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Abstract

Both the intake of beneficial olive oil and of harmful trans-fatty acids (TFAs) in consumed

foods are of great significance in tumor biology. In our present study we examined the

effects they exert on the expression patterns of miR-134, miR-132, miR-124-1, miR-9-3 and

mTOR in the liver, spleen and kidney of mice treated with 7,12-dimethylbenz [a] anthracene

(DMBA). Feeding of TFA-containing diet significantly increased the expression of all studied

miRs and mTORC1 in all organs examined, except the expression of mTORC1 in the spleen

and kidney. Diet containing olive oil significantly reduced the expression of miR-124-1, miR-

9-3 and mTORC1 in the liver and spleen. In the kidney, apart from the mTORC1 gene, the

expression of all miRs examined significantly decreased compared to the DMBA control.

According to our results, the cell membrane protective, antioxidant, and anti-inflammatory

effects of olive oil and the cell membrane damaging, inflammatory, and carcinogenic proper-

ties of TFA suggest negative feedback regulatory mechanisms. In contrast to our expecta-

tions, mTORC1 gene expression in the kidney has not been shown to be an appropriate

biomarker–presumably, because the many complex effects that regulate mTOR expression

may quench each other.

Introduction

Malignant tumorous diseases are the second leading causes of deaths worldwide; according to

the estimates of WHO they caused 9.6 million deaths in 2018. The main causes of the develop-

ment of these diseases are the adverse environmental effects [1], within which eating habits

represent a major factor [2]. Such a factor, for example, is the intake of fatty acids (FAs) includ-

ing harmful trans-fatty acids (TFAs) [3, 4]. On the other hand, olive oil, which has beneficial
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effects and is rich in antioxidant and antitumor oleic acid and contains approximately 10% lin-

oleic acid, is also widely consumed [5, 6].

The amount of daily TFA intake shows positive correlation with mortality when comparing

the data of the upper (� 2.73 calorie percent) and lower quartiles (�1.41 caloric percent) on

the basis of the hazard ratio (HR) normalized to gender and age (HR: 1.03; CI 1.00–1.05; p

trend = 0.0062) [4]. Although TFA intake does not correlate with overall cancer mortality,

there is a positive correlation between the regular daily intake of TFA and relative risk (RR) of

breast cancer in postmenopausal women (RR: 1.37; 95% CI 1.04–1.81; p = 0.02) [4, 7]. The

adverse effects of TFA are also shown by the fact that a 2% increase in dietary caloric intake

significantly increased the risk of cardiovascular diseases (RR 1.23; 95% CI 1.11–1.37; p

<0.001) [8].

Indeed, there are direct and indirect harmful molecular mechanisms associated with TFA

consumption. For example, trans-linoleic acid (trans, trans-9-12-octadecadienoic acid) (TLA)

and elaidic acid (trans-9-octadecenoic acid) (EA), which belong to TFAs, increase the amount

of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1

(VCAM-1), among other [9]. Both ICAM-1 and VCAM-1 generate reactive oxygen species

(ROS), which activate nuclear factor kappa B (NF-κB)–which has direct pro-inflammatory

effect [9]. Its further significance is, that in addition to inflammatory signaling pathways, NF-

κB activation may be associated with malignant transformation processes, as well [10].

When studying the protective effects of olive oil Pelucchi et al. have performed a meta-anal-

ysis on the relationship between olive oil and cancer, where the calculated summary relative

risk of breast cancer was 0.62 (95% CI 0.44–0.88) for the highest versus the lowest level of olive

oil consumption [3]. Furthermore, in a case-control study, olive oil consumption significantly

reduced the risk of development of lung cancer (OR: 0.65; 95% CI: 0.42–0.99; p<0.05) [11]. In

another case-control study performed by Bosetti et al., a significant trend in the protective

effect against laryngeal cancer was observed between the upper quartile consuming 42.9 grams

of olive oil per day and the lower quartile consuming less than 3.2 grams per day (OR: 0.4; 95%

CI: 0.3–0.7; p = 0.01) [2]. In another case-control study when comparing the lowest versus the

middle tertile consuming less than 1.6 grams of olive oil per day (OR: 0.62; 95% CI: 0.39–0.99),

and the highest versus the lowest tertile consuming above 3.9 grams per day (OR: 0.47; 95%

CI: 0.28–0.78; p-trend = 0.002), a statistically significant inverse dose-response association was

found between development of bladder cancer and the olive oil consumption [12].

MicroRNAs (miRNA) bind to the 3 ’UTR of mRNAs and thus reduce the translation of

mRNAs–and thereby through gene silencing affect the protein synthesis, the cell cycle [13],

apoptosis, or even cell differentiation [14]. MiRNAs may serve as early molecular epidemiolog-

ical biomarkers for the detection of malignancies [15]. In addition, TFA also causes oxidative

stress and lipid peroxidation [16], which may be associated with the expression pattern of cer-

tain miRNAs (e.g., miR-134), as miR-134 is involved in tumor cell proliferation, apoptosis,

invasion, and also in the regulation of metastasis formation [17]. Furthermore, miR-134 is

known as a tumor suppressor because it directly silences the KRAS oncogene as well as the

integrin beta 1 (ITGB1) oncogene [18, 19], the activity of which genes also promotes malignant

transformation and proliferation of malignant cells [20], which can lead to renal cell carci-

noma (RCC) [21]. MiR-132 also inhibits proliferation in hepatocellular carcinoma (HCC) by

inactivating the AKT / mTOR signaling pathway [22], and by inhibiting IL1β and IL6 expres-

sion through inhibition of the transcriptional co-activator P300 [23]. Overexpression of miR-

124 was observed in HCC for the regulation of proliferation of the anti-apoptotic “baculoviral

IAP repeat containing 3 (BIRC3) protein”, as well as for the inhibition of NF-κB signaling

pathway and C-MYC oncogene expression [24]. (For general expressions of examined miRs

and mTOR see Table 1, for the list of abbreviations Table 2).
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Thus, miR-9, miR-124, miR-132, and miR-134 exert their antitumor activity indirectly,

through the inhibition of NF-κB and AKT/mTOR signaling pathways [19, 22, 24, 25]. The

mammalian target of rapamycin (mTOR) signaling protein plays a vital role in cellular func-

tions such as cell proliferation, cell growth, protein synthesis, and its expression is influenced

by a number of factors (see above). Thus, the question arises whether in addition to the miRs

studied, the expression of mTOR can be used as a biomarker of carcinogenic and chemo-

preventive effects, or not.

In our present study we modelled two types of human dietary habits in mice, namely, high

olive oil consumption and high TFA intake. For this purpose, we used a model developed by

Table 1. General expressions of examined miRs and mTOR.

miR-134 miR-132 miR-124 miR-9 mTOR Literature

DMBA + + + + +

TFA + + + + +

Olive oil - - - - -

HCC - - - or + [19, 24]

RCC - + + [19, 46]

https://doi.org/10.1371/journal.pone.0246022.t001

Table 2. List of abbreviations.

Abbreviation Name of expression

ATM ataxia-telangiectasia mutated

BIRC3 baculoviral IAP repeat containing 3

DMBA 7,12-dimethylbenz [a] anthracene

EA elaidic acid

FA fatty acid

GSH gluthation

HCC hepatocellular carcinoma

HIF-1α Hypoxia-inducible factor 1-alpha

HR hazard ratio

ICAM-1 intercellular adhesion molecule-1

IL1β interleukin 1β

IL6 interleukin 6

ITGB1 integrin beta 1

miRNA microRNA

MMP matrix metalloproteinase

mTOR mammalian target of rapamycin

NF-κB nuclear factor kappa B

PTEN phosphatase and tensin homolog deleted on chromosome 10

PUFA poly unsaturated fatty acids

RCC renal cell carcinoma

ROS reactive oxygen species

RR relative risk

TFA trans-fatty acid

TGF-β transforming growth factor-β

TLA trans-linoleic acid

TNF tumor necrosis factor

TSC2 tuberous sclerosis complex 2

VCAM-1 vascular cell adhesion molecule-1

https://doi.org/10.1371/journal.pone.0246022.t002
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Tomesz et al., and we examined the expression of miR-134, miR-132, miR-124-1, miR-9-3,

and of mTOR in the liver, spleen and kidney of 7,12-dimethylbenz [a] anthracene (DMBA)

treated mice as molecular epidemiological biomarkers [26]. The effect of DMBA damage is

indicated by an increase both in the expression of these miRs and in the expression of mTOR,

among other, in the examined organs, since DMBA is a pluripotent carcinogen, while induces

mutations and increases the expression of oncogenes, etc. [26]. The aim of our research was to

explore the expression patterns of these miRs so that we can follow the harmful and beneficial

tumor biological effects of TFA and olive oil.

Materials and methods

In the experiment we used 6 to 8 weeks old CBA/Ca female mice, each group caged sepa-

rated. For 14 days one group of animals (n = 6) was fed with olive oil in a dose of 0.3 g/ani-

mal/day (Agraria Riva Del Garda SCA) and another group (n = 6) received TFA (trans-

3-hexadecenoic acid) (Sigma Aldrich) in a daily dose of 0.3 g/animal, mixed into their diet.

The animals were treated once with DMBA 20 mg/kg body weight intraperitoneally, solved

in 0.1 ml corn oil (Sigma Aldrich). In addition, a positive control group (n = 6) was given

DMBA alone, as mentioned. Twenty-four hours after DMBA exposure, the animals were

sacrificed by cervical dislocation and then their liver, kidney, and spleen were removed.

The experiment was conducted in compliance with the current ethical regulations and

approved by Regional Animal Ethical Committee Pécs (Ethical license no.: BA02/2000-79/

2017).

Isolation of total RNA

Total cellular RNA was isolated using TRIZOL reagent (MRTR118-20 Nucleotest Bio Ltd.)

according to the manufacturer’s instructions. The quality of RNA was checked by NanoDrop

absorption photometry and only RNA fractions with A> 2.0 at 260/280 nm were used for the

RT-PCR process.

Reverse Transcription-Polymerase Chain Reaction (RT-PCR). The one-step PCR,

including reverse transcription and target amplification, was performed using Kapa SYBR

FAST One-step RTQCR kit (Kapa Biosystems) in a 96-well plate, on a LightCycler 480 qPCR

platform, according to the manufacturer’s instructions.

Temperature program was set as follows: 5 minutes incubation at 42˚C, followed by a 3

minute incubation at 95˚C, then 45 cycles were performed (95˚C– 5 s, 56˚C– 15s, 72˚C– 5s)

and a fluorescent reading was made at the end of each cycle. Each run was performed with

melting curve analysis (95˚C– 5s, 65˚C– 60s, 97˚C1) to confirm the specificity of the amplifi-

cation. The reaction mixture was the following: 10 μl KAPA SYBR FASTqPCR Master Mix,

0.4 μl KAPA RT Mix, 0.4 μl dUTP, 0.4 μl primers, 5 μl miRNA template supplemented with

sterile double-distilled water to a total volume of 20 μl.

Primer sequences for the mTORC1 gene, the examined mRNAs (miR-330, miR-29a, miR-

9-1, miR-9-3) and the internal control gene (mouse U6) are shown in Table 3. Primers were

synthetized by Integrated DNA Technologies (Bio-Sciences), sequences are from previous

publications [27, 28].

Calculation and statistical analysis. Relative miRNA expression levels were calculated

and compared using the 2-ΔΔCT method. During the statistical analysis for the testing the distri-

bution of results we used the Kolmogorov-Smirnov test. To compare averages we used the

Levene’s type F-probe and T-probe. IBM SPSS 21 statistical software was used for calculations

and analysis. We determined the level of statistical significance at a p value <0.05.
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Results

Feeding with olive oil-containing diet significantly (p<0.001) reduced the expression of miR-

124-1 (p = 0.001), miR-9-3 (p = 0.035), and mTORC1 (p = 0.002) compared to the DMBA con-

trol (Fig 1).

Similarly, the expression of miR-124-1 (p = 0.034), miR-9-3 (p = 0.009) and mTORC1
(p = 0.003) significantly decreased in the spleen as a result of the above mentioned feeding (Fig

2).

The expression of miR-134 (p<0.001), miR-132 (p<0.001) and miR-9-3 (p<0.001) and

miR-124-1 (p = 0.01), but not of mTORC1 gene, significantly decreased in the kidneys com-

pared to the DMBA control (Fig 3).

Consumption of TFA-containing diet significantly increased the expression of miR-134 (p

<0.001), miR-132 (p<0.001), miR-124-1 (p<0.001), miR-9-3 (p<0.001) and mTORC1 (p

<0.001), as well, in the liver of animals compared to the DMBA control (Fig 4).

TFA also significantly (p> 0.001) increased the expression of miR-134 (p> 0.001), miR-132

(p> 0.001), miR-124-1 (p> 0.001), miR-9-3 (p> 0.001) in the spleen and kidneys compared to

the DMBA control, but the gene expression of mTORC1 was not significantly increased (Figs 5

and 6).

Table 3. Primer sequences (5’-3’) of the mTORC1 gene, of the examined miRNAs (miR-330, miR-29a, miR-9-1, miR-9-3) and of the internal control gene (mouse

U6).

FORWARD REVERSE

miR-330 GACCCTTTGGCGATCTCTG CTGTGCTTTGCTCGTTGGAT

mir-29a CCCCTTAGAGGATGACTGATTTC AACCGATTTCAGATGGTGCT

miR-9-1 CGGGGTTGGTTGTTATCTTT TGGGGTTATTTTTACTTTCGGTTA

miR-9-3 GCCCGTTTCTCTCTTTGGTT TCTAGCTTTATGACGGCTCTGTGG

mTORC1 AAGGCCTGATGGGATTTGG TGTCAAGTACACGGGGCAAG

mouse U6 CGCTTCGGCAGCACATATAC TTCACGAATTTGCGTGTCAT

https://doi.org/10.1371/journal.pone.0246022.t003

Fig 1. Liver of olive oil-consuming mice. The expression pattern of miR-134, miR-132, miR-124-1, miR-9-3, and

mTOR relative to DMBA-induced expression in the liver of DMBA- and olive oil-treated mice.

https://doi.org/10.1371/journal.pone.0246022.g001
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Discussion

Oleuropein and oleocanthal, the water-soluble polyphenols of olive oil are absorbed from the

small intestine and reach the spleen and liver [29], where they exert a protective effect against

free radical-induced oxidative stress [30, 31] mainly through their cell membrane protective

properties [32]. Oleuropein is able to inhibit NF-κB activation [33, 34] and to increase intracel-

lular GSH levels, which is usually reduced by the free radicals [35–37]. This may lead to a

decrease in the expression of miR-134, miR-132 and miR124-1 (via the mentioned negative

feedback mechanisms) and to a significant reduction in the amount of overexpressed miR-9-3

associated with the DMBA treatment (Figs 1–3). This is supported by the direct β-catenin

inhibitory effect of PUFA, that leads to a significant decrease of C-MYC [38]. Furthermore,

Fig 2. Spleen of olive oil-consuming mice. The expression pattern of miR-134, miR-132, miR-124-1, miR-9-3 and

mTOR relative to DMBA-induced expression in the spleen of DMBA- and olive oil-treated mice.

https://doi.org/10.1371/journal.pone.0246022.g002

Fig 3. Kidneys of olive oil-consuming mice. The expression patterns of miR-134, miR-132, miR-124-1, miR-9-3, and

mTOR relative to DMBA-induced expression in the kidneys of DMBA- and olive oil-treated mice.

https://doi.org/10.1371/journal.pone.0246022.g003
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P300 and miR-132 cross-regulate each other’s expression [23]. Expression of BIRC3 and miR-

124 showed a negative correlation [24] suggesting a negative feedback loop, while ICAM-1

positively modulates miR-124 expression [39]. These data explain the significant decrease of

miR-124 in the olive oil-consuming group in all organs examined, and its significant overex-

pression in the TFA consuming group (since both the earlier mentioned TLA and EA increase

the amount of ICAM-1) [9] (Figs 1–6). Certainly, the protective effect of water-soluble oleuro-

pein caused the strong and significant decrease of miR-134 and miR-132 in the kidney via the

mentioned negative feedback regulation [39] (Fig 3). The significant decrease of mTOR gene

expression seen both in the liver and in the spleen was also due to the potent inhibitory effect

of oleocanthal on mTOR activity [40] (Figs 1 and 2).

Fig 4. Liver of olive TFA-treated mice. The expression patterns of miR-134, miR-132, miR-124-1, miR-9-3 and

mTOR relative to DMBA-induced expression in the liver of DMBA- and TFA-treated mice.

https://doi.org/10.1371/journal.pone.0246022.g004

Fig 5. Spleen of olive TFA-treated mice. The expression patterns of miR-134, miR-132, miR-124-1, miR-9-3 and

mTOR relative to DMBA-induced expression in the spleen of DMBA- and TFA-treated mice.

https://doi.org/10.1371/journal.pone.0246022.g005
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The weaker, non-significant decrease in miR-134 and miR-132 and the significant

decrease in miR-124 in the liver and spleen (Figs 1 and 2) in the group consuming olive oil

seem to contradict the antitumor effect of olive oil, since reduced expression was also

observed for miR-134, miR-132, and miR-124 in manifest HCC [19], as well as for miR-134

in RCC [19]. (The expression of miR-124 in HCC is contradictive Table 1, [19, 24]). In addi-

tion, miR-9 also inhibits HCC progression [25], and it has been shown that a decrease in

miR-9-3 indicates the development of malignant tumors as an early biomarker [41]. How-

ever, DMBA-induced elevated expression of MYC [42] and MYCN oncoproteins cause an

increase of miR-9 expression in tumor cells, which (this time via a positive feedback mecha-

nism, supporting oncogenes)–through the amplification of E-cadherin–induces further

increase of C-MYC expression [43, 44]. This, in contrast to the above, promotes the forma-

tion of HCC, that is supported by the result of our previous article [26], where miR-9-3

expression of female CBA/CA mice as a result of DMBA exposure resulted in a particularly

large, significant increase. mTOR signaling pathway activating mutations have already been

identified in a wide range of human malignancies [45], for example in RCC [46]. Activation

of the PI3-K/Akt/mTOR signaling pathway induces a number of oncogenic processes that

contribute to the growth, survival, and proliferation of tumor cells, for example cyclins,

C-MYC and ornithine decarboxylase [46]. Also mTOR in RCC cells through phospholipase

D enhances the expression of both Hypoxia-inducible factor 1-alpha (HIF-1α) and HIF-2α
[46, 47]. On the other hand, DNA damage inhibits mTORC1 through activting p53-depen-

dent transcription, as well as TSC2 and phosphatase and tensin homolog deleted on chromo-
some 10 (PTEN) [47]. Thus, our results with the olive oil consuming group are explained by

the negative feedback mechanisms, that are often involved in the regulation of the expres-

sion of miRs [48] (Figs 1 and 3).

However, the metabolism of DMBA leads to the appearance of reactive oxygen species

(ROS) [49, 50] which contributes to the harmful effects of TFAs [8]. Furthermore, ROS has

also been shown to induce cytokines (TNF, IL1, IL6), to increase the amount of specific tran-

scription factors (e.g., NF-κB) and to reduce the level of protective GSH [9, 51].

Fig 6. Kidneys of olive TFA-treated mice. The expression patterns of miR-134, miR-132, miR-124-1, miR-9-3 and

mTOR relative to DMBA-induced expression in the kidneys of DMBA- and TFA-treated mice.

https://doi.org/10.1371/journal.pone.0246022.g006
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In addition, if IL1β is present in high amounts, it stimulates inflammatory growth factors

such as TNF, matrix metalloproteinases (MMPs), etc. [52]. Both the MMPs and TNF (in a

redundant manner) promote the malignant transformation of cells, as well as their progression

[53], e.g., by activation of NF-κB [52, 54, 55], which inhibits the expression of the anticancer

miR-134 and P53 genes [56]. Indeed, DMBA-treated mice showed increased levels of interleu-

kin 1β (IL1β), interleukin 6 (IL6), and tumor necrosis factor (TNF), which ultimately increased

the possibility of malignant transformation [57]. These effects may explain the effect of TFA in

the organs examined (Figs 4–6).

It can generally be stated that in each of the organs examined in the group consuming TFA-

containing diet, the miRs tested showed a nearly opposite expression pattern compared to the

groups consuming olive oil. This is also consistent with the negative feedback mechanisms

reported in the literature [26, 58], as well as with the probable negative feedback mechanisms [59,

60]. The only exception is the expression of the mTOR gene in the kidneys, which can be attrib-

uted to the resultant of multiple effects. On the one hand, as TFA may have induced mTOR
expression in the liver of mice, it is also TFA that blocks transforming growth factor-β (TGF-β)

receptors in the kidneys, leading to a decrease in PTEN [26]. PTEN through the inhibition of

PI3-K is an inhibitor of MTORC1, as well–moreover, according to our present knowledge this

inhibition lacks negative feedback [26]. Furthermore, tumor suppressor effect of “tuberous sclero-

sis complex 2” protein (TSC2) activated by ROS induced “ataxia-telangiectasia mutated” (ATM)

protein may have also decreased the expression of mTORC1 gene [61]. Our results in the spleen

as well as in the kidneys of the studied animals consuming TFA show, that these multiple effects

regulating the expression of the mTORC1 gene balance each other–also taking into account the

related mTOR-decreasing effect exerted by the above mentioned miR-132 [62] (Fig 7).

Thus, these effects causing constitutive transcriptional activation and proto-oncogene to

oncogene mutations–and the corresponding miR expression pattern–are specific to manifest

carcinomas (and to in vitro cancer cell cultures) [19, 21, 22, 24]. However, the miR and mTOR
gene expression patterns in our study, as early biomarkers, can rather be considered as

responses to biological effects on the organs studied.

Conclusions

The expression of miR-134, miR-132, miR-124-1, and mir-9-3 indicated the chemopreventive

effect of olive oil, as well as the carcinogenic effect of TFA (Figs 1–6). Our results confirmed

the central role of inducible inflammatory signaling pathways among the mechanisms of the

effects of different types of FAs on tumorigenesis. This is also the case for the expression pat-

tern of both miRs and the mTOR gene, that is for example supported by ROS, NF-κB activated

by inflammatory signaling agents, PTEN, and the level of accumulated ICAM-1 protein may

have a key role [63]. We can conclude, that the expression patterns of the miR-134, miR-132,

miR-124-1, mir-9-3, and mTORC1 genes, as early biomarkers of carcinogenic and chemo-

preventive effects, differ from the expression patterns of manifest tumors and in vitro cell cul-

tures Table 1, [19, 21, 22, 24, 45, 46]. In general, our results suggest the great importance of

negative feedback regulatory mechanisms. This important observation draws attention to the

fact that gene expressions measured in tumors may be completely different from the expres-

sions of the same genes in the period before tumor development.

However, in contrast to our expectations, in the animal model used in the present study

design, the expression of the mTORC1 gene in the kidneys did not prove to be a suitable bio-

marker–to indicate the potential chemopreventive or carcinogenic/co-carcinogenic effects of

either olive oil or TF consumption (Figs 3 and 6). It is very likely that this is because mTOR is

driven by effects that also play an important role in inflammatory biology and in the cell cycle–
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and consequently complex (and even partially cross-regulatory) effects [22], which can also

quench each other’s gene expression effects.

Supporting information

S1 Table. The raw data of DMBA induced miRs and mTOR expression, influenced by TFA
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