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Abstract

Many bacterial pathogens achieve resistance to defensin-like cationic antimicrobial peptides (CAMPs) by the multiple
peptide resistance factor (MprF) protein. MprF plays a crucial role in Staphylococcus aureus virulence and it is involved in
resistance to the CAMP-like antibiotic daptomycin. MprF is a large membrane protein that modifies the anionic
phospholipid phosphatidylglycerol with L-lysine, thereby diminishing the bacterial affinity for CAMPs. Its widespread
occurrence recommends MprF as a target for novel antimicrobials, although the mode of action of MprF has remained
incompletely understood. We demonstrate that the hydrophilic C-terminal domain and six of the fourteen proposed trans-
membrane segments of MprF are sufficient for full-level lysyl-phosphatidylglycerol (Lys-PG) production and that several
conserved amino acid positions in MprF are indispensable for Lys-PG production. Notably, Lys-PG production did not lead to
efficient CAMP resistance and most of the Lys-PG remained in the inner leaflet of the cytoplasmic membrane when the large
N-terminal hydrophobic domain of MprF was absent, indicating a crucial role of this protein part. The N-terminal domain
alone did not confer CAMP resistance or repulsion of the cationic test protein cytochrome c. However, when the N-terminal
domain was coexpressed with the Lys-PG synthase domain either in one protein or as two separate proteins, full-level CAMP
resistance was achieved. Moreover, only coexpression of the two domains led to efficient Lys-PG translocation to the outer
leaflet of the membrane and to full-level cytochrome c repulsion, indicating that the N-terminal domain facilitates the
flipping of Lys-PG. Thus, MprF represents a new class of lipid-biosynthetic enzymes with two separable functional domains
that synthesize Lys-PG and facilitate Lys-PG translocation. Our study unravels crucial details on the molecular basis of an
important bacterial immune evasion mechanism and it may help to employ MprF as a target for new anti-virulence drugs.

Citation: Ernst CM, Staubitz P, Mishra NN, Yang S-J, Hornig G, et al. (2009) The Bacterial Defensin Resistance Protein MprF Consists of Separable Domains for Lipid
Lysinylation and Antimicrobial Peptide Repulsion. PLoS Pathog 5(11): e1000660. doi:10.1371/journal.ppat.1000660

Editor: Ambrose Cheung, Dartmouth Medical School, United States of America

Received March 13, 2009; Accepted October 20, 2009; Published November 13, 2009

Copyright: � 2009 Ernst et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Our research is supported by grants from the German Research Foundation (SFB685) to HK, from the NIH (AI-39108) to ASB, and from the German
Research Foundation (TR34, FOR449, GRK685, SFB766), the European Union (LSHM-CT-2004-512093), the German Ministry of Education and Research (NGFN2,
SkinStaph), and the IZKF program of the Medical Faculty, University of Tubingen, to AP. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: andreas.peschel@uni-tuebingen.de

¤ Current address: General Microbiology Department, University of Gottingen, Gottingen, Germany

Introduction

In order to combat increasingly antibiotic-resistant bacteria

such as Staphylococcus aureus, Mycobacterium tuberculosis, Pseudomonas

aeruginosa, and enterococci new antimicrobial strategies based on

compounds with anti-virulence or anti-fitness properties are

increasingly in the focus of research efforts [1,2]. Bacterial

immune evasion mechanisms such as the mprF or dltABCD-

encoded pathways are conserved over a wide range of bacterial

species thereby representing attractive targets for broadly active

antimicrobial compounds that would not kill the bacteria directly

but render them susceptible to endogenous host defense molecules

[3,4].

The occurrence of closely related immune evasion factors in

many bacterial pathogens is reflected by the conserved nature of

the most critical antimicrobial host defense molecules. Defensins,

cathelicidins, kinocidins, and related cationic antimicrobial

peptides (CAMPs) are essential components of the antimicrobial

warfare arsenals in humans, vertebrate and invertebrate animals,

and even plants [5,6]. Although peptide structures vary, overall

structural features (cationic, amphipathic properties; often with

c-core motif) and modes of action (damage of microbial

membrane-associated processes) are shared by most of these

peptides [7]. CAMPs appear to take advantage of the fact that

bacterial membranes are formed mostly by anionic phospholipids

[4]. Conversely, the MprF and DltABCD proteins protect many

bacterial pathogens against CAMPs by reducing the negative net

charge of bacterial cell envelopes [3,8]. The dltABCD operon

products neutralize polyanionic teichoic acid polymers by

esterification with D-alanine in many Gram-positive bacteria [9].
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Detailed investigations on this pathway have recently led to the

development of specific DltA inhibitors, which proved to be very

effective anti-virulence drugs for eradication of bacterial infections

[10,11].

Much less is known on the MprF protein, which represents a

particularly interesting antimicrobial drug target because of its

presence in both, Gram-positive and Gram-negative bacteria [3].

MprF is a large integral membrane protein catalyzing the

modification of the negatively charged lipid phosphatidylglycerol

(PG) with L-lysine thereby neutralizing the membrane surface and

providing CAMP resistance [12–14]. The resulting lysyl-phospha-

tidylglycerol (Lys-PG), described in pioneering biochemical studies

in the 1960es [15,16], is produced by an unusual pathway that

uses PG and Lys-tRNA as substrate molecules [17–19]. The Lys-

PG-biosynthetic enzyme has been identified only recently in

Staphylococcus aureus and named multiple peptide resistance factor

(mprF) because mprF mutants lacking Lys-PG are highly susceptible

to CAMPs [12,13]. The loss of Lys-PG in mprF mutants also led to

CAMP susceptibility in Listeria monocytogenes [20], Bacillus anthracis

[21], and Rhizobium tropici [22] thereby demonstrating a general

role of MprF in bacterial immune evasion.

Recently, mprF point mutations or alterations in Lys-PG content

became notorious for spontaneous resistance of S. aureus to

daptomycin [23,24]. This antibiotic has recently been approved

as an antibiotic of last resort for the treatment of methicillin-

resistant S. aureus (MRSA), which are responsible for a large

proportion of hospital and, increasingly, community-acquired

bacterial infections [25]. Daptomycin has a negative net charge

but it is believed to have CAMP-like properties and mode of action

upon binding of calcium ions [26]. In addition, MprF has been

implicated in S. aureus susceptibility to the cationic antibiotics

vancomycin, gentamycin, and moenomycin [27].

mprF expression is upregulated in staphylococci upon contact

with CAMPs by the sensor/regulator system ApsRS [28,29],

which has also been named GraRS [30,31]. Deletion of mprF has

led to profoundly reduced virulence of several bacterial pathogens

in animal models, which underscores the pivotal role of Lys-PG in

bacterial fitness during colonization and infection [12,20,32,33].

Accordingly, it is tempting to elucidate the molecular functions of

MprF as a prerequisite for the development of small inhibitory

molecules that would block Lys-PG biosynthesis and render a large

number of bacterial pathogens highly susceptible to innate host

defenses and cationic antibiotics such as daptomycin, glycopep-

tides, or aminoglycosides.

Here we demonstrate that MprF is a bifunctional protein

composed of distinct and separable domains. While the C-terminal

part of MprF is sufficient to synthesize Lys-PG the N-terminal

hydrophobic protein domain is essential for efficient translocation

of Lys-PG from the inner to the outer leaflet of the cytoplasmic

membrane to reduce the bacterial affinity for CAMPs such as

a-defensins, LL-37, daptomycin, or gallidermin.

Results

The first eight N-terminal trans-membrane segments
(TMSs) of MprF are dispensable for Lys-PG synthase
activity

Most MprF-like proteins are composed of large N-terminal

hydrophobic domains followed by hydrophilic C-terminal do-

mains [34] (Fig. S1). The hydrophilic portions exhibit much higher

degrees of sequence similarity between different members of the

MprF protein family [12] suggesting that this domain may play the

most crucial role in Lys-PG biosynthesis. The hydrophobic

domain of S. aureus MprF ranging from amino acid 1 to 509 is

predicted to consist of 14 TMSs (Fig. 1A). In order to study

whether the hydrophobic domain plays a role in Lys-PG

biosynthesis the protein was shortened from the N-terminus in a

step-wise manner by removing two TMSs at a time (Fig. 1B). The

shortened proteins were expressed as N-terminal His-tag fusions

and evaluated for their capacity to mediate Lys-PG production in

E. coli BL21(DE3).

Deletion of the first eight TMSs of MprF from the N-terminus

did not affect the ability of the protein to mediate Lys-PG

production (Fig. 2A). However, further truncations abrogated Lys-

PG production indicating that at least 6 TMSs are required for

maintaining a functional enzyme and that the N-terminal domain

of MprF may have a separate function. The presence and stability

of the proteins was verified by Western-blotting with a His-tag-

specific antibody. The shorter versions of MprF with no, two, four,

or six predicted TMSs were detectable as singular similarly

pronounced bands indicating that these proteins are largely stable

(Fig. 2B). Longer versions of MprF including the full-length

protein could not be visualized by Coomassie Blue staining or

Western blotting even upon extensive variation of expression,

isolation, and detection methods (data not shown), possibly

because of inaccessibility of the N-terminal His-tag in these

proteins. However, since all proteins ranging from MprF to

MprF(28) yielded similar levels of Lys-PG production the protein

amounts and activities are unlikely to exhibit major differences.

Taken together, our data indicate that the N-terminal eight

TMSs are dispensable for full-level Lys-PG synthesis while any

further shortening completely abrogates the functionality of MprF.

Lys-PG synthase activity depends on several conserved
amino acid residues in the C-terminal part of MprF

Alignment of C-terminal MprF domains from different bacterial

species revealed several conserved sequence motives, which may

represent essential amino acids for substrate binding, enzymatic

reaction, or folding into a stable protein of the Lys-PG synthase

domain (Fig. S2). In order to evaluate the essential nature of such

positions, eight highly conserved amino acid residues were

Author Summary

Certain bacterial immune-evasion factors such as the MprF
protein are highly conserved in many bacterial pathogens
and represent attractive targets for new ‘anti-virulence’
drugs. MprF, initially discovered in the major human
pathogen Staphylococcus aureus, protects bacteria against
‘innate human antibiotics’ such as the defensin peptides.
In addition, MprF has recently been implicated in
resistance to the new defensin-like antibiotic daptomycin.
MprF modifies bacterial membrane lipids with the amino
acid L-lysine, which leads to electrostatic repulsion of the
membrane-damaging peptides. The molecular mechanism
of MprF has remained largely unknown. We demonstrate
that MprF represents a novel bifunctional type of enzyme.
The N- and C-terminal domains of MprF are both required
for mediating antimicrobial peptide resistance but they
can be expressed as two separate proteins without loss of
function indicating that they represent distinct functional
modules. While the C-terminal domain accomplishes lipid
lysinylation the N-terminal membrane-embedded domain
is required to expose the lysine lipid at the outer surface of
the bacterial membrane where it is able to repulse the
antimicrobial peptides. These findings unravel the molec-
ular basis of an important bacterial immune evasion
mechanism and they may help to employ MprF as a target
for new anti-virulence drugs.

Mechanism of MprF-Mediated Defensin Resistance
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exchanged with alanine residues by site-directed mutagenesis of

the pET28mprF(28) plasmid. Exchange of K547, K621, E624,

D731, R734, and K806 led to complete abrogation of Lys-PG

production (Fig. 2C). In contrast, replacement of E685 or D546

with alanine resulted in strongly or only slightly reduced Lys-PG

production, respectively. The same results were obtained when the

mutations were introduced into the full-length MprF protein (Fig.

S3A). All the MprF(28)-derived mutant proteins were detectable

in Western Blots as singular protein bands that corresponded to

the MprF(28) protein (Fig. S3B) indicating that even the inactive

Figure 2. TLC and Western Blot analysis of E. coli expressing truncated or mutated variants of MprF. A) Polar lipids from strains
containing expression plasmids without insert (control), with full-length mprF, or truncated mprF genes encoding proteins without the indicated TMS
were separated by TLC and stained with the aminogroup-specific dye ninhydrin. B) The cytosolic fraction of E. coli strains expressing MprF(214) and
the membrane fractions of strains expressing MprF(212), MprF(210), MprF(28) or containing the empty expression plasmid pET28 (control) were
subjected to immunoblot analysis with a His-tag-specific antibody. The TMSs-containing proteins migrated slightly faster than expected, which is
probably due to increased SDS binding capacity and/or incomplete unfolding of TMSs [49]. Molecular weight standard proteins are shown at the
right margin. C) TLC analysis of E. coli strains expressing MprF variants with alanine exchanges. Polar lipids from strains containing the expression
plasmid pET28a without insert (control), with unaltered mprF(28), or with variants encoding proteins with the indicated amino acid exchanges were
separated by TLC and stained with the aminogroup-specific dye ninhydrin. Positions of phosphatidylethanolamine (PE) and lysylphosphatidylglycerol
(Lys-PG) are indicated in A) and C).
doi:10.1371/journal.ppat.1000660.g002

Figure 1. Structure of MprF and truncated proteins. A) Predicted trans-membrane topology of S. aureus MprF with amino acid positions
predicted to form TMSs indicated. B) Truncated MprF proteins used to study the function of MprF. Length and calculated molecular weight of MprF
variants are shown. Construction of plasmids is described in detail in Table S1.
doi:10.1371/journal.ppat.1000660.g001

Mechanism of MprF-Mediated Defensin Resistance
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proteins were stably produced in E. coli. Taken together, these data

demonstrate essential roles of K547, K621, E624, D731, R734,

and K806 for the enzymatic activity of MprF and less critical but

important roles of D546 and E685.

Expression of mprF (28) in S. aureus DmprF leads to Lys-
PG production but fails to confer resistance to cationic
antimicrobial peptides

In order to investigate if MprF(28) also mediates Lys-PG

production in S. aureus, genes encoding the full-length and the

MprF(28) proteins were cloned in the E. coli/Staphylococcus

shuttle expression vector pRB474 [35]. All the resulting plasmids

led to Lys-PG production in S. aureus SA113 DmprF (Fig. 3A)

thereby reflecting the E. coli results. However, the DmprF mutant

with plasmid-encoded MprF or MprF(28) did not reach the

same level of Lys-PG as the wild-type strain. When the S. aureus

strains were compared for susceptibility to CAMPs such as the a-

defensins human neutrophil peptides 1–3 (HNP 1–3), the human

cathelicidin LL-37, the bacteriocin gallidermin, or the antibiotic

daptomycin, the mprF mutant was much more susceptible

than the wild-type strain (Fig. 3B), which is in agreement with

previous findings [12,23]. The strain containing the pRB474-

mprF(28) plasmid was as susceptible to daptomycin as the mprF

deletion mutant or exhibited only slightly decreased susceptibil-

ities as in the case of HNP1-3, LL-37, and gallidermin. However,

only the full-length mprF gene led to full resistance to the four

peptides. This result indicates that the N-terminal hydrophobic

domain of MprF is necessary for mediating efficient CAMP

Figure 3. Impact on Lys-PG production and resistance to antimicrobial peptides of MprF variants in S. aureus DmprF. A) Lys-PG content
in S. aureus wild-type (WT) or DmprF strains from logarithmic (log) or stationary growth phase containing the indicated plasmids were separated by
TLC, stained with the phosphate groups-specific dye molybdenum blue, and quantified densitometrically. B) Minimal inhibitory concentrations (MICs)
of CAMPs such as a-defensins HNP1-3, cathelicidin LL-37, gallidermin, and daptomycin. Means and SEM of three (HNP1-3, gallidermin, daptomycin) or
two (LL-37) independent experiments are shown. MICs of HNP 1-3 and LL-37 for WT and DmprF with plasmid pRB474mprF were above the highest
tested concentration of 300 mg/ml. Therefore, significances could only be calculated for gallidermin and daptomycin. C) Impact on Lys-PG content
and daptomycin susceptibility of DmprF containing different expression vectors for the Lys-PG synthase domain MprF(28). *, P,0.05; **, P,0.01;
***, P,0.001; ns, not significant versus WT (A), DmprF containing plasmid pRB474mprF (B), or DmprF containing plasmid pRB474mprF(28) (C).
doi:10.1371/journal.ppat.1000660.g003

Mechanism of MprF-Mediated Defensin Resistance
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resistance despite the fact that it is dispensable for Lys-PG

biosynthesis.

The presence of a basic level of Lys-PG seemed to be sufficient

for full-level CAMP resistance provided that the N-terminal

hydrophobic domain of MprF was not absent, while the total

amounts of Lys-PG did not correlate with the levels of CAMP

susceptibility (compare Lys-PG amounts and MIC values for WT

and DmprF containing plasmid pRBmprF). In order to verify this

notion we cloned the minimal Lys-PG synthase domain MprF(28)

in the inducible staphylococcal expression vector pTX15, which

has a higher copy number than pRB474 and permits xylose-

inducible gene expression [35,36]. S. aureus DmprF with the

resulting plasmid pTX15mprF(28) had a 2.5–3.5-fold increased

Lys-PG content as with the above described pRB474mprF(28)

(Fig. 3C). However, the two strains were inhibited by similarly low

concentrations of daptomycin thereby confirming that Lys-PG

production per se does not necessarily cause CAMP resistance,

irrespective of the produced amounts of Lys-PG.

Both, the hydrophobic domain of MprF and the Lys-PG
synthase domain are required for CAMP resistance but
they do not need to be covalently linked

In order to explore the role of the N-terminal domain of MprF

in CAMP resistance the mprF(2C) gene encoding only the 14

TMSs without the hydrophilic C-terminal domain was expressed

in S. aureus DmprF. Of note, the resulting strain did not show

resistance to any of the tested CAMPs compared to the DmprF

mutant (Fig. 3B) indicating that this protein domain alone cannot

protect the bacteria from CAMPs and depends on the Lys-PG

synthase. In order to evaluate if the two domains need to be fused

or can be separated to achieve CAMP resistance, the mprF(2C)

gene was cloned in pTX15, which is compatible with pRB474-

derived plasmids. The resulting plasmid pTX15mprF(2C) or the

empty control plasmid pTX16 were introduced into S. aureus

DmprF bearing pRB474mprF(28). The MIC values of daptomycin

reached much lower levels in the presence of two plasmids

compared to the experiments described above, which is probably

due to increased stress imparted on the two plasmids-containing

bacteria. Notably, when MprF(2C) was co-expressed with

MprF(28) in trans it conferred full CAMP resistance, which

reached the same level as the unchanged MprF protein (Fig. 4B).

Thus, the hydrophobic domain of MprF can only mediate CAMP

resistance if the synthase domain is present but the two proteins

can be separated and do not need to be covalently linked.

The N-terminal hydrophobic domain of MprF is required
for efficient translocation of Lys-PG to the outer leaflet of
the cytoplasmic membrane

While Lys-PG is synthesized at the inner leaflet of the

cytoplasmic membrane where the Lys-tRNA donor substrate is

available, the lipid can only exert its role in CAMP resistance

when present at the outer leaflet of the membrane, where the

antimicrobial peptides are encountered. In order to evaluate the

possibility that the N-terminal hydrophobic domain of MprF

facilitates the translocation and exposure of Lys-PG at the outer

leaflet of the membrane, we first investigated the impact of

MprF(2C) on surface charge neutralization and concomitant

repulsion of cationic peptides [12]. A previously described assay

based on the bacterial binding capacity of the small red-coloured

cationic protein cytochrome c was used for this approach [37]. As

expected, the mprF mutant had a profoundly higher capacity to

bind cytochrome c as the wild-type strain, which reflects the highly

negatively charged membrane surface in the absence of Lys-PG

(Fig. 5A). Likewise, expression of MprF(2C) or of the synthase

Figure 4. Impact on Lys-PG production and resistance to antimicrobial peptides of MprF(28) and MprF(2C) expressed in trans. The
two protein domains were expressed on separate plasmids [pRB474mprF(28) and pTX15mprF(2C)] in S. aureus DmprF. A) Polar lipids were separated
by TLC and stained with the aminogroup-specific dye ninhydrin. B) Minimal inhibitory concentrations of gallidermin and daptomycin. pRB474 and
pTX16 are empty control plasmids. Means and SEM of three independent experiments are shown. ***, P,0.001; ns, not significantly different versus S.
aureus DmprF containing plasmid pRB474mprF and pTX16.
doi:10.1371/journal.ppat.1000660.g004

Mechanism of MprF-Mediated Defensin Resistance
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domain MprF(28) in S. aureus DmprF led to substantially reduced

repulsion of cytochrome c compared to the unaltered MprF.

However, when the two protein parts were simultaneously

expressed in trans they led to the same level of cytochrome c

repulsion as expression of the unaltered MprF protein (Fig. 5A).

These results parallel the inability of MprF(28) and MprF(2C) to

confer CAMP resistance individually and they confirm that the

two proteins have complementary functions that can be physically

separated.

The ability of the N-terminal hydrophobic domain of MprF to

facilitate the translocation of Lys-PG from the inner to the outer

leaflet of the cytoplasmic membrane was verified by comparing the

capacity of Lys-PG to be modified by the aminogroups-reactive,

membrane-impermeable fluorescent dye fluorescamine in the

absence or presence of MprF(2C). This assay has been developed

to analyze the distribution of amino-phospholipids between inner

or outer leaflets of membranes [38,39] and has been successfully

used to compare Lys-PG distribution in spontaneously CAMP-

resistant S. aureus mutants [24,40]. When only the synthase domain

of MprF was expressed in S. aureus DmprF, only a small fraction of

total Lys-PG was found in the outer leaflet (Fig. 5B). However,

when MprF(2C) was coexpressed with the synthase domain, the

amount of Lys-PG in the outer leaflet was strongly increased and

reached a similar level as in the inner leaflet. Thus, the N-terminal

hydrophobic domain of MprF is required for efficient transloca-

tion of Lys-PG.

Discussion

While the anionic phospholipids PG and cardiolipin are

produced by virtually any bacterial species, zwitterionic or cationic

lipids such as PE or Lys-PG, respectively, are produced only by

certain groups of bacteria [41]. Despite extensive research efforts

the actual roles of the various phospholipids, their biosynthesis,

turnover, and regulation, have remained incompletely understood.

Of note, the same holds true for the identity, specificity, and mode

of action of proposed bacterial translocator proteins required to

flip the lipids, which are generated at the inner cytoplasmic

membrane leaflet, to the outer leaflet. MprF represents the

paradigm of a new class of bifunctional lipid-biosynthetic enzymes

mediating the transfer of amino acids to anionic phospholipids.

While the S. aureus MprF mediates exclusively the biosynthesis of

Figure 5. Impact of the hydrophobic N-terminal domain of MprF on the ability of Lys-PG to repulse cationic cytochrome c and to
reach the outer leaflet of the cytoplasmic membrane. A) The capacities of S. aureus wild-type (WT) and DmprF (left panel) or DmprF containing
the indicated plasmids (right panel) to bind cytochrome c were compared. B) Inner and outer-leaflet localization of Lys-PG in DmprF bearing the
indicated plasmids was determined by analyzing the ability of the membrane-impermeable fluorescent dye fluorescamine to react with Lys-PG.
pRB474 and pTX16 are empty control plasmids. Means and SEM of three (A) and four to eight replicas from two (B) independent experiments are
shown. *, P,0.05; **, P,0.01; ns, not significantly different versus S. aureus WT (A, left panel) or DmprF containing plasmids pRB474mprF and pTX16
(A, right panel).
doi:10.1371/journal.ppat.1000660.g005

Mechanism of MprF-Mediated Defensin Resistance
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Lys-PG, the MprF homolog from L. monocytogenes seems to confer

both, Lys-PG and Lys-cardiolipin biosynthesis [20]. MprF

homologs from C. perfringens and P. aeruginosa have been shown to

mediate Ala-PG production [34,42]. Our study represents a basis

for investigating the determinants of substrate specificity of MprF.

Six of the 14 TMSs plus the hydrophilic C-terminal domain

were sufficient to mediate Lys-PG production in E. coli or S. aureus.

The levels of Lys-PG production varied between S. aureus strains

with different plasmid vectors and promoters used to express

MprF or MprF variants but the level of Lys-PG did not correlate

with the level of CAMP resistance indicating that only a basic

amount of Lys-PG is sufficient for repulsing antimicrobial peptides

provided that the lipid is translocated to the outer leaflet of the

membrane. It is amazing that the Lys-PG synthase whose active

center is probably located in the hydrophilic domain of MprF with

its many conserved amino acid positions requires so many TMSs

to function since one or two such segments should be enough to

anchor the hydrophilic C-terminus in the membrane. One might

speculate that six TMSs are required to embrace a PG substrate

molecule and fit it into a position that may allow its lysinylation. It

should be noted that even the MprF homolog with the shortest

integral membrane domain found in Mycobacterium tuberculosis is

predicted to harbor six TMSs (data not shown), which suggests

that the dependence on six TMSs is a general property of MprF-

like enzymes.

Previous studies on in vitro Lys-PG biosynthesis with artificially

altered aminoacyl tRNAs have demonstrated that the Lys-PG

synthase recognizes features of both, the tRNA and of the bound

amino acid [17,19]. Accordingly, the lysyl group could not be

transferred to PG when it was attached to a cysteinyl tRNA.

However, it did not matter whether the tRNA came from S. aureus

or from another bacterial species such as E. coli [18]. We identified

six conserved amino acids in the C-terminal domain of MprF as

essential for Lys-PG biosynthesis while exchange of two other

amino acid positions led to reduced Lys-PG production. All these

positions are also conserved in MprF homologs with Ala-PG

synthase activity (Fig. S2), which suggests that they are not

involved in specific recognition of the aminoacyl tRNA precursor

and may rather play crucial roles in the enzymatic process or in

non-specific binding of the substrate. Irrespective of the tRNA

structure the substrate-binding domain of MprF may need basic

properties to interact with the polyanionic ribonucleic acid.

Accordingly, four of the six identified essential amino acid position

represent cationic arginine or lysine residues that may participate

in binding of tRNA phosphate groups.

A most intriguing finding of our study was the fact that Lys-PG

production on its own did not lead to CAMP resistance but depended

on the large N-terminal integral membrane domain of MprF. Lys-PG

mediates CAMP resistance by repulsing the cationic peptides from

the outer surface of the membrane, which is only possible upon

translocation of the lipid to the outer leaflet (Fig. 6). Of note, Lys-PG

could only alter the membrane surface charge considerably in the

presence of the N-terminal integral membrane domain indicating

that this part of MprF is required for this lipid to reach the outer

leaflet of the membrane. Moreover, Lys-PG could only be labeled

efficiently by the membrane-impermeable dye fluorescamine in the

presence of the N-terminal hydrophobic domain of MprF, which

confirms the critical role of this protein part in Lys-PG translocation.

Thus, MprF does not only synthesize Lys-PG but also accomplishes

translocation of Lys-PG from the inner to the outer surface of the

membrane. These two functions are allocated in the C-terminal and

N-terminal domains of MprF, respectively, and can be separated into

two functional proteins (Fig. 6).

While lipid translocators have been investigated to some extent

in eukaryotic cells [43], such proteins have been proposed but

hardly described in bacteria. It is possible that the bacterial house-

keeping translocator(s) are more specific for the standard anionic

phospholipids PG and cardiolipin, while a cationic lipid such as

Lys-PG may require a dedicated translocator. It remains unclear

why a small fraction of Lys-PG was detectable in the outer leaflet

of the cytoplasmic membrane even in the absence of the flippase

domain of MprF. Phospholipids may be able to flip spontaneously

with low efficiency as proposed recently [44] or one of the house-

keeping flippases may have residual activity for Lys-PG. Lipid

translocators have been classified into energy-dependent (flippases

or floppases) and energy-independent (scramblases) transporters

[43]. MprF does not contain conserved ATP-binding or other

sequence motives indicative of energy consumption. Therefore, it

remains unclear if MprF can accomplish an asymmetric

distribution of Lys-PG. Nevertheless, recent studies suggest that

Lys-PG can be asymmetrically distributed between the inner and

outer leaflets of the membrane in S. aureus depending on the

individual strain background [24].

The increasing resistance of major bacterial pathogens raises the

specter of untreatable infections as in the pre-antibiotics era.

MRSA are now more and more prevalent in the community and

only a few antibiotics of last resort such as daptomycin have

remained effective against such highly pathogenic S. aureus clones.

As S. aureus can overcome even daptomycin by simple point

mutations in mprF new strategies for antibacterial chemotherapy

are urgently needed. Inhibitors for highly conserved immune

evasion factors such as mprF that would render a wide range of

bacteria susceptible to endogenous human defense mechanisms

and cationic antibiotics such as daptomycin should be increasingly

considered. Our study represents a basis for more detailed

investigations on the structure and mode of action of MprF-like

aminoacylphospholipid synthases and they should enable the

systematic search for inhibitors for this class of enzymes.

Materials and Methods

The plasmids and strains constructed in this study are listed in

Table S1 and primers are listed in Table S2. Construction of

plasmids, growth conditions, alignment and prediction of MprF

Figure 6. Model for the mode of MprF-mediated bacterial
CAMP resistance. Lys-PG is synthesized from Lys-tRNA and PG by the
synthase domain of MprF. Lys-PG can only neutralize the outer surface
of the membrane upon translocation to the outer cytoplasmic
membrane leaflet, which is facilitated by the large N-terminal integral
membrane domain of MprF.
doi:10.1371/journal.ppat.1000660.g006
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structure, Western-blot analysis, lipid extraction, and analysis of

Lys-PG distribution are described in Text S1.

For detection of Lys-PG appropriate amounts of polar lipid

extracts were spotted onto silica 60 F254 HPTLC plates (Merck,

Darmstadt, Germany) using a Linomat 5 sample application unit

(Camag, Berlin, Germany) and developed with chloroform/

methanol/water (65:25:4, by vol.) in an automatic developing

chamber ADC 2 (Camag, Berlin, Germany). Amino groups or

phosphate groups-containing lipids were selectively stained with

ninhydrin spray (0.3 g ninhydrin dissolved in 100 ml 1-butanol and

3 ml 100% acetic acid) or molybdenum blue spray (Sigma).

Integrated lipid spot intensities of molybdenum blue-stained

phospholipids were determined by ImageJ (http://rsbweb.nih.

gov/ij/). MIC values of gallidermin, HNP1-3, and LL-37 were

determined by diluting bacteria from overnight cultures to an

OD600 nm of 0.05 20.1 in fresh MHB medium (gallidermin) or half-

concentrated MHB (HNP1-3 and LL-37) containing serial dilutions

of antimicrobial peptides as described recently [45]. Gallidermin

was kindly provided by Friedrich Götz. HNP1-3 was isolated from

human neutrophils and purified by reversed-phase high-perfor-

mance liquid chromatography (RP-HPLC) as described previously

[37]. LL-37 was synthesized by solid-phase peptide synthesis and

purified by RP-HPLC [46]. Susceptibility to daptomycin was

determined by epsilometer test (E test) in the presence of CaCl2
according to the manufacturer’s advise (AB Biodisk) [47].

Differences in bacterial capacity to repulse cationic proteins were

determined by comparing binding of the red-coloured cationic

protein cytochrome c as described recently [37,48].

List of SwissProt accession numbers
Q2G2M2: Staphylococcus aureus MprF; Q5HPI1: Staphylococcus

epidermidis MprF homolog; C0H3X7: Bacillus subtilis MprF

homolog; C0X347: Enterococcus faecalis MprF homolog;

Q8DWT2: Streptococcus agalactiae MprF homolog; Q71YX2: Listeria

monocytogenes MprF homolog; Q88YQ7: Lactobacillus plantarum

MprF homolog; Q8FW76: Brucella suis MprF homolog; Q9I537:

Pseudomonas aeruginosa MprF homolog; Q0SSM7 and Q0STHJ7:

Clostridium perfringens MprF homologs.

Supporting Information

Text S1 Supplementary Materials and Methods.

Found at: doi:10.1371/journal.ppat.1000660.s001 (0.07 MB PDF)

Figure S1 Kyte-Doolittle hydrophobicity profile of S. aureus

MprF.

Found at: doi:10.1371/journal.ppat.1000660.s002 (2.06 MB TIF)

Figure S2 Alignment of the hydrophilic C-terminal parts of

MprF proteins of various bacterial species. Partially and

completely conserved positions are boxed in gray and black,

respectively. Amino acid positions exchanged by site-directed

mutagenesis are indicated. The following proteins were compared

(SwissProt accession numbers are given in brackets): Sa: S. aureus

(Q2G2M2), Se: S. epidermidis (Q5HPI1), Bs: Bacillus subtilis

(C0H3X7), Ef: Enterococcus faecalis (C0X347), Sag: Streptococcus

agalactiae (Q8DWT2), Lm: Listeria monocytogenes (Q71YX2), Lp:

Lactobacillus plantarum (Q88YQ7), Brs: Brucella suis (Q8FW76), PS:

Pseudomonas aeruginosa (Q9I537), Cp1 and Cp2: Clostridium perfringens

(Q0SSM7 and Q0STHJ7, respectively). The C. perfringes Cp1

protein mediates Lys-PG biosynthesis while the C. perfringes Cp2

and the P. aeruginosa protein mediate Ala-PG biosynthesis [15,16].

Found at: doi:10.1371/journal.ppat.1000660.s003 (9.54 MB TIF)

Figure S3 Western Blot analysis of E. coli with pET28mprF(28)

derivatives containing the indicated amino acid exchanges and

TLC analysis of E. coli with mutated full-length mprF genes cloned

in pBAD containing the indicated amino acid exchanges. (A)

Proteins from crude lysates were subjected to immunoblot analysis

with a His-tag-specific antibody. Molecular weight standard

proteins are shown at the right margin. (B) Polar lipids from the

indicated strains were separated by TLC and stained with the

aminogroup-specific dye ninhydrin. Positions of PE and Lys-PG

are indicated.

Found at: doi:10.1371/journal.ppat.1000660.s004 (3.21 MB TIF)

Table S1 Plasmids for expression of truncated or mutated MprF

variants.

Found at: doi:10.1371/journal.ppat.1000660.s005 (0.02 MB PDF)

Table S2 Primers used for plasmid construction.

Found at: doi:10.1371/journal.ppat.1000660.s006 (0.02 MB PDF)
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32. Kristian SA, Dürr M, Van Strijp JA, Neumeister B, Peschel A (2003) MprF-

mediated lysinylation of phospholipids in Staphylococcus aureus leads to protection
against oxygen-independent neutrophil killing. Infect Immun 71: 546–549.

33. Weidenmaier C, Peschel A, Kempf VA, Lucindo N, Yeaman MR, et al. (2005)

DltABCD- and MprF-mediated cell envelope modifications of Staphylococcus

aureus confer resistance to platelet microbicidal proteins and contribute to

virulence in a rabbit endocarditis model. Infect Immun 73: 8033–8038.
34. Roy H, Ibba M (2008) RNA-dependent lipid remodeling by bacterial multiple

peptide resistance factors. Proc Natl Acad Sci U S A 105: 4667–4672.

35. Brückner R (1992) A series of shuttle vectors for Bacillus subtilis and Escherichia coli.
Gene 122: 187–192.
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