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Abstract

Humans can innately track a moving target by anticipating its future position from a brief his-

tory of observations. While ballistic trajectories can be readily extrapolated, many natural

and artificial systems are governed by more general nonlinear dynamics and, therefore, can

produce highly irregular motion. Yet, relatively little is known regarding the behavioral and

physiological underpinnings of prediction and tracking in the presence of chaos. Here, we

investigated in lab settings whether participants could manually follow the orbit of a paradig-

matic chaotic system, the Rössler equations, on the (x,y) plane under different settings of a

control parameter, which determined the prominence of transients in the target position.

Tracking accuracy was negatively related to the level of unpredictability and folding. Never-

theless, while participants initially reacted to the transients, they gradually learned to antici-

pate it. This was accompanied by a decrease in muscular co-contraction, alongside

enhanced activity in the theta and beta EEG bands for the highest levels of chaoticity. Fur-

thermore, greater phase synchronization of breathing was observed. Taken together, these

findings point to the possible ability of the nervous system to implicitly learn topological regu-

larities even in the context of highly irregular motion, reflecting in multiple observables at the

physiological level.

Introduction

A remarkable property of nonlinear dynamical systems is their ability to generate highly com-

plex trajectories in spite of structural simplicity. From the canonical three-body problem

through toy models such as the double pendulum and the dripping water faucet, chaotic

motions permeate nature even in the most unsuspecting circumstances. Far from representing

randomness, they combine de facto unpredictability with well-evident and elegant topological

regularities, challenging at heart the ancestral notions of determinism [1]. The profound influ-

ence of chaos theory on contemporary science can be gauged by the fact that universal features

of nonlinear dynamics are cohesively observed across systems as diverse as meteorological

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0239471 September 18, 2020 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Takagi A, Furuta R, Saetia S, Yoshimura

N, Koike Y, Minati L (2020) Behavioral and

physiological correlates of kinetically tracking a

chaotic target. PLoS ONE 15(9): e0239471. https://

doi.org/10.1371/journal.pone.0239471

Editor: Kei Masani, Toronto Rehabilitation Institute

- UHN, CANADA

Received: May 7, 2020

Accepted: September 4, 2020

Published: September 18, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0239471

Copyright: © 2020 Takagi et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data is on a public

repository figshare (10.6084/m9.figshare.

12253649).

Funding: A.T. and L.M. received funding from the

World Research Hub Initiative (WRHI), Institute of

http://orcid.org/0000-0003-4733-7471
https://doi.org/10.1371/journal.pone.0239471
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239471&domain=pdf&date_stamp=2020-09-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239471&domain=pdf&date_stamp=2020-09-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239471&domain=pdf&date_stamp=2020-09-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239471&domain=pdf&date_stamp=2020-09-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239471&domain=pdf&date_stamp=2020-09-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239471&domain=pdf&date_stamp=2020-09-18
https://doi.org/10.1371/journal.pone.0239471
https://doi.org/10.1371/journal.pone.0239471
https://doi.org/10.1371/journal.pone.0239471
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.12253649
https://doi.org/10.6084/m9.figshare.12253649


phenomena, geophysical events, electronic circuits, and neural dynamics from the single-cell

level up to entire brains [2–4]. Unsurprisingly, chaotic dynamics also spontaneously emerge in

physiological rhythms such as heart rate variability and gait generation [5–7]. The central ner-

vous system could, therefore, have evolved an innate ability to predict, generate and possibly

control chaos. Here, the question is approached from the physical perspective of a motor con-

trol task.

To date, the relationship between chaotic dynamics and human behavior has only been

considered in a limited number of studies. Some have examined the volitional control of a pro-

cess governed by chaotic motion, whereas others have illuminated the ability to judge random-

ness versus chaoticity and predict, or synchronize to, the temporal evolution of discrete steps

such as the logistic map, or continuous flows [8–12]. Collectively, these existing works point to

an ability of gradually attaining higher-than-chance performance during exposure to a chaotic

trajectory. However, to the authors’ knowledge, the effect of the “level of the chaoticity”, practi-

cally reflecting in irregularity and unpredictability, has not yet been explicitly addressed in

terms of the behavioral and physiological correlates of attempting to physically track the

motion of a target. This setting appears particularly pertinent, given the ecological relevance of

successfully chasing, grasping or avoiding an erratically-moving object.

In this work, we consider the paradigmatic case of a low-dimensional chaotic system,

namely the Rössler equations, which generate a predominantly circular orbit on the (x, y)

plane while twisting and spiking along the z dimension. For increasing settings of the control

parameter a, it can give rise to more prominent irregularity and folding reminiscent of a

Möbius strip, which manifest as transients in a particular region of the phase space. We manip-

ulated this control parameter over the range spanning a trivial circular closed orbit through

fully-developed chaos, while monitoring multiple kinematic parameters of arm movement

alongside electromyographic (EMG), electroencephalographic (EEG) and peripheral physio-

logical activity.

We hypothesized that the participants would be able to track the irregular folding of the

chaotic orbits with an accuracy beyond chance level, possibly by implicitly learning a predic-

tive model of its dynamics [13, 14], and that their tracking accuracy would depend on the

chaoticity level. We also anticipated that muscular co-contraction would correspondingly

decrease with practice [15, 16] as the participants adapted their behavior to track the target

with less effort. Neural activity, namely the EEG rhythms, could also respond similarly, as ele-

vated attention and readiness are prerequisites for tracking and attempting to predict a com-

plex motion [17]. We furthermore anticipated that this task could bring about entrainment

effects at the level of respiration and heart rate, as previously observed in other contexts [18–

20].

Materials and methods

Experimental apparatus

The procedures in this study were approved by the Institutional Review Board of the Tokyo

Institute of Technology (no. 2017142, 30 March 2018, P.I. N.Y.). All procedures performed in

studies involving human participants were in accordance with the ethical standards of the

Institutional Review Board. Nineteen volunteer participants (age 25±3 years, 17 right-handed,

all university students without medical conditions), were recruited after providing written

informed consent.

Fig 1A depicts the experimental setup. The participants held with their right hand onto the

handle of a planar robotic interface (KINARM, BKIN Technologies Inc., Ontario, Canada) to

control its position, which was linked in real-time with�1:1 proportion to a visualized cursor
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[21]. They viewed the cursor on a horizontal computer monitor that shielded the hand and

arm from direct sight. This robot has an elliptical workspace of 0.76×0.44 m, is capable of gen-

erating a peak force pulse up to 58 N, and is equipped with a multiaxial force sensor. A moving

rest was provided to ensure properly planar arm movement. During the tracking task, the fol-

lowing kinematic parameters were recorded: the planar position of the hand [xc, yc], its veloc-

ity, the force exerted F and the grasp force G.

In addition, the EMG activity from nine muscles (namely, wrist muscle pair, elbow mono-

articular pair, biarticular pair and shoulder muscles) was acquired via wireless sensors

(picoEMG, Cometa S.r.l., Bareggio MI, Italy). The EEG was digitized using a 64-channel sys-

tem (ActiveTwo, BioSemi, Amsterdam, Netherlands). All participants rested their chin and

forehead on a headrest and the cable was secured to attenuate movement artifacts. Eight fron-

tal electrodes were excluded due to headrest contact. The respiratory activity was monitored,

separately for the thorax and abdomen compartments, using pneumatic sensor belts [22]. The

plethysmographic signal, indexing cardiovascular arousal, was recorded via a photoplethysmo-

graph (type 8600; Nonin Medical Inc., Plymouth, MN, USA). All data were digitized at 1000

Hz, with the exception of the EEG, which was recorded at 2048 Hz.

Task design

The planar target position [x, y] at time t (omitted for brevity) was governed by the rescaled

Rössler equations [23], namely,

_x ¼ oð� y � zÞ

_y ¼ oðxþ ayÞ

_z ¼ oðbþ zðx � cÞÞ

8
><

>:
ð1Þ

wherein we set b = 0.2, c = 5.7, ω = 3 and the initial conditions were set to y = z = 0 and x 2
[6, 7], drawn randomly for each trial. The control parameter a was varied to determine the

level of chaoticity and folding (effectively, trajectory irregularity), over a = {0.05, 0.15, 0.25,

0.35}, wherein a = 0.05 represents a periodic circular orbit and a = 0.35 corresponds to fully-

Fig 1. Experimental setup and tracking error. (A) Participants held onto the handle of the robotic interface (white

cursor) to track the planar motion of a target (red). (B) Group mean cumulative tracking error � as a function of block

number, separately for each setting of a. Shaded areas denote standard error, and � indicates p< 0.05. Only significant

comparisons are shown.

https://doi.org/10.1371/journal.pone.0239471.g001
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developed chaoticity; these properties are well-established and discussed, for example, in Refs.

[2, 24–28]. The chaotic nature, visible as irregular fluctuations in the peak amplitudes and

cycle durations, is well-evident on the (x, y) plane as the initially closed circular trajectory

(limit cycle) is replaced by a dense superposition of non-overlapping orbits that become

increasingly folded and visit an increasing proportion of the bounded area (Fig 2A). For the

avoidance of doubt, it should be pointed out that chaotic dynamics are well-evident even when

the z variable of the system is disregarded, as implied by Takens’ theorem, which allows for

reconstructing an attractor from time-lag embedding based on a single variable [29, 30]. On

this basis, the largest Lyapunov exponent λMAX and the correlation dimension D2 can be read-

ily calculated even from the separate x and y time-series. As documented in Table 1, for

a = 0.05, one has λMAX < 0 and D2� 1, indicating periodic dynamics; for a� 0.15, both mea-

sures monotonically increase until λMAX� 0.07 and D2� 2, hallmarking the low-dimensional

chaotic dynamics that knowingly characterize this attractor [31–33]. Accordingly, the autocor-

relation functions, which initially oscillate between ±1, decay faster with increasing a, repre-

senting the loss of periodicity (Fig 3).

The outputs [x, y] were multiplied by a scaling factor of 0.005 to yield the target coordinates

in meters. The integration time t was set to correspond to physical time in seconds. The system

was integrated in fixed steps of 0.0005s using the Runge-Kutta order 4 method implemented

in real-time (Simulink, MathWorks Inc., Natick MA, USA).

To assess the force exerted by each participant during tracking, the robot imposed a friction

Fr ¼ � m

_xc

_yc

2

4

3

5 ð2Þ

where the viscous friction coefficient was set to μ = 30Ns/m, appreciably opposing hand

motion.

The experiment totaled 40 trials, each having a duration of 45 s and corresponding to

approximately 21 periods in the limit-cycle case. Participants experienced the trials in 10

blocks, wherein each block contained trials with the control parameter randomly selected

from the four levels. A 15 s rest preceded each trial to reduce fatigue.

Results

Tracking accuracy

We firstly examined how the tracking error depended on the control parameter setting a. Rep-

resentative target and cursor trajectories can be viewed in Fig 2A. The cumulative tracking

error was defined as

� ¼
1

T

Z T

t¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � xcÞ
2
þ ðy � ycÞ

2

q

dt: ð3Þ

Fig 1B shows the group mean cumulative tracking error � as a function of block number,

separately for each setting of a. To assess the influence of the block number, we calculated the

difference in � between the first and last block, separately for each control parameter setting. A

two-way repeated-measures ANOVA revealed that both the control parameter (p< 0.001, F(3,

54) = 62) and the block number (p = 0.02, F(1, 18) = 6.3) had significant main effects. Planned

comparisons (Tukey’s HSD) showed that � was different between all settings of a, but the dif-

ference in � between the first and last block was only significant for a = 0.25. In the last block, �

= {0.0087±0.0012, 0.0093±0.0007, 0.0123±0.0009, 0.0166±0.0007}m (mean±standard error),
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for increasing a. That is, tracking accuracy was lowest under the fully-developed chaoticity

condition, and it improved over time under intermediate settings of the control parameter.

Movement is knowingly intermittent during tracking [34] as participants make correctional

submovements to accurately track the target’s position [35]. The number and duration of sub-

movements are expected to decrease with practice [36], leading to an overall increase in the

Fig 2. Control parameter regulated the chaoticity in the target’s motion. (A) Representative trajectories of the target

[x, y] (red) and cursor [xc, yc] (blue). As the control parameter setting a was elevated, increased folding and irregularity

became more evident, resulting in lower tracking accuracy. (B) Normalized cursor velocity magnitude �V ðNÞ as a

function of the block number. �V ðNÞ tended to increase over time. (C) Probability density function �V in the first and last

blocks showed reduced incidence of low-velocity movements with practice. ��� represents p< 0.001.

https://doi.org/10.1371/journal.pone.0239471.g002
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cursor’s velocity magnitude. The average magnitude of the cursor’s velocity V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2
c þ _y2

c

p

was calculated in every trial to yield �V (Fig 2B). For comparison, �V was normalized by z-trans-

formation within each participant over all trials; hereafter, for the avoidance of doubt normal-

ized variables are denoted with superscript “(N)”. A two-way repeated measures ANOVA

revealed a significant effect of the control parameter setting (p< 0.001, F(3, 54) = 39) and the

block number (p = 0.002, F(1, 18) = 15) on �V ðNÞ. Planned comparisons showed that �V
increased over time for a = {0.05, 0.35}. The probability density function of �V in the first and

last blocks showed a reduction in the incidence of low velocity movements, which was notice-

able for a = {0.15, 0.25} and significant for a = {0.05, 0.35} (Fig 2C), suggesting that the sub-

movements may have subsided with practice.

Learning to predict the fold

The error � crudely quantifies the mean distance between the target and cursor positions over

entire trials. To focus on the possible learning of the chaotic dynamics, we next examined

more finely how the participants reacted to the folds in the target trajectory. As visible in Fig

4A, for high levels of a, the folding was characterized by sharp transients in the target accelera-

tion magnitude A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
€x2 þ €y2

p
; therefore, we calculated �A, the average target acceleration

magnitude, for every trial. Accordingly, a one-way repeated measures ANOVA revealed a sig-

nificant effect of the control parameter on �AðNÞ (p< 0.001, F(3, 54) = 16000), and all post-hoc

Table 1. Non-linear dynamical parameters as a function of the bifurcation parameter a, i.e., largest Lyapunov exponent λMAX (step size: 0.025 s) and correlation

dimension D2 calculated for the scalar x and y coordinate time-series.

a λMAX, x λMAX, y D2, x D2, y

0.05 -0.002 ± 0.002 -0.002 ± 0.002 1.03 ± 0.02 1.06 ± 0.06

0.15 0.006 ± 0.001 0.003 ± 0.003 1.07 ± 0.16 1.08 ± 0.16

0.25 0.027 ± 0.003 0.028 ± 0.004 1.70 ± 0.08 1.72 ± 0.07

0.35 0.070 ± 0.007 0.072 ± 0.011 1.95 ± 0.08 1.95 ± 0.06

https://doi.org/10.1371/journal.pone.0239471.t001

Fig 3. Autocorrelation functions for the target trajectory coordinates. The autocorrelation along x and y initially oscillates around

±1, decaying faster with increasing control parameter a, representing the loss of periodicity.

https://doi.org/10.1371/journal.pone.0239471.g003
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comparisons were significant, confirming that the average acceleration increased with chaoti-

city. In response to the target transients, corresponding peaks in force magnitude |F| were

observed. These were initially reactive, temporally lagging behind the target trajectory. To

quantify this lag, we defined the peak-to-peak time Δt between the acceleration and force mag-

nitude, A and |F|. The normalized lag Δt(N) was only calculated for a = {0.25, 0.35} because

folds are not generated at the lower settings.

The group mean normalized Δt(N) markedly decreased as a function of the block number

(Fig 4B). A two-way repeated measures ANOVA confirmed that, while it was comparable

between the two chaotic settings of the control parameter (p = 0.7), it significantly decreased

over time (p< 0.001, F(1, 18) = 38). During a tracking task,�170ms are knowingly needed for

humans to initiate movement in response to a target event [34, 37]. Accordingly, no partici-

pant reacted to the fold faster than this during the first block (Fig 4C). However, by the last

block, 7 participants for a = 0.25 and 4 participants for a = 0.35 had attained a Δt< 170ms.

This suggests that 37% and 21% of them no longer reacted to the occurrence of the fold, but

may have learned to anticipate it.

We also explicitly considered the degenerate possibility that the participants could be trivi-

ally tracking the phase of the limit cycle orbit, that is, ignoring the fold and following a circular

motion. If so, averaging out the time-dependence of amplitude (i.e., distance from the origin)

Fig 4. Anticipation of the transient target occurred with practice. (A) The chaotic target’s acceleration magnitude A
(red) and the force magnitude |F| (blue) as a function of time from four sample trials with increasing control

parameter a from top-left to bottom-right. (B) Normalized movement delay Δt(N) as a function of the block number.

(C) Δt in the first and last blocks as a function of control parameter a for each individual participant. With practice, the

participants reduced their movement delay in response to the fold. ��� represents p< 0.001.

https://doi.org/10.1371/journal.pone.0239471.g004
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should have no effect on tracking accuracy. By comparing the behavioral tracking error � with

a surrogate error �s, we probed more stringently whether the participants tracked the target’s

position during the fold. Namely, given hxi = hyi = 0, the surrogate error �s was

�s ¼
1

T

Z T

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � xsÞ
2
þ ðy � ysÞ

2

q

dt ð4Þ

with the surrogate cursor position [xs, ys] given by

xs ¼ ReðhAieicÞ

ys ¼ ImðhAieicÞ
ð5Þ

where A and ψ denote the amplitude and phase of the complex-valued cursor position xc + iyc.

We calculated the difference between the surrogate error and the error, Δ� = �s − �, for all trials.

A one-way repeated measures ANOVA revealed a significant effect of the control parameter

setting on Δ� (p< 0.001, F(3, 54) = 863). All post-hoc comparisons were significant, except

between a = {0.25, 0.35}.

The signed difference Δ� provides additional information about the tracking accuracy.

When a = 0.05 and the target’s motion was circular, �s < � (one-sample t-test, t(18) = −15.7,

p< 0.001), implying that destroying the cursor’s amplitude information improved tracking

accuracy, plausibly due to a reduction in involuntary movement variability. For a = 0.15, Δ�
was not significantly different from zero. For a = {0.25, 0.35}, the surrogate error �s > � (t(18)

= 17.2, p< 0.001, and t(18) = 15.4, p< 0.001). Thus, the amplitude information was of critical

importance during the trials with chaotic dynamics, suggesting that the participants were

effectively tracking the folding orbit.

Adaptation of the exerted force

To examine the change in the magnitude of the force applied by each participant, we calcu-

lated

�F ¼
1

T

Z T

0

jFj dt : ð6Þ

A two-way repeated measures ANOVA indicated that both the control parameter setting

(p< 0.001, F(3, 54) = 29) and the block number (p = 0.004, F(1, 18) = 11) had a significant

effect on the normalized force �F ðNÞ. Namely, �F ðNÞ increased significantly for a = {0.05, 0.35},

while it remained constant in other settings. The increase in �F ðNÞ mirrors the increase in the

cursor’s velocity magnitude �V (Fig 2B).

Motor learning of a task generally results in the reduction of the position feedback gain

[38], which can be estimated from the force F through a spring-like linear control model [39].

F has a velocity-dependent component due to the robot’s viscous friction opposing the partici-

pant’s motion (Eq 2), which must be removed from F to estimate the linear control model.

The viscous force was approximated by

F � Lv

_xc

_yc

" #

; ð7Þ

where the viscous gain Lv is assumed to be constant. Lv was calculated in every trial using least-

squares regression, yielding R2� 0.96. As expected, the group mean was Lv = 32.9±0.6Ns/m

�μ. A two-way repeated measures ANOVA revealed a significant influence of the control
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parameter setting (p< 0.001, F(3, 54) = 22) and the block number (p = 0.02, F(1, 18) = 7) on

Lv
(N). In order of increasing a, in the first block Lv = {33.5±0.6, 32.4±0.9, 33.0±0.6, 32.9±0.6}

Ns/m, and in the last block it decreased to Lv = {31.9±1.0, 32.6±0.6, 32.5±0.7, 32.3±0.6}Ns/m,

converging towards μ.

We thereafter estimated the linear control model by approximating the residual force as a

function of the target and cursor’s positions and velocities according to

F � Lv

_xc

_yc

" #

¼ DF � Lp

x � xc

y � yc

" #

þ Ld

_x � _xc

_y � _yc

" #

ð8Þ

where the position feedback gain Lp and velocity feedback gain Ld are assumed to be constant.

The model assuming the force is determined by a spring and damper yielded an F-value�0.6

(p = 0.6). This could not be improved by introducing quadratic and cross-terms, apparently

excluding the possibility of a non-linear dependence. A model with the cursor’s acceleration

DF � I
€xc

€yc

" #

ð9Þ

where I is a constant, yielded a marginally better model with a higher F-value�1.9 (p = 0.2),

suggesting that ΔF was, albeit weakly, more closely dependent on the arm’s inertia. As the lin-

ear control models in Eqs 8 and 9 cannot sufficiently explain the variation in ΔF, a more

sophisticated control model is needed in the future to approximate the control law that

emerges when tracking a chaotic target.

Reduction of muscular co-contraction and grasp force

The human arm features multiple joints, the motion of each being controlled by an agonist-

antagonist muscle pair. As a means of adapting to task conditions, such as performing fine

movements, a muscle pair can co-activate or co-contract, resulting in zero net torque (no

force) but increased joint stiffness [40]. The magnitude of the arm’s endpoint stiffness is also

often positively related to the grasp force G[41, 42]. Consequently, a reduction in the muscular

co-contraction and the grasp force is typically observed while learning a model of the dynam-

ics in a new task [15, 16, 43].

To investigate this possibility, the raw EMG activity from each muscle was firstly high-pass

filtered (second-order Butterworth filter at>10Hz), rectified, then low-pass filtered at<3Hz,

yielding positive-valued filtered voltage time-series mi for the nine arm muscles i = 1. . .9. Mus-

cle co-contraction u was thereafter empirically estimated from the average activity in the entire

arm [44], assuming

u ¼
1

9T

X9

i¼1

Z T

0

mi dt : ð10Þ

We did not analyze the activity of each muscle individually, as it was highly correlated

within each block (r� 0.96).

A two-way repeated measures ANOVA showed that the normalized co-contraction mea-

sure u(N) was dependent on both the control parameter setting (p = 0.01, F(3, 54) = 3.9) and

the block number (p< 0.001, F(1, 18) = 35). Planned comparisons revealed that it decreased

significantly over time (Fig 5A), and was greater for a = 0.35 than a = 0.15.

Rhyming with this finding, a noticeable decrease in the normalized grasp force G(N) also

occurred over time (Fig 5B). A two-way repeated measures ANOVA revealed a significant

PLOS ONE Tracking a chaotic target

PLOS ONE | https://doi.org/10.1371/journal.pone.0239471 September 18, 2020 9 / 19

https://doi.org/10.1371/journal.pone.0239471


effect of the block number on G(N) (p = 0.05, F(1, 18) = 4.6), with the control parameter setting

exerting no influence (p = 0.5). Planned comparisons showed that G(N) decreased significantly

for a = {0.15, 0.25}. Together with the decrease in co-contraction, this illustrates the reduction

in arm stiffness due to training.

Autonomic entrainment

We next examined whether the tracking task influenced bodily arousal as indexed by cardiore-

spiratory physiology and as previously observed, for instance, in response to economic param-

eters during decision-making [45]. A one-way repeated measures ANOVA revealed that

neither the breathing rate (p = 0.6), nor the plethysmogram amplitude (p = 0.8), nor the heart

rate (p = 0.6) were influenced by the chaoticity level, suggesting that even the most taxing set-

ting of the control parameter did not engender significant autonomic activation.

A finer-grained analysis was then performed to probe the possible synchrony between task-

related movement and breathing, as measured in the thorax bth and abdomen bab: this evalua-

tion was particularly motivated by the prior knowledge that volitional rhythmic movements

engender synchronization in respiration [18–20]. A representative side-by-side comparison of

the breathing signals, representing an approximation of tidal volume, and a component of the

cursor motion is visible in Fig 6. We calculated the phase locking between bth and bab, on the

one hand, and xc and yc on the other. For each time-series s = {bth, bab, xc, yc}, the correspond-

ing analytic signal was calculated as

c ¼ sþ i~s ¼ Aei�; ð11Þ

where i ¼
ffiffiffiffiffiffiffi
� 1
p

and ~s denotes the Hilbert transform of s

~s ¼
1

p
p:v
Z 1

� 1

s
t � t

dt; ð12Þ

where p.v represents the Cauchy principal value of the integral. From these, the instantaneous

phases �th, �ab, �xc
and �yc

were obtained.

The phase synchronization between the respiratory compartment expansions, alas ϕth and

ϕab, and the cursor coordinates �xc
and �yc

was computed, yielding four values of the phase

synchronization index S. The synchronization between ϕth and �xc
was assessed as

Sth;xc ¼
1

T

Z T

0

eið�th � n�xc Þ dt
�
�
�
�

�
�
�
� ; ð13Þ

Fig 5. Co-contraction and the grasp force decreased with the block number. (A) Normalized muscle co-contraction u(N) and (B)

grasp force G(N) as a function of the block number for each control parameter setting a. Both u(N) and G(N) decreased over time. �

represents p< 0.05 and ��� represents p< 0.001.

https://doi.org/10.1371/journal.pone.0239471.g005
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where n is a frequency ratio, and similarly for the other combinations. These values were then

averaged as Sth ¼ 1

2
Sth;xc þ

1

2
Sth;yc and Sab ¼ 1

2
Sab;xc þ

1

2
Sab;yc ; here, the two compartments were

treated separately to confirm that the effect was unlikely to stem from a motion artefact. In

addition to n = 1, we considered the frequency ratios n ¼ 1

2
; 2

� �
, averaged across all blocks

and control parameter settings. In order of increasing n, Sth = {0.13 ± 0.01, 0.15 ± 0.01,

0.04 ± 0.01} and Sab = {0.20 ± 0.03, 0.28 ± 0.04, 0.04 ± 0.01}, demonstrating that the synchroni-

zation was strongest assuming a unitary frequency ratio, corresponding to one breathing cycle

per orbit period.

In Fig 7A, the normalized synchronization indices Sth
(N) and Sab

(N) for n ¼ 1

2
; 1; 2

� �
are

charted as a function of the control parameter setting. A two-way repeated measures ANOVA

revealed no effect of the frequency ratio but a significant effect of the control parameter setting

on both Sth
(N) (p< 0.001, F(3, 54) = 39) and Sab

(N) (p< 0.001, F(3, 54) = 6.7). Planned compar-

isons confirmed significant synchronization differences in the thorax between a = {0.05, 0.15,

0.25} and a = 0.35 for n ¼ 1

2
; 1; 2

� �
, and between a = {0.15, 0.25} for n = 2 alone. Significant

differences in the abdomen were found for the double frequency ratio between a = {0.05, 0.15,

0.25} and a = 0.35, and between a = {0.05, 0.15, 0.35} and a = 0.25. A significant difference was

also found between a = {0.15, 0.25} and a = 0.35 for the half frequency ratio. Thus, markedly

greater entrainment emerged when tracking a target with a chaotic orbit. This effect could be

similarly discerned on the scale of identity, half and double frequency ratios.

Fig 6. Expansion of the thorax and the abdomen from a representative participant. Time-series for expansion of

the thorax bth vs. cursor’s position xc (left), and the abdomen expansion bab vs. yc (right). (A) Representative trial given

a = 0.25, and (B) trial with a = 0.35, from the same participant in Fig 2A.

https://doi.org/10.1371/journal.pone.0239471.g006
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We lastly speculated that breathing and entrainment could be functional, or otherwise

related, to tracking accuracy. More specifically, we postulated that the emergent synchroniza-

tion, which was strongest under the partially and fully-developed chaos conditions, was related

to the tracking of the fold. To evaluate this possibility, we examined Spearman’s correlation

coefficient between the error difference Δ� and the average synchrony of the thorax and abdo-

men �SðNÞ ¼ 1

2
Sth
ðNÞ þ 1

2
Sab
ðNÞ for a = {0.25, 0.35} (Fig 7B). The rank-order correlation was bor-

derline not significant for a = 0.25 (r = −0.44, p = 0.06), but �SðNÞ and Δ� were significantly

positively correlated for a = 0.35 (r = 0.57, p = 0.01). The different signs possibly reflected

boosted performance with more intense synchronization under the intermediate chaoticity

setting, and increased but ineffective effort with more intense synchronization under the high-

est chaoticity setting.

Modulation of neuroelectrical activity

To gain further insight, albeit at a coarse-grained level, into the neural correlates of task perfor-

mance, we conducted a topographical power analysis on the EEG rhythms across the δ ([1, 4]

Hz), θ ([4, 8] Hz), α ([8, 15] Hz) and β ([15, 32] Hz) bands. For each, the power was quantified

Fig 7. Synchronization between the breathing and the cursor’s motion was strongest during fully-developed chaos. (A)

Normalized synchronization indices Sth
(N) and Sab

(N) as a function of the control parameter a, shown for different values of the

frequency ratio n (period doubling and halving). (B) Normalized �SðNÞ as a function of Δ� for a = {0.25, 0.35}. Borderline and

significant rank correlation were observed for a = {0.25, 0.35}, respectively. � represents p< 0.05, �� represents p< 0.01, and ���

represents p< 0.001.

https://doi.org/10.1371/journal.pone.0239471.g007
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over all channels and trials, then separately normalized based on the channel mean, and finally

averaged as �PðNÞ.
We first considered how �PðNÞ in each band depended on the control parameter setting. As

charted in Fig 8A, separate one-way ANOVAs with the control parameter as factor revealed

that it significantly influenced �PðNÞ for the δ (p< 0.001, F(3, 54) = 8.1) and θ (p = 0.01, F(3, 54)

= 4.0) bands, but not the α (p = 0.5) and β bands (p = 0.9). Post-hoc comparisons in the δ band

were significant throughout, except between a = {0.05, 0.15}, and between a = {0.25, 0.35}.

Post-hoc comparisons in the θ band were significant only between a = {0.05, 0.35}. These

results altogether point to increased generation of coherent oscillations in the δ and θ bands

with increasing target chaoticity.

The distribution of �PðNÞ over the scalp is visible through the topographical plots in Fig 8B,

generated using the EEGLAB software [46]. With ensuing chaoticity, larger oscillations

emerged over the frontal and central regions in both the δ and θ bands, which, altogether, sug-

gest an enhanced activity related to motor imagery and execution [47, 48].

Fig 8. EEG rhythms in the θ and δ bands increased with the control parameter setting. (A) Normalized EEG power
�P ðNÞ as a function of the control parameter setting, separately for the δ, θ, α and β bands. Both θ and δ activity increased

as a function of a, whereas α and β did not. (B) Topographical plots of normalized EEG power. Larger oscillations were

observed over the frontal region in the δ and θ bands. � represents p< 0.05 and �� represents p< 0.01.

https://doi.org/10.1371/journal.pone.0239471.g008
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Discussion

In line with the existing literature [11], the present results point to a remarkable innate ability

of tracking a chaotically-moving target plausibly based on the underlying topological regulari-

ties, in this case the location of the fold, despite the inherent unpredictability and complexity

of the trajectory. Overall, tracking accuracy predictably declined with increasing chaoticity,

however, intermediate settings opened way to a learning effect whereby the occurrence of the

acceleration transients was eventually anticipated. At the lowest settings, this effect was unob-

servable due to the lack of folding, whereas at the highest setting its emergence was probably

hindered by excessive irregularity.

The cycle-level reactions to the fold were well-evident in the force magnitude time-series.

The time delay known to be required for a reaction to a target event is 170ms [34, 37]. Initially,

none of the participants acted faster than that, however, up to 37% of them eventually antici-

pated the fold by updating their trajectory faster than that. It appears plausible that the fold

could be predicted at first through memorizing the probability distribution of its location in

the task workspace, corresponding to a particular region of the bidimensional projection of

the phase space, approximately mapped to the (x> 0, y< 0) quadrant (Fig 2A).

The nervous system does not learn novel dynamics through rote memorization [14, 49],

but does so by acquiring a representation of it [50], which would correspond to a model of the

chaotic dynamics in our task. Our results, however, do not yet shed any light on the possible

structure and properties of such a model. Numerically, nonlinear time-series prediction is

often attained by means of low-order predictors based on the neighbour points in a suitably

high-dimensional embedding space [33]. However, due to its highly abstract nature, it is

implausible that the brain approximates such a representation. More probably, participants

may have developed a simple heuristic based on statistical considerations of the likely area of

occurence of the fold, together with implicit learning of subtle cues, such as increased curva-

ture away from the limit cycle orbit, or other fluctuations supporting the prediction of an

impending transient. In this sense, a limitation is that the present study does not fully differen-

tiate between proper, anticipatory prediction and ability to track a posteriori with increasing

reactiveness.

Generally, the learning of a model is associated with a reduction in the position feedback

gain, reflecting the fact that participants can use the force more resourcefully while achieving

constant or even improved tracking accuracy [38]. Most of the force could be explained by

the viscous friction opposing the participant’s motion, but the residual force could not be

explained by a linear control model consisting of a spring and a damper [39, 51], nor was it

improved by adding quadratic or cross-terms. The failure in our model could, in part, be due

to the assumption that participants track the target’s accurate state. Its state is estimated by

using delayed and noisy visual information, resulting in estimation errors [52]. Our model

would fail to explain the exerted force if a faulty estimate of the target is tracked. A more

sophisticated model may attempt to estimate the participant’s faulty target state, but no such

algorithm or method exists to date, thereby limiting our ability to model the control law when

tracking a chaotic target.

Another indication that the participants could have learned a model of the chaotic dynam-

ics, in the form of associating the target’s current state to anticipate its future state, was

obtained from the reduction of muscular co-contraction and grasp force observed over time

[15, 16, 43]. Despite the magnitude of the force increasing with time, owing to an increase

in the cursor’s velocity magnitude, participants managed to decrease their overall muscle

activity with practice. Additionally, a decrease in grasp force, which is positively correlated

with the arm’s endpoint stiffness magnitude [42], was observed. In this regard, it should be
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acknowledged that even though decreased co-contraction and grasp force usually accompany

motor learning, a more parsimonious explanation could be that of simple parametric adapta-

tion to the task requirements, without any underlying model formation process.

The changes in brain activity observed under the different levels of chaoticity lend further

support to the view that the participants may have acquired a model of the dynamics, reflected

in the selection of different strategies and consequently brain states. Higher chaoticity engen-

dered an increase in neural activity over the δ and θ frequency bands. Typically, elevated

power in these bands is observed when processing errors [53], at the onset of motor imagery

[47, 54] and during motor execution [48, 55–57]. Further, a marked increase in δ and θ band

power is observed during motor imagery across the thalamus, cortex and cerebellum [47]. The

cerebellum also plays an important role in the prediction of the future states [13, 58], and is

critical to a tracking task where the hand must be moved to the anticipated target’s position

using delayed visual feedback [59].

The initiation of voluntary actions is oftentimes associated with exhalation during respira-

tion [20, 60]. Based on the canonical responses to stress, one could expect faster respiration

and heart rate under higher chaoticity, but no significant differences in cardiovascular activa-

tion were observed. Yet, markedly elevated synchronization between respiration and the track-

ing movement emerged with increasing levels of chaoticity. The synchronization between

respiration and voluntary motion is a well-established and pervasive phenomenon, especially

when the movement is cyclical such as during locomotion [18, 61] or otherwise rhythmic [19,

62, 63]. To our knowledge, however, the degree of synchronization had not been tied with the

difficulty of a motor task. A larger control parameter setting was also related to greater neural

activity in the θ band, which in turn can reflect sustained attention and focus, e.g., during med-

itation [17, 64]. Thus, the most plausible explanation is that under the more difficult condi-

tions of larger control parameter setting, increased mental effort and focus drove the stronger

respiration synchronization. Based on this experiment, it is not possible to finally ascertain

whether the correlation with tracking error was epiphenomenal or functional to performance.

Contamination due to movement artefacts also cannot be fully excluded, though it appears

highly unlikely due to the coherent effect on compartments probed at anatomically well-sepa-

rated locations (nipple and umbilicus levels).

Several studies have examined the human ability to predict chaotic sequences [8–10], but

to our knowledge only one study had examined the prediction of chaotic dynamics using a

motor task [11]. The study examined the effect of increasing feedback delay on the cursor’s

position when tracking a target’s motion governed by a chaotic spring, whose stiffness was

controlled by a Röessler system. The visual feedback delay was manipulated to examine its

influence on the correlation between the cursor and the target trajectory, whose motion con-

sists of smooth elliptical orbits. Beyond this correlational analysis, the authors did not delve

into kinematic measures such as tracking error, and could not analyze changes in muscle activ-

ity or force as only the cursor’s position and velocity were measured. In contrast to the present

work, the parameters of the Rössler system in Ref. [11] (a = b = 0.1, c = 14) did not generate

transients in the target position, but rather more gentle cycle amplitude fluctuations. To the

authors’ knowledge, then, this work is the first to consider the Rössler system’s ability to gradu-

ally control the level of chaoticity and the expression of a fold in a particular region of the

phase space, thus offering a well-defined feature against which to measure motor performance

and learning. Our study is also unique in its examination of the kinematics (tracking error and

feedback gain) and the physiology (cardiorespiratory system, muscle and neural activity).

In summary, a significant body of evidence exists on the human ability to anticipate ballistic

trajectories or stationary dynamics [14, 65], and our results indicate that, to some extent, this

ability extends to nonlinear transient dynamics. Our study is limited in the sense that we could

PLOS ONE Tracking a chaotic target

PLOS ONE | https://doi.org/10.1371/journal.pone.0239471 September 18, 2020 15 / 19

https://doi.org/10.1371/journal.pone.0239471


neither identify the information necessary to anticipate the fold, nor elucidate how it is repre-

sented by the brain. In future work, we plan on hiding sections of the target trajectory prior to

the fold to examine the quantity of information required to anticipate it, and uncovering more

precisely the control law which emerges in the presence of chaos. Additionally, the use of func-

tional magnetic resonance imaging may provide clues to the regions involved in the learning

of chaotic dynamics and their interactions.
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