Skip to main content

Epigenetic Effects on Transgene Expression

  • Protocol
Gene Knockout Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 158))

Abstract

Gene expression in eukaryotes is regulated primarily at the level of transcription. The genomes of higher eukaryotes contain many more genes than are used in any single differentiated cell type, and cell differentiation can be viewed as the result of decisions regarding which genes will be expressed. The mechanisms of transcriptional control have been intensively studied for more than a decade, resulting in considerable understanding of the organization of DNA elements that control the transcription of individual genes (promoters and enhancers), the factors that bind these elements, and the basal transcription apparatus. These studies have been primarily concerned with mechanisms regulating the rate of transcription of an active gene, rather than mechanisms that determine whether a gene will be transcriptionally active at all. However, it is arguable that the decision to transcribe a gene is the critical determinant; work done over several decades points to complex systems regulating the on/off switch in transcription, but the workings of these systems are still relatively obscure. In general, these systems involve what are termed epigenetic processes, i.e., processes whereby genes are rendered inactive that do not involve changes in the actual DNA sequence. At present there are two known forms of epigenetic modification: DNA methylation and chromatin packaging. Changes in either one or both of these are frequently associated with the silencing of genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palmiter, R. D. and Brinster, R. L. (1986) Germ-line transformation of mice. Ann. Rev. Genet. 20, 465–499.

    Article  PubMed  CAS  Google Scholar 

  2. Katsuki, M., Sato, M., Kimura, M., et al. (1988) Conversion of normal behavior to shiverer by myelin basic protein antisense cDNA in transgenic mice. Science 241, 593–595.

    Article  PubMed  CAS  Google Scholar 

  3. Sweetser, D. A., Hauft, S. M., Hoppe, P. C, et al. (1988) Transgenic mice containing intestinal fatty acid-binding protein-human growth hormone fusion genes exhibit correct regional and cell-specific expression of the reporter gene in their small intestine. Proc. Natl. Acad. Sci. USA 85, 9611–9615.

    Article  PubMed  CAS  Google Scholar 

  4. McGowan, R., Campbell, R., Peterson, A., and Sapienza, C. (1989) Cellular mosaicism in the methylation and expression of hemizygous loci in the mouse. Genes Dev. 3, 1669–1676.

    Article  PubMed  CAS  Google Scholar 

  5. Mintz, B. and Bradl, M. (1991) Mosaic expression of a tyrosinase fusion gene in albino mice yields a heritable striped coat color pattern in transgenic homozygotes. Proc. Natl. Acad. Sci. USA 88, 9643–9647.

    Article  PubMed  CAS  Google Scholar 

  6. Pravtcheva, D. D., Wise, T. L., Ensor, N. J., and Ruddle, F. H. (1994) Mosaic expression of an Hprt transgene integrated in a region of Y heterochromatin. J. Exp. Zool. 268, 452–468.

    Article  PubMed  CAS  Google Scholar 

  7. Robertson, G., Garrick, D., Wu, W., et al. (1995) Position-dependent variegation of globin transgene expression in mice. Proc. Natl. Acad. Sci. USA 92, 5371–5375.

    Article  PubMed  CAS  Google Scholar 

  8. Festenstein, R., Tolaini, M., Corbella, P., et al. (1996) Locus control region function and heterochromatin-induced position effect variegation. Science 271, 1123–1125.

    Article  PubMed  CAS  Google Scholar 

  9. Robertson, G., Garrick, D., Wilson, M., et al. (1996) Age-dependent silencing of globin transgenes in the mouse. Nucleic Acids Res. 24, 1465–1471.

    Article  PubMed  CAS  Google Scholar 

  10. Sutherland, H. G. E., Martin, D. I. K., and Whitelaw, E. (1997) A globin enhancer acts by increasing the proportion of erythrocytes expressing a linked transgene. Mol. Cell. Biol. 17, 1607–1614.

    PubMed  CAS  Google Scholar 

  11. Henikoff, S. (1992) Position effect and related phenomena. Curr. Opin. Genet. Dev. 2, 907–912.

    Article  PubMed  CAS  Google Scholar 

  12. Belyaeva, E. S., Demakova, O. V., Umbetova, G. H., and Zhimulev, I. F. (1993) Cytogenetic and molecular aspects of position-effect variegation in Drosophila melanogaster. V. Heterochromatin-associated protein HP1 appears in euchromatic chromosomal regions that are inactivated as a result of position-effect variegation. Chromosoma 102, 583–590.

    Article  PubMed  CAS  Google Scholar 

  13. Henikoff, S. (1981) Position-effect variegation and chromosome structure of a heat shock puff in Drosophila. Chromosoma 83, 381–393.

    Article  PubMed  CAS  Google Scholar 

  14. Reuter, G. and Wolff, I. (1981) Isolation of dominant suppressor mutations of position-effect variegation in Drosophila melanogaster. Mol. Gen. Genet. 182, 516–519.

    Article  PubMed  CAS  Google Scholar 

  15. Locke, J., Kotarski, M. A., and Tartof, K. D. (1988) Dosage-dependent modifiers of position effect variegation in Drosophila and a mass action model that explains their effect. Genetics 120, 181–198.

    PubMed  CAS  Google Scholar 

  16. Sinclair, D. A. R., Lloyd, V. K., and Grigliatti, T. A. (1989) Characterization of mutations that enhance position-effect variegation in Drosophila melanogaster. Mol. Gen. Genet. 216, 328–333.

    Article  PubMed  CAS  Google Scholar 

  17. Wustmann, G., Szidonya, J., Taubert, H., and Reuter, G. (1989) The genetics of position-effect variegation modifying loci in Drosophila melanogaster. Mol. Gen. Genet. 217, 520–527.

    Article  PubMed  CAS  Google Scholar 

  18. Dorn, R., Krauss, V., Reuter, G., and Saumweber, H. (1993) The enhancer of position-effect variegation of Drosophila, E(var)3-93D, codes for a chromatin protein containing a conserved domain common to several transcriptional regulators. Proc. Natl. Acad. Sci. USA 90, 11,376–11,380.

    Article  PubMed  CAS  Google Scholar 

  19. Reuter, G. and Spierer, P. (1992) Position effect variegation and chromatin proteins. BioEssays 14, 605–612.

    Article  PubMed  CAS  Google Scholar 

  20. Strathern, J. N., Klar, A. J., Hicks, J. B., et al. (1982) Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus. Cell 31, 183–192.

    Article  PubMed  CAS  Google Scholar 

  21. Rivier, D. H. and Rine, J. (1992) Silencing: the establishment and inheritance of stable, repressed transcriptional states. Curr. Opin. Genet. Dev. 2, 286–292.

    Article  PubMed  CAS  Google Scholar 

  22. Gottschling, D. E., Aparicio, O. M., Billington, B. L., and Zakian, V. A. (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751–762.

    Article  PubMed  CAS  Google Scholar 

  23. Renauld, H., Aparicio, O. M., Zierath, P. D., et al. (1993) Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage. Genes Dev. 7, 1133–1145.

    Article  PubMed  CAS  Google Scholar 

  24. Allshire, R. C., Javerzat, J.-P., Redhead, N. J., and Cranston, G. (1994) Position effect variegation at fission yeast centromeres. Cell 76, 157–169.

    Article  PubMed  CAS  Google Scholar 

  25. Finnegan, J. and McElroy, D. (1994) Transgene inactivation: plants fight back! Biotechnology 12, 883–888.

    Article  Google Scholar 

  26. Matzke, M. A. and Matzke, A. J. M. (1995) How and why do plants inactivate homologous (trans)genes? Plant Physiol. 107, 679–685.

    PubMed  CAS  Google Scholar 

  27. Brink, R. A. (1956) A genetic change associated with the R locus in maize which is directed and potentially reversible. Genetics 41, 872–889.

    PubMed  CAS  Google Scholar 

  28. Matzke, M. A. and Matzke, A. J. M. (1993) Genomic imprinting in plants: parental effects and trans-inactivation phenomena. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 53–76.

    Article  CAS  Google Scholar 

  29. Bender, J. and Fink, G. R. (1995) Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Cell 83, 725–734.

    Article  PubMed  CAS  Google Scholar 

  30. Matzke, M. A., Priming, M., Trnovsky, J., and Matzke, A. J. M. (1989) Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 8, 643–649.

    PubMed  CAS  Google Scholar 

  31. Linn, F., Heidmann, I., Saedler, H., and Meyer, P. (1990) Epigenetic changes in the expression of the maize A1 gene in Petunia hybrida: role of numbers of integrated gene copies and state of methylation. Mol. Gen. Genet. 222, 329–336.

    Article  PubMed  CAS  Google Scholar 

  32. Assaad, F. F., Tucker, K. L., and Signer, E. R. (1993) Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. Plant Mol. Biol. 22, 1067–1085.

    Article  PubMed  CAS  Google Scholar 

  33. Martin, D. I. K. and Whitelaw, E. (1996) The vagaries of variegating transgenes. BioEssays 18, 919–923.

    Article  PubMed  CAS  Google Scholar 

  34. Elliott, J. I., Festenstein, R., Tolaini, M., and Kioussis, D. (1995) Random activation of a transgene under the control of a hybrid hCD2 locus control region/Ig enhancer regulatory element. EMBO J. 14, 575–584.

    PubMed  CAS  Google Scholar 

  35. Kennedy, S., Rettinger, S., Flye, M. W., and Ponder, K. P. (1995) Experiments in transgenic mice show that hepatocytes are the source for postnatal liver growth and do not stream. Hepatology 22, 160–168.

    PubMed  CAS  Google Scholar 

  36. Dobie, K. W., Lee, M., Fantes, J. A., et al. (1996) Variegated transgene expression in mouse mammary gland is determined by the transgene integration locus. Proc. Natl. Acad. Sci. USA 93, 6659–6664.

    Article  PubMed  CAS  Google Scholar 

  37. Milot, E., Strouboulis, J., Trimborn, T., et al. (1996) Heterochromatin effects on the frequency and duration of LCR-mediated gene transcription. Cell 87, 105–114.

    Article  PubMed  CAS  Google Scholar 

  38. Doerfler, W. (1983) DNA methylation and gene activity. Ann. Rev. Biochem. 52, 93–124.

    Article  PubMed  CAS  Google Scholar 

  39. Bird, A. (1992) The essentials of DNA methylation. Cell 70, 5–8.

    Article  PubMed  CAS  Google Scholar 

  40. Hadchouel, M., Farza, H., Simon, D., Tollias, P., and Pourcel, C. (1987) Maternal inhibition of hepatitis B surface antigen gene expression in transgenic mice correlates with de novo methylation. Nature 329, 454–456.

    Article  PubMed  CAS  Google Scholar 

  41. Allen, N. D., Norris, M. L., and Surani, M. A. (1990) Epigenetic control of transgene expression and imprinting by genotype-specific modifiers. Cell 61, 853–861.

    Article  PubMed  CAS  Google Scholar 

  42. Garrick, D., Sutherland, H., Robertson, G., and Whitelaw, E. (1996) Variegated expression of a globin transgene correlates with chromatin accessibility but not methylation status. Nucleic Acids Res. 24, 4902–4909.

    Article  PubMed  CAS  Google Scholar 

  43. Guy, L.-G, Kothary, R., and Wall, L. (1997) Position effects in mice carrying a lacZ transgene in cis with the β-globin LCR can be explained by a graded model. Nucleic Acids Res. 25, 4400–4407.

    Article  PubMed  CAS  Google Scholar 

  44. Bonanou-Tzedaki, S. A. and Arnstein, H. R. V. (1987) Macromolecular synthesis and degradation during terminal erythroid cell development. Biomed. Biochim. Acta 46, 121–149.

    Google Scholar 

  45. John, B. (1988) The biology of heterochromatin, in Heterochromatin: Molecular and Structural Aspects (Verma, R. S., ed.), Cambridge University Press, Cambridge, UK, pp.1–147.

    Google Scholar 

  46. Davis, B. P. and MacDonald, R. J. (1988) Limited transcription of rat elastase I transgene repeats in transgenic mice. Genes Dev. 2, 13–22.

    Article  PubMed  CAS  Google Scholar 

  47. Mehtali, M., LeMeur, M., and Lathe, R. (1990) The methylation-free status of a housekeeping transgene is lost at high copy number. Gene 91, 179–184.

    Article  PubMed  CAS  Google Scholar 

  48. Dorer, D. R. and Henikoff, S. (1994) Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77, 1–20.

    Article  Google Scholar 

  49. Sabl, J. F. and Henikoff, S. (1996) Copy number and orientation determine the susceptibility of a gene to silencing by nearby heterochromatin in Drosophila. Genetics 142, 447–458.

    PubMed  CAS  Google Scholar 

  50. Ye, F. and Signer, E. R. (1996) RIGS (repeat-induced gene silencing) in Arabidopsis is transcriptional and alters chromatin configuration. Proc. Natl. Acad. Sci. USA 93, 10,881–10,886.

    Article  PubMed  CAS  Google Scholar 

  51. Garrick, D., Fiering, S., Martin, D. I. K., and Whitelaw, E. (1998) Repeat-induced gene silencing in mammals. Nat. Genet. 18, 56–59.

    Article  PubMed  CAS  Google Scholar 

  52. Grosveld, F., Blom van Assendelft, G., Greaves, D. R., and Kollias, G. (1987) Position-independent, high-level, expression of the human β-globin gene in transgenic mice. Cell 51, 975–985.

    Article  PubMed  CAS  Google Scholar 

  53. Ryan, T. M., Behringer, R. R., Townes, T. M., Palmiter, R. D., and Brinster, R. L. (1989) High-level erythroid expression of human a-globin genes in transgenic mice. Proc. Natl. Acad. Sci. USA 86, 37–41.

    Article  PubMed  CAS  Google Scholar 

  54. Aronow, B. J., Silbiger, R. N., Dusing, M. R., et al. (1992) Functional analysis of the human adenosine deaminase gene thymic regulatory region and its ability to generate position-independent transgene expression. Mol. Cell. Biol. 12,4170–4185.

    PubMed  CAS  Google Scholar 

  55. Palmiter, R. D., Sandgren, E. P., Koeller, D. M., and Brinster, R. L. (1993) Distal regulatory elements from the mouse metallothionein locus stimulate gene expression in transgenic mice. Mol. Cell. Biol. 13, 5266–5275.

    PubMed  CAS  Google Scholar 

  56. Schedl, A., Larin, Z., Montoliu, L., et al. (1993) A method for the generation of YAC transgenic mice by pronuclear injection. Nucleic Acids Res. 21, 4783–4787.

    Article  PubMed  CAS  Google Scholar 

  57. Knotts, S., Rindt, H., and Robbins, J. (1995) Position independent expression and developmental regulation is directed by the beta myosin heavy chain gene’s 5′ upstream region in transgenic mice. Nucleic Acids Res. 23, 3301–3309.

    Article  PubMed  CAS  Google Scholar 

  58. Araki, K., Araki, M., Miyazaki, J.-I., and Vassalli, P. (1995) Site-specific recombination of a transgene in fertilized eggs by transient expression of Cre recombinase. Proc. Natl. Acad. Sci. USA 92, 160–164.

    Article  PubMed  CAS  Google Scholar 

  59. Jasin, M., Moynahan, M. E., and Richardson, C. (1996) Targeted transgenesis. Proc. Natl. Acad. Sci. USA 93, 8804–8808.

    Article  PubMed  CAS  Google Scholar 

  60. Bronson, S. K., Plaehn, E. G., Kluckman, K. D., et al. (1996) Single-copy transgenic mice with chosen-site integration. Proc. Natl. Acad. Sci. USA 93, 9067–9072.

    Article  PubMed  CAS  Google Scholar 

  61. Matzke, A. J. M., Neuhuber, F., Park, Y.-D., et al. (1994) Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes. Mol. Gen. Genet. 244, 219–229.

    Article  PubMed  CAS  Google Scholar 

  62. Meyer, P. and Heidmann, I. (1994) Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DNA: an indication for specific recognition of foreign DNA in transgenic plants. Mol. Gen. Genet. 243, 390–399.

    PubMed  CAS  Google Scholar 

  63. Pal-Bhadra, M., Bhadra, U., and Birchler, J. A. (1997) Cosuppression in Drosophila: gene silencing of Alcohol dehydrogenase by white-Adh transgenes is polycomb dependent. Cell 90, 479–490.

    Article  PubMed  CAS  Google Scholar 

  64. Bennett, S. T., Wilson, A. J., Esposito, L., et al. (1997) Insulin VNTR allele-specific effect in type 1 diabetes depends on identity of untransmitted paternal allele. Nat. Genet. 17, 350–352.

    Article  PubMed  CAS  Google Scholar 

  65. Moreau, P., Hen, R., Wasylyk, B., et al. (1981) The SV40 72 base pair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. Nucleic Acids Res. 9, 6047–6068.

    Article  PubMed  CAS  Google Scholar 

  66. Weintraub, H. (1988) Formation of stable transcription complexes as assayed by analysis of individual templates. Proc. Natl. Acad. Sci. USA 85, 5819–5823.

    Article  PubMed  CAS  Google Scholar 

  67. Moon, A. M. and Ley, T. J. (1990) Conservation of the primary structure, organization, and function of the human and mouse β-globin locus-activating regions. Proc. Natl. Acad. Sci. USA 87, 7693–7697.

    Article  PubMed  CAS  Google Scholar 

  68. Walters, M. C, Fiering, S., Eidemiller, J., et al. (1995) Enhancers increase the probability but not the level of gene expression. Proc. Natl. Acad. Sci. USA 92, 7125–7129.

    Article  PubMed  CAS  Google Scholar 

  69. Walters, M. C, Magis, W., Fiering, S., et al. (1996) Transcriptional enhancers act in cis to suppress position-effect variegation. Genes Dev. 10, 185–195.

    Article  PubMed  CAS  Google Scholar 

  70. Lien, L. L., Lee, Y., and Orkin, S. H. (1997) Regulation of the myeloid-cell-expressed human gp91-phox gene as studied by transfer of yeast artificial chromosome clones into embryonic stem cells: suppression of a variegated cellular pattern of expression requires a full complement of distant cis elements. Mol. Cell. Biol. 17, 2279–2290.

    PubMed  CAS  Google Scholar 

  71. Sharpe, J. A., Wells, D. J., Whitelaw, E., et al. (1993) Analysis of the human α-globin gene cluster in transgenic mice. Proc. Natl. Acad. Sci. USA 90, 11,262–11,266.

    Article  PubMed  CAS  Google Scholar 

  72. Dehio, C. and Schell, J. (1994) Identification of plant genetic loci involved in a posttranscriptional mechanism for meiotically reversible transgene silencing. Proc. Natl. Acad. Sci. USA 91, 5538–5542.

    Article  PubMed  CAS  Google Scholar 

  73. Schmülling, T. and Röhrig, H. (1995) Gene silencing in transgenic tobacco hybrids: frequency of the event and visualization of somatic inactivation patterns. Mol. Gen. Genet. 249, 375–390.

    Article  PubMed  Google Scholar 

  74. Meyer, P., Linn, F., Heidmann, I., et al. (1992) Endogenous and environmental factors influence 35S promoter methylation of a maize A1 gene construct in transgenic petunia and its colour phenotype. Mol. Gen. Genet. 231, 345–352.

    Article  PubMed  CAS  Google Scholar 

  75. Mikula, B. C. (1995) Environmental programming of heritable epigenetic changes in paramutant r-gene expression using temperature and light at a specific stage of early development in maize seedlings. Genetics 140, 1379–1387.

    PubMed  CAS  Google Scholar 

  76. Carver, A. S., Dalrymple, M. A., Wright, G., et al. (1993) Transgenic livestock as bioreactors: stable expression of human alpha-1-antitrypsin by a flock of sheep. Bio/Technology 11, 1263–1270.

    PubMed  CAS  Google Scholar 

  77. McCune, S. L. and Townes, T. M. (1994) Retroviral vector sequences inhibit human β-globin gene expression in transgenic mice. Nucleic Acids Res. 22, 4477–4481.

    Article  PubMed  CAS  Google Scholar 

  78. Hammer, R. E., Brinster, R. L. and Palmiter, R. D. (1985) Use of gene transfer to increase animal growth. Cold Spring Harbor Symp. Quant. Biol. 50, 379–387.

    PubMed  CAS  Google Scholar 

  79. Krumlauf, R., Hammer, R. E., Brinster, R. L., Chapman, V. M., and Tilghman, S. M. (1985) Regulated expression of α-fetoprotein genes in transgenic mice. Cold Spring Harbor Symp. Quant. Biol. 50, 371–378.

    PubMed  CAS  Google Scholar 

  80. Townes, T. M., Lingrel, J. B., Chen, H. Y., Brinster, R. L., and Palmiter, R. D. (1985) Erythroid-specific expression of human β-globin genes in transgenic mice. EMBO J. 4, 1715–1723.

    PubMed  CAS  Google Scholar 

  81. Shani, M. (1986) Tissue-specific and developmentally regulated expression of a chimeric actin/globin gene in transgenic mice. Mol. Cell. Biol. 6, 2624–2631.

    PubMed  CAS  Google Scholar 

  82. Paldi, A., Deltour, L., and Jami, J. (1993) Cis effect of lacZ sequences in transgenic mice. Transgenic Res. 2, 325–329.

    Article  PubMed  CAS  Google Scholar 

  83. Erickson, R. P. (1996) Mouse models of human genetic disease: which mouse is more like a man? BioEssays 18, 993–997.

    Article  PubMed  CAS  Google Scholar 

  84. Baribault, H, Penner, J., Iozzo, R. V., and Wilson-Heiner, M. (1994) Colorectal hyperplasia and inflammation in keratin 8-deficient FVB/N mice. Genes Dev. 8, 2964–2973.

    Article  PubMed  CAS  Google Scholar 

  85. Braun, T. and Arnold, H.-H. (1995) Inactivation of Myf-6 and Myf-5 genes in mice leads to alterations in skeletal muscle development. EMBO J. 14, 1176–1186.

    PubMed  CAS  Google Scholar 

  86. Patapoutian, A., Yoon, J. K., et al. (1995) Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome. Development 121, 3347–3358.

    PubMed  CAS  Google Scholar 

  87. Zhang, W., Behringer, R. R., and Olson, E. N. (1995) Inactivation of the myogenic bHLH gene MRF4 results in up-regulation myogenin and rib anomalies. Genes Dev. 9, 1388–1399.

    Article  PubMed  CAS  Google Scholar 

  88. Olson, E.N., Arnold, H.-H., Rigby, P. W. J., and Wold, B. J. (1996) Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell 85, 1–4.

    Article  PubMed  CAS  Google Scholar 

  89. Fiering, S., Epner, E., Robinson, K., et al. (1995) Targeted deletion of 5′HS2 of the murine β-globin LCR reveals that it is not essential for proper regulation of the β-globin locus. Genes Dev. 9, 2203–2213.

    Article  PubMed  CAS  Google Scholar 

  90. Lakso, M., Sauer, B., Mosinger, J. B., et al. (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89, 6232–6236.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Whitelaw, E., Sutherland, H., Kearns, M., Morgan, H., Weaving, L., Garrick, D. (2001). Epigenetic Effects on Transgene Expression. In: Tymms, M.J., Kola, I. (eds) Gene Knockout Protocols. Methods in Molecular Biology, vol 158. Humana Press. https://doi.org/10.1385/1-59259-220-1:351

Download citation

  • DOI: https://doi.org/10.1385/1-59259-220-1:351

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-572-0

  • Online ISBN: 978-1-59259-220-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics