model. 1: A new technique to study enzyme reactions in monolayers. Chem. Phys. Lipids 10, 127–136.

    Article  PubMed  CAS  Google Scholar 

  20. Bangham, A. D. and Dawson, R. M. C. (1960) The physical requirements for the action of Penicillium notatum phospholipase B on unimolecular films of lecithin. Biochem. J. 75, 133–138.

    PubMed  CAS  Google Scholar 

  21. Dawson, R. M. C. (1966) The hydrolysis of unimolecular films of 32P-labelled lecithin, phosphatidylethanolamine and phosphatidylinositol with phospholipase A (Naja naja venom). Biochem. J. 98, 35c–37c.

    PubMed  CAS  Google Scholar 

  22. Jagocki, J. W., Law, J. H., and Kézdy, F. J. (1973) The kinetic study of enzyme action on substrate monolayers. Pancreatic lipase reactions. J. Biol. Chem. 248, 580–587.

    Google Scholar 

  23. Laurent, S., Ivanova, M. G., Pioch, D., Graille, J., and Verger, R. (1994) Interactions between β-Cyclodextrin and insoluble glyceride monomolecular films at the argon/water interface: application to lipase kinetics. Chem. Phys. Lipids 70, 35–42.

    Article  PubMed  CAS  Google Scholar 

  24. Piéroni, G. and Verger, R. (1979) Hydrolysis of mixed monomolecular films of triglyceride/lecithin by pancreatic lipase. J. Biol. Chem. 254, 10,090–10,094.

    PubMed  Google Scholar 

  25. Scow, R. O., Blanchette-Mackie, E. J., and Smith, L. C. (1976) Role of capilary endothelium in the clearance of chylomicrons. A model for lipid transport from blood by lateral diffusion in cell membranes. Circ. Res. 39, 149–163.

    PubMed  CAS  Google Scholar 

  26. Scow, R.O., Desnuelle, P.and Verger, R. (1979) Lipolysis and lipid movement in a membrane model. Action of lipoprotein lipase. J. Biol. Chem. 254, 6456–6463.

    PubMed  CAS  Google Scholar 

  27. de Haas, G., van Oort, M., Dijkman, R., and Verger, R. (1989) Phospholipase A2 inhibitors: Monoacyl, monoacylamino-glucero-phosphocholines. Biochemical Society Transactions, London.

    Google Scholar 

  28. Jain, M. K. and Berg, O. G. (1989) The kinetics of interfacial catalysis by phospholipase A2 and regulation of interfacial activation: hopping versus scooting. Biochim. Biophys. Ada 1002, 127–156.

    CAS  Google Scholar 

  29. Marguet, F., Douchet, I., Cavalier, J. F., Buono, G., and Verger, R. (1998) Interfacial and/or molecular recognition by Upases of monomolecular films of chiral organophosphorus glyceride analogues? Chirality, submitted.

    Google Scholar 

  30. Smaby, J. M., Muderhwa, J. M., and Brockman, H. L. (1994) Is lateral phase separation required for fatty acid to stimulate Upases in a phosphatidylcholine interface. Biochemistry 33, 1915–1922.

    Article  PubMed  CAS  Google Scholar 

  31. Muderhwa, J. M. and Brockman, H. L. (1992) Lateral lipid distribution is a major regulator of lipase activity. Implications for lipid-mediated signal transduction. J. Biol. Chem. 267, 24,184–24,192.

    PubMed  CAS  Google Scholar 

  32. Peters, G. H., Toxvaerd, S., Larsen, N. B., Bjørnholm, T., Schaumburg, K., and Kjaer, K. (1995) Structure and dynamics of lipid monolayers: implications for enzyme catalysed lipolysis. Nature Struct Biology 2, 395–401.

    Article  CAS  Google Scholar 

  33. Esposito, S., Semeriva, M., and Desnuelle, P. (1973) Effect of surface pressure on the hydrolysis of ester monolayers by pancreatic lipase. Biochim. Biophys. Acta 302, 293–304.

    PubMed  CAS  Google Scholar 

  34. Pattus, F., Slotboom, A. J., and de Haas, G. H. (1979) Regulation of phospholipase A2 activity by the lipid-water interface: a monolayer approach. Biochemistry 13, 2691–2697.

    Article  Google Scholar 

  35. Rietsch, J., Pattus, F., Desnuelle, P., and Verger, R. (1977) Further studies of mode of action of lipolytic enzymes. J. Biol. Chem. 252, 4313–4318.

    PubMed  CAS  Google Scholar 

  36. Bhat, S. G. and Brockman, H. L. (1981) Enzymatic Synthesis/Hydrolysis of Cholesteryl Oleate in Surface Films. J. Biol. Chem. 256, 3017–3023.

    PubMed  CAS  Google Scholar 

  37. Momsen, W. E. and Brockman, H. L. (1981) The adsorption to and hydrolysis of 1,3-didecanoyl glycerol monolayers by pancreatic lipase. Effect of substrate packing density. J. Biol. Chem. 256, 6913–6916.

    PubMed  CAS  Google Scholar 

  38. Aoubala, M., Ivanova, M., Douchet, I., de Caro, A., and Verger, R. (1995) Interfacial binding of human gastric lipase to lipid monolayers, measured with an ELISA. Biochemistry 34, 10,786–10,793.

    Article  PubMed  CAS  Google Scholar 

  39. Gargouri, Y., Moreau, H., Piéroni, G., and Verger, R. (1989) Role of a sulfhydryl group in gastric Upases. A binding study using the monomolecular-film technique. Eur. J. Biochem. 180, 367–371.

    Article  PubMed  CAS  Google Scholar 

  40. Guesdon, J. L., Ternynck, T., and Avrameas, S. (1979) J. Histoch. Cytochem. 8, 1131–1139.

    Google Scholar 

  41. Aoubala, M., Douchet, I., Laugier, R., Him, M., Verger, R., and de Caro, A. (1993) Purification of human gastric lipase by immunoaffinity and quantification of this enzyme in the duodenal contents using a new ELISA procedure. Biochim. Biophys. Acta 1169, 183–188.

    PubMed  CAS  Google Scholar 

  42. Brockerhoff, H. and Jensen, R.G. (1974) Lipolytic Enzymes, in Lipases (Brockerhoff, H. and Jensen, R. G.), eds.), Academic Press, New York, pp. 25–175.

    Google Scholar 

  43. Hamosh, M. (1984) Lingual lipase, in Lipases (Borgström, B. and Brockman, H. L., eds.), Elsevier, Amsterdam, pp. 50–81.

    Google Scholar 

  44. Chen, C.-S. and Sih, C. J. (1989) General aspects and optimization of enantioselective biocatalysis in organic solvents: The use of lipases. Angew. Chem. Int. Engl. 28, 695–707.

    Article  Google Scholar 

  45. Morley, N., Kuksis, A., and Buchnea, D. (1974) Hydrolysis of synthetic triacylglycerols by pancreatic and lipoprotein lipase. Lipids 9, 481–488.

    Article  PubMed  CAS  Google Scholar 

  46. Akesson, B., Gronowitz, S., Herslof, B., Michelsen, P., and Olivecrona, T. (1983) Stereospecificity of different lipases. Lipids 18, 313–318.

    Article  CAS  Google Scholar 

  47. Jensen, R. G., Galluzzo, D. R., and Bush, V. J. (1990) Selectivity is an important characteristic of lipases (acylglycerol hydrolases). Biocatalysis 3, 307–316.

    Article  CAS  Google Scholar 

  48. Rogalska, E., Ransac, S., and Verger, R. (1990) Stereoselectivity of lipases. II. Stereoselective hydrolysis of triglycerides by gastric and pancreatic lipases. J. Biol. Chem. 265, 20,271–20,276.

    PubMed  CAS  Google Scholar 

  49. Rogalska, E., Ransac, S., and Verger, R. (1993) Controlling lipase stereoselectivity via the surface pressure. J. Biol. Chem. 268, 792–794.

    PubMed  CAS  Google Scholar 

  50. Hult, K. and Norin, T. (1992) Enantioselectivity of some lipases: control and prediction. Pure andAppl. Chem. 64, 1129–1134.

    Article  CAS  Google Scholar 

  51. Holmquist, M., Martinelle, M., Berglund, P., Clausen, I. G., Patkar, S., Svendsen, A., and Hult, K. (1993) Lipases from Rhizomucor miehei and Humicola lanuginosa. Modification of the lid covering the active site alters enantioselectivity. J. Protein Chem. 12, 749–757.

    Article  PubMed  CAS  Google Scholar 

  52. Rogalska, E., Cudrey, C., Ferrato, F., and Verger, R. (1993) Stereoselective hydrolysis of triglycerides by animal and microbial lipases. Chirality 5, 24–30.

    Article  PubMed  CAS  Google Scholar 

  53. Cernia, E., Delfini, M., Magri, A. D., and Palocci, C. (1994) Enzymatic catalysis by lipase from Candida cylindracea, enantiomeric activity evaluation by HI and C13 NMR. Cell. Mol. Biol. 40, 193–199.

    PubMed  CAS  Google Scholar 

  54. Holmberg, E. and Hult, K. (1991) Temperature as an enantioselective parameter in enzymic resolutions of racemic mixtures. Biotechnol. Lett. 13, 323–326.

    Article  CAS  Google Scholar 

  55. Lam, L. K., Hui, R. A. H. F., and Jones, J. B. (1986) Enzymes in organic synthesis. 35. Stereoselective pig liver esterase catalysed hydrolyses of 3-substituted glutarate diesters. Optimization of enantiomeric excess via reaction conditions control. J. Org. Chem. 51, 2047–2050.

    Article  CAS  Google Scholar 

  56. Parida, S. and Dordick, J. S. (1991) Substrate structure and solvent hydrophobicity control lipase catalysis and enantioselectivity in organic media. J. Am. Chem. Soc. 113, 2253–2259.

    Article  CAS  Google Scholar 

  57. Wu, S. H., Guo, Z. W., and Sih, C. J. (1990) Enhancing the enantioselectivity of Candida lipase catalyzed ester hydrolysis via noncovalent enzyme modification. J. Am. Chem. Soc. 112, 1990–1995.

    Article  CAS  Google Scholar 

  58. Matori, M., Asahara, T., and Ota, Y. (1991) Reaction conditions influencing positional specificity index (PSI) of microbial Upases. J. Ferment. Bioeng. 72, 413–415.

    Article  CAS  Google Scholar 

  59. Makamura, K., Takebe, Y., Kitayama, T., and Ohno, A. (1991) Effect of solvent structure on enantioselectivity of lipase catalyzed transesterification. Tetrahedron lett. 32, 4941–4944.

    Article  Google Scholar 

  60. Kamat, S. V., Beckman, E. J., and Russell, A. J. (1993) Control of enzyme enantioselectivity with pressure changes in supercritical fluoroform. J Am Chem Soc 115, 8845–8846.

    Article  CAS  Google Scholar 

  61. Rogalska, E., Nury, S., Douchet, I., and Verger, R. (1995) Lipase stereoselectivity and regioselectivity toward three isomers of dicaprin: A kinetic study by the monomolecular film technique. Chirality 7, 505–515.

    Article  CAS  Google Scholar 

  62. Baba, N., Tahara, S., Yoneda, K., and Iwasa, J. (1991) Lipase-catalyzed enantioselective acylation of 2-O-benzyl-1,3-propanediol with unsaturated fatty acid trifluoroethyl esters in organic solvent. Chem. Express 6, 423–426.

    CAS  Google Scholar 

  63. Böhm, C., Möhwald, M., Leiserowitz, L., and Als-Nielsen, J. (1993) Influence of chirality on the structure of phospholipid monolayers. Biophys. J. 64, 553–559.

    Article  PubMed  Google Scholar 

  64. Andelman, D. and Orland, H. (1993) Chiral discrimination in solutions and in Langmuir monolayers. J. Am. Chem. Soc. 115, 12,322–12,329.

    Article  CAS  Google Scholar 

  65. Harvey, N. G., Mirajovsky, D., Rose, P. L., Verbiar, R., and Arnett, E. M. (1989) Molecular recognition in chiral monolayers of stearoylserine methyl ester. J. Am. Chem. Soc. 111, 1115–1122.

    Article  CAS  Google Scholar 

  66. Dvolaitzky, M. and Guedeau-Boudeville, M.-A. (1989) Chiral discrimination in the monolayer packing of hexadecylthiophospho-2-phenylglycinol with two chiral centers in the polar head group. Langmuir 5, 1200–1205.

    Article  CAS  Google Scholar 

  67. Landau, E. M., Levanon, L., Leiserowitz, L., Lahav, M., and Sagiv, J. (1985) Transfer of structural information from Langmuir monolayers of three dimensional growing crystals. Nature 318, 353–356.

    Article  CAS  Google Scholar 

  68. Melo, E. P., Ivanova, M. G., Aires-Barros, M. R., Cabral, J. M. S., and Verger, R. (1995) Glyceride synthesis catalyzed by cutinase using the monomolecular film technique. Biochemistry 34, 1615–1621.

    Article  PubMed  CAS  Google Scholar 

  69. Lauwereys, M., de Geus, P., de Meutter, J., Stanssens, P., and Matthyssens, G. (1991) Cloning, expression and characterization of cutinase, a fungal lipolytic enzyme. GBF monogr. 16, 243–251.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc, Totowa, NJ

About this protocol

Cite this protocol

Ransac, S., Ivanova, M., Panaiotov, I., Verger, R. (1999). Monolayer Techniques for Studying Lipase Kinetics. In: Doolittle, M., Reue, K. (eds) Lipase and Phospholipase Protocols. Methods in Molecular Biology™, vol 109. Humana Press. https://doi.org/10.1385/1-59259-581-2:279

Download citation

  • DOI: https://doi.org/10.1385/1-59259-581-2:279

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-546-1

  • Online ISBN: 978-1-59259-581-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics