Skip to main content

Preparation and Use of Tethered Ligands as Biomaterials and Tools for Cell Biology

  • Protocol
Tissue Engineering Methods and Protocols

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 18))

  • 3685 Accesses

Abstract

The immobilization of biomolecules to various supports has been an important research area for many years. Molecules such as heparin (1,2), as well as various enzymes (3,4), antibodies (5,6), and adhesion ligands (7), have been bound to such supports as silicon or glass, agarose gels, polyethylene oxide (PEO) gels, poly(vinyl alcohol) (PVA) gels, and polymer surfaces. These studies have had important applications in the creation of antithrombogenic surfaces for blood contact, affinity chromatography, and tissue growth and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tay, S. W., Merrill, E. W., Salzman, E. W., and Lindon, J. (1989) Activity towards thrombin-antithrombin of heparin immobilized on two hydrogels. Biomaterials 10, 11ā€“15.

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Lindberg, B., Maripuu, R., Siegbahn, K., Larsson, R., Gƶlander, C.-G., and Eriksson, J. C. (1983) ESCA studies of heparinized and related surfaces. J. Coll. Int. Sci. 95, 308ā€“321.

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Trevan, M., ed. (1980) Immobilized Enzymes: An Introduction and Applications in Biotechnology, Wiley: New York.

    Google ScholarĀ 

  4. Leckband, D. and Langer, R. (1991) An approach for the stable immobilization of proteins. Biotechnol. Bioeng. 37, 227ā€“237.

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Huang, S.-C., Caldwell, K. D., Lin, J.-N., Wang, H.-K., and Herron, J. N. (1996) Site-specific immobilization of monoclonal antibodies using spacer-mediated antibody attachment. Langmuir 12, 4292ā€“4298.

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. von Sommern, A. P. G., Machielsen, P. A. G. M., and Gribnau, T. C. J. (1993) Comparison of three activated agaroses for use in affinity chromatography. J. Chromatog. 639, 23ā€“31.

    ArticleĀ  Google ScholarĀ 

  7. Massia, S. P. and Hubbell, J. A. (1990) Covalent surface immobilization of Arg-Gly-Asp and Tyr-Ile-Gly-Ser-Arg-containing peptides to obtrain well-defined cell-adhesive substrates. Analyt. Biochem. 187, 292ā€“301.

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Weigel, P. H., Schnaar, R. L., Kuhelnschmidt, M. S., Schmell, E., Lee, R. T., Lee, Y. C., and Roseman, S. (1979) Adhesion of hepatocytes to immobilized sugars: a threshold phenomenon. J. Biol. Chem. 254, 10,830ā€“10,838.

    CASĀ  Google ScholarĀ 

  9. Massia, S. P. and Hubbell, J. A. (1991) An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J. Cell Biol. 114, 1089ā€“1100.

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Kornberg, L. J., Earp, H. S., Turner, C. E., Prockop, C., and Juliano, R. L. (1991) Signal transduction by integrins: Increased protein tyrosine phosphorylation caused by clustering of beta-1 integrins. Proc. Natl. Acad. Sci. USA 88, 8392ā€“8396.

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Plopper, G. E., McNamee, H. P., Dike, L. E., Bojanowski, K., and Ingber, D. E. (1995) Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol. Biol. Cell 6, 1349ā€“1365.

    CASĀ  Google ScholarĀ 

  12. Lopina, S. T., Wu, G., Merrill, E. W., and Griffith-Cima, L. G. (1996) Hepatocyte culture on carbohydrate-modified star polyethylene oxide hydrogels. Biomaterials 17, 559ā€“569.

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Sorkin, A. and Carpenter, G. (1991) Dimerization of internalized epidermal growth factor receptors. J. Biol. Chem. 266, 23453ā€“23460.

    CASĀ  Google ScholarĀ 

  14. Mohammadi, M., Honegger, A., Sorokin, A., Ullrich, A., Schlessinger, J., and Hurwitz, D. R. (1993) Aggregation-induced activation of the epidermal growth factor receptor protein tyrosine kinase. Biochemistry 32, 8742ā€“8748.

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Carraway, K. L. and Cerione, R. A. (1993) Inhibition of growth factor receptor aggregation by an antibody directed against the epidermal growth factor receptor extracellular domain. J. Biol. Chem. 268, 23,860ā€“23,867.

    CASĀ  Google ScholarĀ 

  16. Merrill, E. W. (1993) Poly(ethylene oxide) star molecules: synthesis characterization, and applications in medicine and biology. J. Biomater. Sci., Polymer Ed., in press.

    Google ScholarĀ 

  17. Gnanou, Y., Lutz, P., and Rempp, P. (1988) Synthesis of star-shaped poly(ethylene oxide). Makromol. Chemie 189, 2885ā€“2892.

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Lutz, P. and Rempp, P. (1988) New developments in star polymer synthesis: star-shaped polystyrenes and star-block copolymers. Makromol. Chemei 189, 1051ā€“1060.

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Wong, J. Y., Kuhl, T. L., Israelachvili, J. N., Mullah, N., and Zalipsky, S. (1997) Direct measure of a tethered ligand-receptor interaction potential. Science 275, 820ā€“823.

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Harris, J. M., ed. (1992) Poly(ethylene glycol) Chemistry. Topics in Applied Chemistry (Katritzky, A. R. and Sabongi, G. J., eds.), Plenum, New York, p. 385.

    Google ScholarĀ 

  21. Forni, A., Ganazzoli, F., and Vacatello, M. (1996) Local conformation of regular star polymers in a good solvent: a Monte Carlo study. Macromolecules 29, 2994ā€“2999.

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Grest, G. S., Kremer, K., and Witten, T. A. (1987) Structure of many-arm star polymers: a molecular dynamics simulation. Macromol. 20, 1376ā€“1383.

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Kuhl, P. R. and Griffith-Cima, L. G. (1996) Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase. Nature Med. 2, 1022ā€“1027.

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Sofia, S.J., Kuhl, P.R., Griffith, L.G. (1999). Preparation and Use of Tethered Ligands as Biomaterials and Tools for Cell Biology. In: Morgan, J.R., Yarmush, M.L. (eds) Tissue Engineering Methods and Protocols. Methods in Molecular Medicineā„¢, vol 18. Humana Press. https://doi.org/10.1385/0-89603-516-6:19

Download citation

  • DOI: https://doi.org/10.1385/0-89603-516-6:19

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-516-4

  • Online ISBN: 978-1-59259-602-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics