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Abstract

Introduction

Limited use of medication in poultry feed led to the investigation of exogenous enzymes as

antibiotic alternatives for controlling enteric disease. The objective of this study was to evalu-

ate the effects of diet β-glucanase (BGase) and medication on β-glucan depolymerization,

digestive tract characteristics, and growth performance of broilers.

Materials and methods

Broilers were fed hulless barley (HB) based diets with BGase (Econase GT 200P from AB

Vista; 0 and 0.1%) and medication (Bacitracin and Salinomycin Na; with and without)

arranged as a 2 × 2 factorial. In Experiment 1, 160 broilers were housed in cages from d 0 to

28. Each treatment was assigned to 10 cages. In Experiment 2, broilers (2376) were housed

in floor pens and vaccinated for coccidiosis on d 5. Each treatment was assigned to one

floor pen in each of nine rooms.

Results

In Experiment 1, the soluble β-glucan weighted average molecular weight (Mw) in the ileal

digesta was lower with medication in the 0% BGase treatments. Peak molecular weight

(Mp) and Mw were lower with BGase regardless of medication. The maximum molecular

weight for the smallest 10% β-glucan (MW-10%) was lower with BGase addition. In Experi-

ment 2, Mp was lower with medication in 0% BGase treatments. Beta-glucanase resulted in

lower Mp regardless of medication, and the degree of response was lower with medication.

The MW-10% was lower with BGase despite antibiotic addition. Body weight gain and feed
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efficiency were higher with medication regardless of BGase use through-out the trial (except

d 11–22 feed efficiency). Beta-glucanase resulted in higher body weight gain after d 11 and

worsened and improved feed efficiency before and after d 11, respectively, in unmedicated

treatments.

Conclusion

BGase and medication caused the depolymerization of soluble ileal β-glucan. Beta-gluca-

nase acted as a partial replacement for diet medication by increasing growth performance in

coccidiosis vaccinated broilers.

Introduction

Antibiotics have been used in poultry feed at sub-therapeutic doses for decades to improve

growth and feed efficiency and prevent enteric infections [1]. However, the prolonged and

indiscriminate use of antimicrobials in animal production is likely to cause antibiotic resis-

tance in pathogenic bacteria. Its effect on animal and human health risk has led to reduced use

of in-feed antibiotics in the poultry industry [2, 3]. Potential alternatives to antibiotics that

have been studied include probiotics, prebiotics, organic acids, essential oils, and feed enzymes

[4, 5].

Prebiotics are non-digestible feed ingredients that beneficially affect the host by selectively

stimulating the growth and function of beneficial microbiota in the digestive tract [6]. The

most commonly available prebiotics are oligosaccharides from various sources and small

molecular weight polysaccharides derived from cereal grains. Dietary inclusion of arabinox-

ylo-oligosaccharides/ xylo-oligosaccharides affects gastro-intestinal microbial populations of

chickens by increasing beneficial bacteria, including Bifidobacteria, Lactobacilli and Clostrid-
ium cluster XIV [7, 8], and reducing Salmonella colonization in the caeca and translocation to

the spleen [9]. In addition, exogenous xylanase in wheat-based diets increased the number of

gastro-intestinal beneficial bacteria, including lactic acid bacteria, while reducing pathogenic

bacteria in broiler chickens [10, 11], possibly by decreasing the molecular weight of soluble

arabinoxylan derived from the wheat. Arabinoxylan has been extensively studied concerning

its ability to act as a prebiotic since arabinoxylan is found in the cell walls of the most common

cereals used in poultry feed (wheat and corn), and prebiotic oligosaccharides are presumed to

be formed by the use of dietary xylanase. However, research is limited regarding cereal β-glu-

can since it predominates in barley and oats, which are less commonly found in poultry feed.

Hulless barley (HB) contains a higher level of β-glucan than conventional barley due to the

removal of the hull during processing [12, 13]. Further, many HB cultivars are developed for

the human food industry, and as a result, are selected for high β-glucan content [14]. Dietary

enzymes such as endo-β-glucanase depolymerize larger molecular weight β-glucan producing

lower molecular weight compounds, which are fermentable in the distal digestive tract [15]. A

consequence of fermentation is the production of short-chain fatty acids (SCFA), which are

thought to improve digestive tract morphology and physiology and stimulate the establish-

ment of beneficial bacterial populations while at the same time reducing colonization by path-

ogens [15, 16]. However, the effects of exogenous BGase on microbial fermentation and

digestive tract physiology and morphology are less-well studied, and the results have been

inconsistent in previous research.

Feed medication mechanisms are not fully understood, although antibiotics have been suc-

cessfully used to promote growth and feed efficiency and improve bird health [17, 18]. The
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primary mechanism is generally accepted as a positive modulation of the diversity and relative

abundance of bacteria in the digestive tract microbial community, and thereby the control of

enteric disease and stimulation of immune function in broiler chickens [19–21]. However,

another mechanism of action is the direct anti-inflammatory activity of antibiotics [22]. Inves-

tigating the interaction between medication and enzyme use in high fibre diets offers the

potential to add knowledge on medication mechanisms of action and study the effectiveness of

enzymes in reducing the adverse effects of enteric disease. The effects of exogenous BGase and

diet medication on broiler performance and digestive tract characteristics could depend on the

age of the birds due to the distinct maturity of the digestive tract, including the development of

gut microbiota, and housing conditions that affect the level of exposure to pathogenic organ-

isms. Therefore, the current study utilized the same experimental design and treatments in

two different environments.

The objective of the current study was to investigate the effects of exogenous BGase and

medication on ileal digesta soluble β-glucan molecular weight, digestive tract characteristics,

and production performance of broiler chickens fed an HB-based diet under different housing

environments and disease conditions. Experiment 1 was completed in cages, and the birds had

a less exposure to pathogenic microbes and lower ability of coprophagy due to the clean envi-

ronment. Experiment 2 was completed in litter floor pens using broilers vaccinated for coccid-

iosis and raised at high humidity and litter moisture that increase coccidia cycling. The

rationale for these experiments was to determine if treatments produce the same effects in the

two experiments that contained different housing environments and microbial exposure. It

was hypothesized that exogenous BGase would depolymerize high molecular weight β-glucan,

resulting in increased fermentation and beneficial effects on digestive tract morphology and

physiology. This should result in improved performance of broiler chickens and reduce the

requirement for the medication in broilers fed HB-diets. Further, a higher response to exoge-

nous BGase and a greater reduction of diet medication necessity would be expected from the

broiler chickens from Experiment 2 (coccidiosis-vaccinated) compared to Experiment 1.

Materials and methods

The experimental procedure was approved by the Animal Research Ethics Board of the Uni-

versity of Saskatchewan and conducted according to the Canadian Council on Animal Care

guidelines for humane animal use [23, 24].

Experiment 1

Birds and housing. A total of 160 broiler chickens (Ross × Ross 308) were obtained from

a commercial hatchery on the day of hatch and housed in battery cages (length, 51 cm; width,

51 cm; height, 46 cm). The chickens were kept in thermal comfort, and the day length was

reduced from 23 h at d 0 to 18 h at d 8. Birds were given feed and water ad-libitum. There were

10 cage replications per treatment and four birds per cage. Treatments were randomly

assigned to the battery cages.

Experimental diets. The dietary treatments were arranged according to a 2 × 2 factorial

arrangement (BGase and medication). Beta-glucanase (Econase GT 200 P from ABVista, Wilt-

shire, UK) levels were 0 and 0.1% (the BGase activity of 0 and 200,000 BU/kg, respectively),

and diets were fed without or with medication; Bacitracin (Zoetis Canada Inc., Kirkland, QC,

Canada) at 4.4 mg/kg and Salinomycin Sodium (Phibro Animal Health Corporation, Teaneck,

NJ) at 25 mg/kg. Diets were based on 60% HB (CDC Fibar) and were formulated to meet or

exceed Ross 308 broiler nutrition specifications [25]. The ingredients and calculated nutrient

levels are shown in Table 1, and the diets were fed in crumble form. The pelleting temperature
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was controlled between 70–75˚C to prevent high temperature-induced BGase inactivation

during feed processing. Measured BGase activity in diets approached the estimated values,

thereby confirming BGase was added correctly and that activity was not lost during feed pro-

cessing. Xylanase activity was non-detectable in experimental diets.

Rearing performance data collection. Body weight and feed intake were measured on a

cage basis at d 7, 14, 21 and 28. The birds were checked two times (morning and evening) daily

for health and behavior throughout the study. The specific criteria used to determine humane

endpoints included yolk sac infection with apparent distress, starve-out, runt and other issues

with bird mobility that compromises the ability to eat and drink, weight gain, and the obvious

changes with no chance of recovery. Mortality was recorded daily, and dead birds were sent to

Prairie Diagnostic Services for necropsy.

Sample collection. All birds were euthanized on d 28 by administering T-61 (Merck ani-

mal health, Kirkland, Quebec, Canada) into the brachial vein. Birds were weighed individually.

Two birds per cage were used for pH measurement and to collect samples for SCFA analysis.

In-situ pH of the crop, gizzard, duodenum, jejunum, ileum, caeca and colon contents was mea-

sured using a Beckman Coulter 34 pH meter (Model PHI 34, Beckman Instruments, Fullerton,

CA). Total ileal and caecal contents were collected to a plastic tray and a portion was added

into plastic centrifuge tubes and stored at -20˚C for the analysis of SCFA. The rest of the ileal

content was put into a plastic snap-cap vial. Another two birds per cage were used to collect

digestive tract size, content, and organ data. The digestive tract was detached from the bird

carcass and then sectioned into the crop, proventriculus, gizzard, duodenum, jejunum, ileum,

caeca and colon; the liver, spleen and pancreas were removed and weighed. Full and empty

weights of all sections and the length of each intestinal section were recorded. The content

weight of each section was determined by subtracting the empty weight from the full weight.

Relative tissue weights and lengths were calculated based on individual bird weight. Total ileal

content was collected into the same plastic snap-cap vial (pooled from all the birds in a cage)

and centrifuged for 5 min at 17013 × g using a Beckman microfuge (Model E 348720, Beckman

Instruments, INC, Palo Alto, CA). The viscosity of ileal supernatant was measured using a

Brookfield cone-plate digital viscometer (Model LVDV-III, Brookfield Engineering Labs, INC,

Stoughton, MA 02072), which was maintained at 40˚C (40 rpm; shear rate 300 s-1). The rest of

the ileal supernatant was stored at -80˚C for β-glucan molecular weight analysis.

Experiment 2

Birds and housing. A total of 2376 male and female (Ross × Ross 308) broiler chickens

were obtained from a commercial hatchery on the day of hatch and randomly placed in 36 litter

(straw) floor pens (2.3 m × 2.0 m) in nine environmentally controlled rooms with an estimated

trial end density of 31 kg/m2. Each room contained four pens randomly assigned to the four

treatments; each treatment was replicated nine times. Each pen (66 birds per pen) contained a

tube feeder and a height-adjustable nipple drinker (six Lubing nipples). The room temperature

was 33˚C at the chick placement and was gradually reduced to 21˚C by d 25. Day length was

gradually reduced from 23 h at d 0 to 17 h at d 12, and the light intensity was set to 20 lux at the

start and gradually decreased to 10 lux by d 10. Birds were given feed and water ad-libitum.

Experimental diets. The experimental diets were designed according to a 2 × 2 factorial

arrangement. The two main factors were BGase (Econase GT 200 P from ABVista, Wiltshire,

UK) and medication (same antibiotic and anti-coccidial drug used in Experiment 1). Beta-glu-

canase levels 0 and 0.1% (BGase activity of 0 and 200,000 BU/kg, respectively), and with or

without medication were applied for the experimental diets. CDC Fibar was used as the HB

cultivar for the experiment. The diets were formulated by adhering to Ross 308 broiler
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nutrition specifications [25], and the ingredient composition and calculated nutrient levels are

shown in Table 1. The starter diets (d 0–11) were fed in crumble form, and grower diets (d 11–

33) were given initially in crumble form and then switched to a pellet form. The conditions

used during feed processing, including pelleting temperature and the measured enzyme activ-

ity, were similar to Experiment 1.

Coccidiosis vaccination. In Experiment 2, all the birds were vaccinated with the Coccivac

B-52 live vaccine (Merck Animal Health; 1.3× recommended dose). The vaccination was com-

pleted at d 5 to facilitate uniform intake of coccidian oocysts by the birds. The vaccine contains

oocysts of Eimeria acervulina, E. mivatis, E. maxima and E. tenella. The vaccine was sprayed

on feed located in a cardboard egg tray and into water placed in an ice cube tray. A 30 cm wide

Kraft brown paper strip (Model S-8511S, ULINE Canada, Milton, Ontario, Canada) was

Table 1. Ingredients and calculated nutrient levels (%) of experimental diets.

Ingredient Experiment 1 Experiment 2

Starter Grower

Hulless barley 60.00 59.09 60.00

Wheat 4.46 0.00 4.55

Soybean meal 26.93 32.97 26.99

Canola oil 4.07 3.29 4.13

Monocalcium phosphate 1.20 1.40 1.20

Limestone 1.52 1.64 1.52

Sodium chloride 0.38 0.43 0.38

Vitamin-mineral broiler premix1 0.50 0.50 0.50

Choline chloride 0.10 0.10 0.10

DL-Methionine 0.27 0.30 0.27

L-Threonine 0.05 0.07 0.05

L-Lysine HCl 0.22 0.21 0.22

Nutrient, calculated

AME (kcal/kg) 3100 3000 3100

Crude protein 21.24 23.46 21.24

Crude fat 5.57 4.74 5.57

Calcium 0.87 0.96 0.87

Chloride 0.36 0.38 0.36

Non-phytate phosphorous 0.44 0.48 0.44

Potassium 0.83 0.92 0.83

Sodium 0.18 0.20 0.18

Digestible arginine 1.35 1.50 1.35

Digestible isoleucine 0.81 0.90 0.81

Digestible leucine 1.47 1.61 1.47

Digestible lysine 1.15 1.28 1.15

Digestible methionine 0.54 0.60 0.54

Digestible methionine and cysteine 0.87 0.95 0.87

Digestible threonine 0.77 0.86 0.77

Digestible tryptophan 0.24 0.27 0.24

Digestible valine 0.87 0.96 0.87

1Vitamin-mineral premix provided the following per kilogram of complete diet: vitamin A, 11,000 IU; vitamin D3, 2,200 IU; vitamin E, 30 IU; menadione, 2 mg;

thiamine, 1.5 mg; riboflavin, 6 mg; pyridoxine, 4 mg; vitamin B12, 0.02 mg; niacin, 60 mg; pantothenic acid, 10 mg; folic acid, 0.6 mg; biotin 0.15 mg; copper, 10 mg;

iron, 80 mg; manganese 80 mg; iodine, 0.8 mg; zinc, 80 mg; selenium, 0.3 mg; calcium carbonate 500 mg; ethoxyquin 0.63 mg; wheat middlings 3773 mg.

https://doi.org/10.1371/journal.pone.0236231.t001
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placed under the full length of the nipple drinker line in each pen before vaccination to facili-

tate oocyst ingestion by the birds. In addition, 60% of relative humidity was maintained in the

rooms, to facilitate oocyst cycling. Feeders and drinkers were raised in each pen before vacci-

nation and were put-down once the birds consumed the vaccine containing feed and water.

Rearing performance data collection. Body weight and feed intake were measured on a

pen basis at d 11, 22 and 32. The examination of bird behavior and health and the humane

endpoints were similar to Experiment 1. The mortality was recorded daily, and the bird car-

casses were sent to Prairie Diagnostic Services for necropsy.

Sample collection. A total of four birds per pen were euthanized at two collection points

(d 11 and 33) by intravenous administering T-61 (Merck animal health, Kirkland, Quebec,

Canada), and the individual bird weights were recorded. Two birds per pen in each collection

were used to take the pH measurements and collect ileal and caecal contents for SCFA analysis

as described in Experiment 1. Two 1 cm samples of mid-ileum were sectioned (before taking

samples for SCFA analysis), placed in 10% neutral buffered formalin, and stored at room tem-

perature until histo-morphology evaluation. Two birds per pen were used to collect relative

digestive tract morphology data at each collection according to the same procedure mentioned

under Experiment 1. The viscosity of ileal supernatant was measured using one bird per pen.

Nutritional analysis

The ingredients (HB and wheat) were ground using a Retsch laboratory mill (Retsch ZM 200,

Germany) and analyzed for total starch, CP, fat, ash, moisture and fibre following AOAC, AACC

and ICC standard methods [26–28]. Ingredients were analyzed for total starch using the AOAC

method 996.11 and the AACC method 76–13.01 using a Megazyme kit (Total starch assay proce-

dure, Amyloglucosidase/α-amylase method, Megazyme International Ireland Ltd., Bray Business

Park, Bray, Co. Wicklow, Ireland). Nitrogen was analyzed using a Leco nitrogen analyzer (Model

Leco-FP-528L, Leco Corporation, St. Joseph, MA, USA), and 6.25 was the N to CP conversion

factor. Ether extraction was completed using Goldfish Extraction Apparatus (Labconco model

35001; Labconco, Kansas, MO, USA) following the AOAC method 920.39 to determine fat con-

tent. Ash content was analyzed according to the AOAC method 942.05 using a muffle oven

(Model Lindberg/Blue BF51842C, Asheville, NC 28804, USA). Moisture was analyzed using the

AOAC method 930.15. The insoluble dietary fibre and soluble dietary fibre analysis was com-

pleted using a Megazyme kit (Total dietary fibre assay procedure, Megazyme International Ire-

land Ltd., Bray Business Park, Bray, Co. Wicklow, Ireland) according to the AOAC method

991.43 and the AACC method 32–07.01. Total dietary fibre was obtained by adding insoluble

and soluble dietary fibre. Beta-glucan was analyzed using a Megazyme analysis kit (Mixed-link-

age beta-glucan assay procedure/McCleary method, Megazyme International Ireland Ltd., Bray

Business Park, Bray, Co. Wicklow, Ireland) according to the AOAC Method 995.16, AACC

Method 32–23, and ICC Standard Method No. 168. In addition, diets were analyzed for β-gluca-

nase (EC 3.2.1.6) and xylanase activity (EC 3.2.1.8) according to the AB Vista methods of ESC

Standard Analytical Methods SAM042-01 and SAM038, respectively (ABVista, Wiltshire, UK).

Beta-glucan molecular weight

Ileal supernatant samples were boiled for 15 min and centrifuged at 17,013 × g for 10 min

using a Beckman microfuge (Model E348720, Beckmann instruments, INC, Palo Alto, CA).

The sample was then analyzed for β-glucan molecular weight using size exclusion chromatog-

raphy and calcofluor post-column derivatization [29]. The two columns used for HPLC were

Shodex OHpak SB-806M with OHpak SB-G column guard and a Waters Ultrahydrogel linear

column. The mobile phase was 0.1M Tris buffer (pH = 8). Beta-glucan peak molecular weight
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(Mp), weighted average molecular weight (Mw), and the maximum molecular weight for the

smallest 10% β-glucan molecules (MW-10%) of each sample were noted. Peak molecular

weight is the molecular weight of the highest β-glucan fraction, and the weighted average

molecular weight is the average of the molecular weights of all β-glucan, emphasizing the

weight fraction of each molecule [29].

Short chain fatty acids analysis

Short chain fatty acids were analyzed in triplicate by [30] with minor changes. The internal stan-

dard for the analysis was made up of 20 ml of 25% phosphoric acid, 300 μl of isocaproic acid,

and deionized water. Three hundred microliters of acetic acid, 200 μl of propionic acid, 100 μl

of butyric acid, and 50 μl of isobutyric, isovaleric, valeric, caproic and lactic acids were used to

make the standard solution. The digesta was thawed and mixed with 25% phosphoric acid at 1:1

and kept at room temperature for 10 min with occasional shaking. It was then centrifuged at

12,500 × g for 10 min. The supernatant (1 ml) was mixed with 1 ml of the internal standard and

centrifuged at 12,500 × g for 10 min. It was filtered using a 0.45-micron nylon filter, and the

filtrate was placed in a GC autosampler vial and injected into a Zebron Capillary Gas Chroma-

tography column (length 30m, internal diameter 0.25 mm, film thickness 0.25 μm; (Zeb-

ronTMZB-FFAP, Phenomenex, Torrance, CA). The SCFA analysis was completed using the

Thermo Scientific Gas Chromatography system (Model Trace 1310, Milan, Italy).

Histomorphology of gastro-intestinal wall

Ileal tissue samples were cut into two longitudinal sections and embedded in paraffin. Two

slides were made from each sample to obtain ileal morphology measurements (Hematoxylin

and Eosin stain) and goblet cell categorization (Alcian Blue/ Periodic Acid-Schiff stain). An

Optika B-290TB digital microscope (Bergamo, Italy) was used to observe slides, and an

HDCE-X3 digital camera with Optika Vision Lite software was used to capture the images.

Well-oriented 8–10 villi and crypts per section were used to measure villi length, width, and

crypt depth. Villi length was considered as the length from the tip of a villus to the villus-crypt

junction. The villi width was measured at the middle of the villus height. The depth of the

invagination between adjacent villi was considered as the crypt depth. Goblet cells were

counted around the perimeter of 8–10 well-oriented villi per section, and the three categories

of goblet cells were identified, acidic mucin-producing (stained in blue), neutral mucin-pro-

ducing (stained in magenta) and mixed mucin-producing (stained in purple) [31].

Statistical analysis

Data were analyzed using the Proc Mixed model of SAS 9.4 [32]. Both experiments were ran-

domized complete block designs, and the battery cage level and room were considered as

blocks for Experiments 1 and 2, respectively. Treatments were replicated 10 times in Experi-

ment 1 (battery cages equally distributed in two levels) and nine times in Experiment 2 (one

pen in nine different rooms). Differences were considered significant when P� 0.05. Data

were checked for normality and analyzed using 2-way ANOVA. Tukey-Kramer test was used

to detect significant differences between means.

Results

Experiment 1

Ingredient nutrient composition. Total dietary fibre, insoluble dietary fibre, soluble die-

tary fibre and total β-glucan in HB were 29.0, 19.6, 9.6 and 8.70%, respectively, and the same
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fractions were 15.2, 13.7, 1.6 and 0.68%, respectively for wheat. The content of total starch, CP,

fat and ash were measured as 49.7, 16.2, 2.4 and 2.4%, respectively, in HB, and as 64.1, 15.0, 1.2

and 1.9% in wheat.

Beta-glucan molecular weight. Interactions between BGase and medication were signifi-

cant for Mp and Mw but not for MW-10% (Table 2) For Mp, BGase decreased values without

and with medication, but mean separation failed to confirm an interaction as values were not

affected by medication regardless of enzyme use. The interaction for Mw again demonstrated

a lowering effect of BGase resulting in similar values without and with medication. Medication

reduced Mw in the absence of BGase but had no effect with BGase. Medication did not affect

MW-10% while BGase reduced its value.

The viscosity of ileal supernatant. Ileal digesta viscosity was not affected by medication

in Experiment 1, but was reduced with the use of BGase (Table 3).

Short chain fatty acids and gastro-intestinal pH. Ileal digesta SCFA levels and molar

percentages were not affected by dietary treatments, except for caproic acid concentration,

where values were lower with BGase supplementation (Table 4). Similarly, caecal digesta

SCFA concentrations and molar percentages were also not affected by treatment (Table 5).

Noteworthy, the interaction between medication and BGase tended to be significant

(P = 0.06–0.09) for the concentrations of total and individual SCFA. In all cases, levels tended

to decrease with enzyme use in the non-medicated diets and increase with enzyme use in the

medicated diets.

Except for the duodenum, medication, BGase, and their interactions did not affect the

digestive tract pH (Table 6). The enzyme use increased duodenal pH from 6.08 to 6.20.

Table 2. Effects of diet medication and β-glucanase on β-glucan molecular weight in ileal content of broiler chickens.

Medication β-glucanase (%) Molecular weight (g/mol)

Experiment 1 Experiment 2

d 28 d 11 d 33

Mp1 Mw MW-10% Mp Mw MW-10% Mp Mw MW-10%

without 0 19799a 36199a 6096 78293a 80971 33322a 65176a 69508a 29025a

0.1 7793b 8434c 1955 24568c 63835 7250b 16985c 48316b 7074c

with 0 16824a 19119b 5326 54475b 59002 26065a 40595b 49017b 13586b

0.1 10401b 9929c 2201 27677c 61898 10586b 22144c 60641a 8157c

SEM2 1148.1 2513.9 509.2 5982.7 3537.4 2717.0 4481.7 2258.9 1890.1

Main effects

Medication

without 13796 22317 4025 51431 72403 20286 41080 58912 18049

with 13612 14524 3763 41076 60450 18325 31370 54829 10871

β-glucanase (%)

0 18311 27659 5711a 66384 69986 29694 52885 59263 21305

0.1 9096 9181 2078b 26122 62867 8918 19565 54479 7615

Probability

Medication 0.86 0.001 0.70 0.08 0.06 0.39 0.04 0.16 < .0001

β-glucanase < .0001 < .0001 < .0001 < .0001 0.21 < .0001 < .0001 0.10 < .0001

Medication × β-glucanase 0.01 0.0004 0.45 0.03 0.09 0.03 0.004 < .0001 < .0001

a-cMeans within a main effect or interaction not sharing a common superscript are significantly different (P� 0.05).
1Mp—peak molecular weight; Mw—weighted average molecular weight; MW-10%—The maximum molecular weight for the smallest 10% molecules.
2SEM—pooled standard error of mean (d 28, n = 6 cages per treatment; d 11 and 33, n = 6 birds per treatment).

https://doi.org/10.1371/journal.pone.0236231.t002
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Table 3. Effects of diet medication and β-glucanase on the viscosity of ileal supernatant in broiler chickens.

Medication β-glucanase (%) Viscosity (cP)

Experiment 1 Experiment 2

d 28 d 11 d 33

without 0 4.72 9.73a 3.98

0.1 3.33 3.53b 2.30

with 0 4.16 6.04ab 4.61

0.1 3.38 4.13b 2.80

SEM1 0.147 0.674 0.250

Main effects

Medication

without 4.02 6.63 3.14

with 3.77 5.08 3.70

β-glucanase (%)

0 4.44a 7.89 4.29a

0.1 3.35b 3.83 2.55b

Probability

Medication 0.25 0.11 0.17

β-glucanase < .0001 0.0005 0.0002

Medication × β-glucanase 0.16 0.03 0.86

a-bMeans within a main effect or interaction not sharing a common superscript are significantly different (P� 0.05).
1SEM—pooled standard error of mean (d 28; n = 10 cages per treatment/ d 11; n = 6 birds per treatment/ d 33; n = 9 birds per treatment).

https://doi.org/10.1371/journal.pone.0236231.t003

Table 4. Effects of diet medication and β-glucanase on ileal digesta short chain fatty acids of broiler chickens at 28 days of age (Experiment 1).

Medication BGase1 (%) SCFA μmol/g of wet ileal content Molar percentage of total SCFA

Total Ace Pro But Isob Val Isov Cap Lac Ace Pro But Isob Isov Val Cap Lac

without 0 165.8 61.8 22.2 10.6 2.7 3.3 2.9 1.3 60.6 37.5 13.1 6.4 1.6 1.7 1.9 0.7 36.6

0.1 157.2 59.1 20.8 10.3 2.9 2.6 2.2 1.0 58.0 37.6 13.3 6.5 1.8 1.4 1.6 0.6 36.9

with 0 173.5 66.4 23.4 10.8 2.5 2.7 2.9 1.5 63.0 38.3 13.2 6.3 1.4 1.6 1.5 0.8 36.5

0.1 156.9 59.1 21.8 10.3 2.4 2.6 2.6 1.2 56.5 37.6 14.0 6.6 1.4 1.6 1.6 0.8 36.1

SEM2 4.51 1.66 0.75 0.31 0.18 0.17 0.17 0.07 1.60 0.23 0.28 0.09 0.10 0.09 0.08 0.09 0.24

Main effects

Medication

Without 161.5 60.5 21.5 10.4 2.8 2.9 2.6 1.1 59.3 37.6 13.2 6.5 1.7 1.5 1.7 0.7 36.7

With 165.2 62.7 22.6 10.5 2.4 2.6 2.8 1.3 59.8 38.0 13.6 6.4 1.4 1.6 1.5 0.8 36.3

BGase (%)

0 169.6 64.1 22.8 10.7 2.6 3.0 2.9 1.4a 61.8 37.9 13.2 6.3 1.5 1.7 1.7 0.8 36.6

0.1 157.0 59.1 21.3 10.3 2.6 2.6 2.4 1.1b 57.2 37.6 13.6 6.6 1.6 1.5 1.6 0.7 36.5

Probability (%)

Medication 0.66 0.46 0.41 0.86 0.31 0.38 0.55 0.10 0.87 0.38 0.48 0.80 0.13 0.78 0.25 0.08 0.38

BGase 0.13 0.11 0.28 0.53 0.94 0.28 0.11 0.02 0.13 0.57 0.45 0.27 0.55 0.34 0.55 0.10 0.85

Medication × BGase 0.63 0.45 0.94 0.90 0.67 0.36 0.52 0.73 0.51 0.40 0.59 0.61 0.57 0.34 0.23 0.35 0.47

a-dMeans within a main effect or interaction not sharing a common superscript are significantly different (P� 0.05).
1BGase—β-glucanase; SCFA—short chain fatty acids; Ace—Acetic acid; Pro—Propionic acid; But—Butyric acid; Isob—Isobutyric acid; Val—Valeric acid; Isov—

Isovaleric acid; Cap—Caproic acid.
2SEM—pooled standard error of mean (n = 20 birds per treatment).

https://doi.org/10.1371/journal.pone.0236231.t004
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Table 5. Effects of diet medication and β-glucanase on caecal short chain fatty acids of broiler chickens aged 28 days (Experiment 1).

Medication BGase1 (%) SCFA μmol/g of wet caecal content Molar percentage of total SCFA

Total Ace Pro But Isob Val Isov Cap Ace Pro But Isob Val Isov Cap

without 0 284.2 166.6 58.5 28.0 9.9 8.6 8.6 3.7 58.7 20.5 9.8 3.5 3.0 3.0 1.3

0.1 273.9 161.7 56.5 27.0 8.4 8.3 8.3 3.5 59.0 20.6 9.9 3.0 3.0 3.0 1.3

with 0 267.5 158.0 55.2 26.2 8.2 8.1 8.1 3.5 59.0 20.6 9.8 3.0 3.0 3.0 1.3

0.1 310.3 183.1 64.0 30.6 9.5 9.3 9.4 4.0 58.9 20.6 9.8 3.0 3.0 3.0 1.3

SEM2 7.59 4.49 1.60 0.74 0.35 0.23 0.23 0.10 0.23 0.28 0.09 0.10 0.08 0.09 0.03

Main effects

Medication

without 279.0 164.1 57.5 27.5 9.1 8.4 8.5 3.6 58.8 20.5 9.8 3.3 3.0 3.0 1.3

with 288.9 170.5 59.6 28.4 8.8 8.7 8.8 3.7 59.0 20.6 9.8 3.0 3.0 3.0 1.3

BGase (%)

0 275.8 162.3 56.8 27.1 9.0 8.3 8.4 3.6 58.8 20.5 9.8 3.3 3.0 3.0 1.3

0.1 292.1 172.4 60.2 28.8 8.9 8.8 8.9 3.8 59.0 20.6 9.9 3.0 3.0 3.0 1.3

Probability (%)

Medication 0.50 0.46 0.50 0.53 0.69 0.51 0.49 0.48 0.57 0.57 0.90 0.30 0.62 0.49 0.47

BGase 0.27 0.25 0.27 0.23 0.85 0.31 0.30 0.30 0.57 0.65 0.48 0.27 0.94 0.92 0.95

Medication × BGase 0.07 0.09 0.08 0.06 0.06 0.08 0.08 0.08 0.47 0.71 0.99 0.28 0.61 0.76 0.84

a-dMeans within a main effect or interaction not sharing a common superscript are significantly different (P� 0.05).
1BGase—β-glucanase; SCFA—short chain fatty acids; Ace—Acetic acid; Pro—Propionic acid; But—Butyric acid; Isob—Isobutyric acid; Val—Valeric acid; Isov—

Isovaleric acid; Cap—Caproic acid.
2SEM—pooled standard error of mean (n = 20 birds per treatment).

https://doi.org/10.1371/journal.pone.0236231.t005

Table 6. Effects of diet medication and β-glucanase on gastro-intestinal pH of broiler chickens at day 28 (Experiment 1).

Medication β-glucanase (%) Crop Gizzard Duodenum Jejunum Ileum Caeca Colon

without 0 5.29 3.54 6.05 5.99 7.08 6.02 6.92

0.1 5.23 3.26 6.19 6.01 7.26 6.04 7.17

with 0 5.43 3.23 6.10 5.96 7.25 5.90 7.08

0.1 5.20 3.17 6.21 6.05 7.27 5.93 7.13

SEM1 0.070 0.071 0.027 0.024 0.048 0.055 0.067

Main effects

Medication

Without 5.26 3.40 6.12 5.99 7.17 6.03 7.04

With 5.31 3.20 6.16 6.00 7.26 5.91 7.11

β-glucanase (%)

0 5.36 3.39 6.08b 5.97 7.16 5.96 7.00

0.1 5.21 3.22 6.20a 6.03 7.26 5.98 7.15

Probability

Medication 0.70 0.15 0.46 0.89 0.25 0.29 0.61

β-glucanase 0.29 0.21 0.01 0.16 0.20 0.82 0.22

Medication × β-glucanase 0.55 0.41 0.80 0.40 0.29 0.94 0.43

a-bMeans within a main effect or interaction not sharing a common superscript are significantly different (P� 0.05).
1SEM—pooled standard error of mean (n = 20 birds per treatment).

https://doi.org/10.1371/journal.pone.0236231.t006
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Gastro-intestinal tract morphology. Interactions were not found between BGase and

medication for empty weights and lengths of the digestive tract sections, except for crop weight

(Table 7). Crop weight was lower with enzyme use when the birds were fed a non-medicated

diet, but the enzyme had no effect when the diets were medicated. However, the absence of

medication effect based on the mean separation failed to show the interaction. Both ileum and

colon weights were lower when the enzyme was fed. Crop content weight was higher, and duo-

denal and ileal content weights were lower when 0.1% BGase was fed (Table 8).

Measurements of the contents of the digestive tract. Interactions between BGase and

medication were found for the content weights of the gizzard, jejunum and small intestine.

Medication increased the gizzard content weight when the diets did not contain BGase. Beta-

glucanase resulted in lower jejunal and small intestinal content weights in the absence of die-

tary antibiotics but had no effect when the medication was used. However, the interactions

were not demonstrated based on mean separation due to the absence of medication or BGase

effect on these content weights.

Body weight gain, feed intake and feed to gain ratio. Interactions between medication

and BGase were significant or nearly significant for body weight gain and feed intake from 0–7

d, 7–14 d (P = 0.06) and 0–28 d (P = 0.06–0.07), and feed to gain ratio (F:G) from 0–7 d

(Table 9). Body weight gain and feed intake followed a similar response to treatments. In birds

fed diets without medication, the addition of BGase reduced 0–7 d gain and feed intake and

tended to reduce 7–14 d gain and feed consumption. However, in those fed diets with medica-

tion, enzyme either did not affect (0–7 d) or increased (7–14 d) these response criteria. For the

0–7 d F:G ratio interaction, enzyme decreased and increased feed efficiency in unmedicated

diets and medicated diets, respectively. The total mortality of the study was 3.8%, and HB or

BGase did not affect the mortality.

Table 7. Effects of diet medication and β-glucanase on gastro-intestinal tissue weights and lengths (proportional to body weight) of broiler chickens at d 28 (Experi-

ment 1).

Medication BGase1 (%) Empty weight (%) Length (cm/100g)

Crop Proven Gizzard Duo Jejunum Ileum SI Caeca Colon Duo Jejunum Ileum SI Caeca Colon

without 0 0.34a 0.38 1.20 0.73 1.37 1.00 3.08 0.36 0.17 1.73 4.22 4.18 10.07 1.67 0.41

0.1 0.29b 0.38 1.32 0.73 1.30 0.91 2.94 0.37 0.14 1.75 4.01 4.11 9.87 1.69 0.39

with 0 0.30ab 0.43 1.31 0.71 1.31 0.97 2.99 0.36 0.15 1.80 4.24 4.35 10.39 1.73 0.42

0.1 0.31ab 0.38 1.33 0.74 1.28 0.93 2.94 0.37 0.15 1.79 4.23 4.29 10.28 1.68 0.42

SEM2 0.006 0.009 0.020 0.008 0.018 0.012 0.030 0.009 0.003 0.023 0.056 0.059 0.118 0.026 0.007

Main effects

Medication

without 0.32 0.38 1.26 0.73 1.33 0.96 3.01 0.36 0.16 1.74 4.12 4.15 9.97 1.68 0.40

with 0.30 0.40 1.32 0.73 1.30 0.95 2.97 0.37 0.15 1.79 4.23 4.32 10.33 1.71 0.42

BGase (%)

0 0.32 0.41 1.25 0.72 1.34 0.98a 3.04 0.36 0.16a 1.76 4.23 4.27 10.23 1.70 0.42

0.1 0.30 0.38 1.32 0.74 1.29 0.92b 2.94 0.37 0.15b 1.77 4.12 4.20 10.07 1.68 0.41

Probability

Medication 0.36 0.18 0.10 0.83 0.34 0.61 0.45 0.84 0.58 0.21 0.29 0.13 0.11 0.61 0.16

BGase 0.29 0.10 0.07 0.30 0.14 0.005 0.12 0.41 0.01 0.83 0.32 0.56 0.49 0.75 0.44

Medication × BGase 0.007 0.13 0.18 0.47 0.57 0.31 0.40 0.98 0.08 0.75 0.35 0.97 0.82 0.48 0.64

a-bMeans within a main effect or interaction not sharing a common superscript are significantly different (P� 0.05).
1BGase—β-glucanase; Proven—proventriculus; Duo—duodenum; SI—small intestine.
2SEM—pooled standard error of mean (n = 20 birds per treatment).

https://doi.org/10.1371/journal.pone.0236231.t007
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Table 8. Effects of diet medication and β-glucanase on gastro-intestinal content and organ weights as a percentage of body weight of broiler chickens at d 28 (Exper-

iment 1).

Medication BGase1 (%) Content Weight

Crop Proven Gizzard Duo Jejunum Ileum SI Caeca Colon Liver Spleen Pancreas

without 0 0.28 0.03 0.93b 0.09 1.03a 1.17 2.29a 0.30 0.19 2.40 0.10 0.24

0.1 0.52 0.03 1.14b 0.07 0.74b 0.90 1.69b 0.24 0.16 2.50 0.09 0.23

with 0 0.33 0.11 1.53a 0.09 0.85ab 1.11 2.05ab 0.27 0.21 2.43 0.10 0.26

0.1 0.45 0.03 1.31ab 0.07 0.87ab 1.06 2.00ab 0.26 0.19 2.40 0.09 0.25

SEM2 0.066 0.017 0.058 0.005 0.028 0.035 0.056 0.014 0.009 0.029 0.003 0.005

Main effects

Medication

without 0.40 0.03 1.03 0.08 0.88 1.03 1.99 0.27 0.18 2.45 0.10 0.24

with 0.39 0.07 1.42 0.08 0.86 1.09 2.02 0.26 0.20 2.41 0.09 0.25

BGase (%)

0 0.30b 0.07 1.23 0.09a 0.94 1.14a 2.17 0.28 0.20 2.41 0.10 0.25

0.1 0.48a 0.03 1.22 0.07b 0.80 0.98b 1.84 0.25 0.18 2.45 0.92 0.24

Probability

Medication 0.92 0.22 0.0005 0.60 0.63 0.43 0.74 0.77 0.14 0.50 0.72 0.05

BGase 0.04 0.25 0.93 0.01 0.007 0.02 0.002 0.21 0.19 0.45 0.20 0.16

Medication × BGase 0.56 0.21 0.04 0.90 0.002 0.11 0.01 0.39 0.74 0.22 0.74 0.82

a-bMeans within a main effect or interaction not sharing a common superscript are significantly different (P� 0.05).
1BGase—β-glucanase; Proven—proventriculus; Duo—duodenum; SI—small intestine.
2SEM—pooled standard error of mean (n = 20 birds per treatment).

https://doi.org/10.1371/journal.pone.0236231.t008

Table 9. Effects of diet medication and β-glucanase on body weight gain, feed intake and feed efficiency of broiler chickens (Experiment 1).

Medication β-glucanase

(%)

BWG1 (kg) FI (kg) F:G

d 0–7 d 7–14 d 14–

21

d 21–28 d 0–28 d 0–7 d 7–14 d 14–

21

d 21–28 d 0–28 d 0–7 d 7–14 d 14–

21

d 21–

28

d 0–28

without 0 0.143a 0.303 0.507 0.699 1.650 0.167a 0.421 0.729 1.055 2.371 1.17b 1.39 1.44 1.53 1.45

0.1 0.126c 0.296 0.498 0.656 1.575 0.157b 0.399 0.705 1.004 2.265 1.26a 1.35 1.42 1.54 1.44

with 0 0.130bc 0.284 0.492 0.668 1.573 0.160ab 0.387 0.706 1.000 2.251 1.23a 1.36 1.44 1.50 1.43

0.1 0.135ab 0.301 0.494 0.677 1.607 0.160ab 0.409 0.695 1.012 2.275 1.19b 1.36 1.41 1.50 1.42

SEM2 1.562 2.966 4.564 10.050 14.222 1.172 4.887 5.856 11.406 18.375 0.008 0.011 0.009 0.014 0.007

Main effects

Medication

Without 0.134 0.299 0.503 0.678 1.612 0.162 0.410 0.717 1.030 2.318 1.21 1.37 1.43 1.53 1.45

With 0.132 0.292 0.493 0.673 1.591 0.160 0.398 0.700 1.006 2.263 1.21 1.36 1.42 1.50 1.43

β-glucanase (%)

0 0.136 0.293 0.500 0.684 1.612 0.163 0.404 0.717 1.027 2.311 1.20 1.38 1.44 1.52 1.44

0.1 0.130 0.298 0.496 0.666 1.591 0.159 0.404 0.700 1.008 2.270 1.22 1.35 1.41 1.52 1.43

Probability

Medication 0.36 0.21 0.32 0.79 0.43 0.35 0.17 0.15 0.29 0.12 0.70 0.55 0.69 0.21 0.12

β-glucanase 0.01 0.38 0.71 0.36 0.45 0.04 0.99 0.14 0.39 0.25 0.06 0.30 0.20 0.96 0.26

Medication × β-glucanase <

.0001

0.06 0.54 0.17 0.06 0.02 0.06 0.55 0.17 0.07 <

.0001

0.44 0.85 0.90 0.85

a-cMeans within a main effect or interaction not sharing a common superscript are significantly different (P� 0.05).
1BWG—body weight gain; FI—feed intake; F:G—feed to gain ratio.
2SEM—pooled standard error of mean (n = 10 cages per treatment).

https://doi.org/10.1371/journal.pone.0236231.t009
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Experiment 2

Ingredient nutrient composition. Total dietary fibre, insoluble dietary fibre, soluble die-

tary fibre and total β-glucan were 26.7, 18.9, 7.8 and 8.70% (HB); 14.4, 12.4, 2.0 and 0.64%

(wheat), respectively. In addition, total starch, CP, fat and ash were determined to be 53.7,

16.2, 2.8 and 2.4% in HB, and as 62.8, 14.9, 1.2 and 1.7% in wheat, respectively.

Beta-glucan molecular weight. Interactions were found for all molecular weight criteria

at both ages (11 and 33 d) except for Mw at 11 d, which was unaffected by medication or

BGase (Table 2). Values for Mp and MW-10% followed a similar trend, with enzyme consis-

tently reducing values at both ages, but with the degree of response less in medicated diets

when considering Mp. In the absence of the enzyme, medication reduced Mp at both ages and

MW-10% on d 33. However, mean separation could not demonstrate an interaction between

BGase and medication for MW-10% at d 11 since the medication effect is not evident regard-

less of BGase use. The interaction for Mw at 33 d was due to enzyme decreasing and increasing

Mw for nonmedicated and medicated diets, respectively.

Fig 1A and 1B compare the β-glucan molecular weight of ileal digesta from 11 d broilers fed

diets without medication and without and with BGase, respectively. Beta-glucanase increased

the proportion of low molecular weight β-glucan, as shown by curve placement relative to the

blue line at x-axis point 1e4 (a random point that selected to compare the three graphs). Diet

medication also increased the proportion of low molecular weight β-glucan compared to the

nonmedicated diet, which is contrasted in Fig 1A and 1C. The same BGase and medication

effects were observed in the β-glucan molecular weight curves of broiler chickens aged 33 d.

The viscosity of ileal supernatant. At 11 d, an interaction was found between medication

and BGase; BGase reduced viscosity without dietary medication (Table 3). However, the inter-

action between BGase and medication was not clear based on the mean separation as the med-

ication effect is absent despite the use of BGase. In the interaction, the highest viscosity was

noted for the treatment without medication or BGase, and the lowest was the treatments with

BGase; treatment with medication and without BGase was intermediate. At d 33, BGase

decreased viscosity, but there was no medication effect.

Short chain fatty acids and gastro-intestinal pH. To a large extent, dietary treatment did

not affect ileal digesta SCFA of 11 d old broilers (Table 10). The exception was a significant

interaction between medication and BGase for valeric acid. Without medication, levels of vale-

ric acid decreased with enzyme use, while levels increased with enzyme use when the medica-

tion was included in the diet. A similar trend (P = 0.10) was noted for isovaleric acid. Levels of

caproic acid decreased with enzyme use. Interactions between BGase and medication were

found for the molar percentages of valeric, isovaleric (P = 0.06), and caproic acids. In diets

without medication, BGase did not affect acid concentration. When the medication was used,

BGase increased acid levels. Dietary treatment interactions were also noted for the propor-

tional levels of propionic and lactic acids. All mean differences were small and often not signif-

icant, but medication decreased propionic acid in BGase containing diets and BGase

decreased lactic acid in medicated diets. However, the separation of means was failed to dem-

onstrate the interactions for propionic and lactic acids due to the absence of medication and

BGase effects, respectively.

The interactions between medication and BGase use at 11 d were significant for total and

individual caecal digesta SCFA (Table 11). The concentrations were higher with 0.1 compared

to 0% BGase in the birds given diets without medication. However, BGase did not affect SCFA

concentrations in the treatments with medication. Concentrations for birds fed medicated

diets were lower than those fed un-medicated diets for the treatments with BGase. The molar

percentages of propionic and isobutyric acids were decreased by medication, while enzyme
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use decreased the proportions of acetic and butyric acids and increased the proportion of vale-

ric acid. The interaction between BGase and medication was significant for the proportional

isovaleric levels, with medication decreasing the level in the absence of BGase but having no

Fig 1. Beta-glucan molecular weight distribution in soluble ileal digesta from 11 d broilers fed 60% hulless barley

diets in Experiment 2. Blue lines denote point 1e4 on the x-axis and red lines indicate the Mp of the distribution curve.

(A) Without medication, 0% β-glucanase (B) Without medication, 0.1% β-glucanase (C) With medication, 0% β-

glucanase.

https://doi.org/10.1371/journal.pone.0236231.g001
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Table 10. Effects of diet medication and β-glucanase on ileal short chain fatty acids of broiler chickens aged 11 days (Experiment 2).

Medication BGase1 (%) SCFA μmol/g of wet ileal content Molar percentage of total SCFA

Total Ace Pro But Val Isov Cap Lac Ace Pro But Val Isov Cap Lac

without 0 125.3 48.2 18.4 8.2 2.7a 1.5 1.19 44.9 38.4 14.6ab 6.5 2.1a 1.2 0.9a 35.8ab

0.1 122.5 47.6 18.3 8.1 1.5bc 1.4 0.79 44.6 38.8 14.9a 6.6 1.2ab 1.1 0.9a 36.4ab

with 0 121.5 46.8 18.0 7.6 1.3c 1.4 1.19 45.1 38.6 14.8ab 6.2 1.1b 1.1 0.6b 36.9a

0.1 118.7 45.3 17.2 7.7 2.5ab 2.5 1.10 42.1 38.2 14.5b 6.5 2.1a 2.1 0.9a 35.4b

SEM2 1.93 0.71 0.28 0.22 0.17 0.19 0.05 0.84 0.21 0.05 0.13 0.13 0.15 0.03 0.17

Main effects

Medication

without 123.9 47.9 18.3 8.2 2.1 1.4 0.99 44.8 38.6 14.8 6.6 1.7 1.1 0.7 36.1

with 120.6 46.1 17.6 7.6 1.9 1.9 1.14 43.6 38.4 14.6 6.4 1.6 1.6 0.9 36.2

BGase (%)

0 123.4 47.5 18.2 7.9 2.0 1.4 1.19a 45.0 38.5 14.7 6.4 1.6 1.1 0.9 36.4

0.1 120.6 46.4 17.7 7.9 2.0 1.9 0.95b 43.4 38.5 14.7 6.6 1.7 1.6 0.7 35.9

Probability (%)

Medication 0.29 0.16 0.16 0.24 0.53 0.17 0.10 0.45 0.64 0.22 0.42 0.69 0.12 0.02 0.89

BGase 0.43 0.41 0.39 0.99 0.98 0.17 0.01 0.30 0.94 0.79 0.54 0.77 0.13 0.01 0.16

Medication × BGase 0.99 0.75 0.50 0.90 0.0003 0.10 0.09 0.39 0.36 0.01 0.84 0.002 0.06 0.04 0.001

a-dMeans within a main effect or interaction not sharing a common superscript are significantly different (P� 0.05).
1BGase—β-glucanase; SCFA—short chain fatty acids; Ace—Acetic acid; Pro—Propionic acid; But—Butyric acid; Isob—Isobutyric acid; Val—Valeric acid; Isov—

Isovaleric acid; Cap—Caproic acid.
2SEM—pooled standard error of mean (n = 12 birds per treatment).

https://doi.org/10.1371/journal.pone.0236231.t010

Table 11. Effects of diet medication and β-glucanase on caecal short chain fatty acids of broiler chickens aged 11 days (Experiment 2).

Medication BGase1 (%) SCFA μmol/g of wet caecal content Molar percentage of total SCFA

Total Ace Pro But Isob Val Isov Cap Ace Pro But Isob Val Isov Cap

without 0 228.6b 134.1b 49.7b 22.7b 7.4b 4.3b 7.4b 2.7b 58.6 21.8 9.9 3.2 1.7 3.3a 0.1

0.1 306.6a 176.5a 66.3a 30.0a 9.9a 9.7a 9.8a 4.2a 57.5 21.6 9.7 3.2 3.1 3.2ab 0.1

with 0 172.8b 100.9bc 36.4bc 17.5b 5.4c 4.6b 5.4c 2.3b 58.3 21.1 10.1 3.1 2.7 3.1b 0.1

0.1 171.2b 98.8c 36.7c 16.8b 5.5c 5.4b 5.4c 2.2b 57.7 21.4 9.8 3.2 3.1 3.2ab 0.1

SEM2 12.94 7.41 2.83 1.25 0.42 0.58 0.41 0.19 0.21 0.05 0.13 0.01 0.13 0.15 0.03

Main effects

Medication

without 267.6 155.3 58.0 26.3 8.7 7.0 8.6 3.4 58.1 21.7a 9.8 3.2a 2.4 3.2 0.1

with 172.0 99.8 36.6 17.2 5.4 5.0 5.4 2.3 58.0 21.3b 9.8 3.1b 2.9 3.1 0.1

BGase (%)

0 200.7 117.5 43.1 20.1 6.4 4.5 6.4 2.5 58.5a 21.5 10.0a 3.2 2.2b 3.2 0.1

0.1 238.9 137.7 51.5 23.4 7.7 7.5 7.6 3.2 57.6b 21.5 9.8b 3.2 3.1a 3.1 0.1

Probability (%)

Medication < .0001 < .0001 < .0001 < .0001 < .0001 0.02 < .0001 0.0002 0.68 0.01 0.09 0.01 0.14 0.01 0.57

BGase 0.02 0.03 0.01 0.04 0.01 0.001 0.01 0.01 0.0004 0.91 0.01 0.89 0.007 0.93 0.34

Medication × BGase 0.01 0.02 0.02 0.01 0.02 0.01 0.03 0.005 0.22 0.17 0.64 0.08 0.16 0.05 0.38

a-dMeans within a main effect or interaction not sharing a common superscript are significantly different (P� 0.05).
1BGase—β-glucanase; SCFA—short chain fatty acids; Ace—Acetic acid; Pro—Propionic acid; But—Butyric acid; Isob—Isobutyric acid; Val—Valeric acid; Isov—

Isovaleric acid; Cap—Caproic acid.
2SEM—pooled standard error of mean (n = 12 birds per treatment).

https://doi.org/10.1371/journal.pone.0236231.t011
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effect when the enzyme was present. However, the interaction was not clear according to

mean separation due to the absence of enzyme effect for proportional isovaleric acid.

Medication and the interactions between medication and BGase did not affect the concen-

trations and molar percentages of ileal SCFA at d 33 (Table 12). All ileal SCFA concentrations

except butyric acid were higher because of BGase use. In addition, the percentages of valeric

and isovaleric acids were higher for the 0.1 compared to the 0% BGase treatment. In contrast,

the lactic acid percentage was slightly lower with enzyme use.

No effect of the interactions of BGase and medication were found for the concentrations

and molar percentages of caecal digesta SCFA at d 33 (Table 13). However, the concentrations

of total SCFA and acetic acid were lower in medicated diets. Similarly, all other SCFA levels

except butyric acid tended (P = 0.06–0.07) to be lower with medication use. The molar per-

centages of acetic acid decreased, while butyric, valeric (P = 0.08) and isovaleric (P = 0.09)

acids increased with medication use. Enzyme use decreased the molar percentage of acetic

acid and increased values for all other SCFA except butyric acid, but minimal changes again,

as noted earlier.

Interactions between BGase and medication were not found for the digestive tract pH,

except for caecal pH at d 11 (Table 14); pH was lower with the enzyme use, but only in the

diets without medication. Medication resulted in higher pH in the crop at d 11 and the ileum

at both d 11 and 33. Duodenal and ileal pH was higher with the use of BGase at d 11. Gizzard

and caecal pH were lower with the enzyme, and ileal pH was higher with diet BGase at d 33.

Gastro-intestinal wall histomorphology. Treatment effects were neither prevalent nor

consistent between ages for gastrointestinal wall histomorphology responses (Table 15). At d

11, medication decreased the crypt depth, while β-glucanase decreased villi width. At 33 d,

Table 12. Effects of diet medication and β-glucanase on ileal short chain fatty acids of broiler chickens aged 33 days (Experiment 2).

Medication BGase1 (%) SCFA μmol/g of wet ileal content Molar percentage of total SCFA

Total Ace Pro But Val Isov Cap Lac Ace Pro But Val Isov Cap Lac

without 0 115.2 44.6 17.0 7.6 1.5 1.6 1.0 41.6 38.7 14.79 6.6 1.3 1.4 0.8 36.1

0.1 125.0 47.8 18.1 8.1 2.6 2.7 1.1 44.3 38.2 14.52 6.5 2.1 2.1 0.9 35.4

with 0 118.9 46.0 17.5 7.8 1.7 1.9 1.0 42.7 38.7 14.74 6.6 1.4 1.6 0.8 35.9

0.1 123.0 47.1 17.9 7.5 2.6 2.6 1.1 43.8 38.3 14.60 6.1 2.1 2.1 0.9 35.6

SEM2 1.21 0.46 0.17 0.13 0.11 0.11 0.02 0.43 0.21 0.05 0.13 0.13 0.15 0.03 0.17

Main effects

Medication

without 120.1 46.2 17.6 7.8 2.1 2.1 1.0 42.9 38.5 14.6 6.5 1.7 1.7 0.9 35.7

with 120.9 46.5 17.7 7.7 2.2 2.3 1.0 43.2 38.5 14.6 6.3 1.8 1.8 0.9 35.7

BGase (%)

0 117.0b 45.3b 17.2b 7.7 1.6b 1.7b 1.0b 42.1b 38.7 14.7 6.6 1.4b 1.5b 0.8 36.0a

0.1 124.0a 47.5a 18.0a 7.8 2.6a 2.6a 1.1a 44.0a 38.3 14.5 6.3 2.1a 2.1a 0.9 35.5b

Probability (%)

Medication 0.73 0.72 0.69 0.51 0.71 0.48 0.88 0.70 0.91 0.88 0.30 0.77 0.53 0.82 0.91

BGase 0.003 0.02 0.02 0.68 < .0001 < .0001 0.01 0.02 0.30 0.10 0.12 0.001 0.003 0.18 0.001

Medication × BGase 0.22 0.24 0.34 0.15 0.61 0.40 0.92 0.34 0.76 0.25 0.37 0.83 0.57 0.72 0.24

a-dMeans within a main effect or interaction not sharing a common superscript are significantly different (P� 0.05).
1BGase—β-glucanase, SCFA—short chain fatty acids; Ace—Acetic acid; Pro—Propionic acid; But—Butyric acid; Isob—Isobutyric acid; Val—Valeric acid; Isov—

Isovaleric acid; Cap—Caproic acid.
2SEM—pooled standard error of mean (n = 18 birds per treatment).

https://doi.org/10.1371/journal.pone.0236231.t012
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medication increased the number of acidic and decreased the number of mixed goblet cells per

villus. The medication also increased the villi height to crypt depth ratio.

Digestive tract morphology. Interactions were found between medication and BGase for

the empty proportional weights of the duodenum, jejunum, small intestine and caeca at d 11

(Table 16). However, the interaction for cecal empty weight was not clear based on mean sepa-

ration since the enzyme effect is absent regardless of medication. For all segments, feeding

diets without medication or enzyme resulted in the heaviest weights. Using an enzyme in non-

medicated diets reduced the segment weights (jejunum and small intestine), while enzyme use

in diets with medication did not affect empty weight. Feeding an enzyme reduced the proven-

triculus empty weight and medication reduced the ileum weight. The length of the jejunum,

ileum, small intestine and caeca were shorter with medication use. The dietary enzyme

reduced the length of the jejunum and the small intestine.

Diet medication decreased the empty proportional weights of the duodenum, jejunum,

ileum, small intestine and colon, and decreased the lengths of the same digestive tract seg-

ments in 33 d old broilers (Table 17). Dietary BGase resulted in lower empty weights for the

crop, ileum and small intestine; the enzyme also reduced the lengths of the duodenum and

ileum. Interactions between BGase and medication were found for the empty jejunum weight,

and the lengths of the jejunum and small intestine. However, mean separation failed to estab-

lish the interaction for jejunum weight due to the absence of enzyme effect regardless of medi-

cation. For the interactions, enzyme use resulted in smaller tissues (only the jejunum and

small intestine lengths) when non-medicated diets were fed but had no effect when diets con-

tained medication. Medication resulted in smaller digestive tract segments in these

interactions.

Table 13. Effects of diet medication and β-glucanase on caecal short chain fatty acids of broiler chickens aged 33 days (Experiment 2).

Medication BGase1 (%) SCFA μmol/g of wet caecal content Molar percentage of total SCFA

Total Ace Pro But Isob Val Isov Cap Ace Pro But Isob Val Isov Cap

without 0 225.0 132.2 46.5 22.5 6.9 6.8 6.8 2.9 58.8 20.6 10.0 3.0 3.04 3.05 1.31

0.1 230.7 134.9 48.1 23.0 7.2 7.1 7.1 3.0 58.5 20.8 9.9 3.1 3.08 3.09 1.33

with 0 209.8 122.6 43.5 21.4 6.5 6.4 6.4 2.7 58.4 20.7 10.2 3.1 3.07 3.07 1.32

0.1 215.5 125.3 45.1 22.0 6.7 6.6 6.7 2.8 58.1 20.9 10.2 3.1 3.10 3.11 1.33

SEM2 3.78 2.17 0.82 0.38 0.12 0.12 0.12 0.05 0.21 0.05 0.13 0.01 0.13 0.15 0.03

Main effects

Medication

without 227.8a 133.5a 47.3 22.7 7.0 6.9 7.0 3.0 58.6a 20.7 10.0b 3.1 3.06 3.07 1.32

with 212.6b 124.0b 44.3 21.7 6.6 6.5 6.5 2.8 58.2b 20.8 10.2a 3.1 3.08 3.09 1.33

BGase (%)

0 217.4 127.4 45.0 22.0 6.7 6.6 6.6 2.8 58.6a 20.7b 10.1 3.0b 3.05b 3.06b 1.31b

0.1 223.1 130.1 46.6 22.5 6.9 6.8 6.9 2.9 58.3b 20.9a 10.0 3.1a 3.09a 3.09a 1.33a

Probability (%)

Medication 0.04 0.02 0.06 0.15 0.06 0.07 0.07 0.07 0.005 0.20 0.02 0.14 0.08 0.09 0.12

BGase 0.43 0.51 0.31 0.50 0.27 0.29 0.28 0.27 0.03 0.02 0.75 0.004 0.01 0.01 0.004

Medication × BGase 0.99 0.99 0.99 0.93 0.98 0.99 0.99 0.94 0.93 0.97 0.85 0.88 0.93 0.97 0.59

a-dMeans within a main effect or interaction not sharing a common superscript are significantly different (P� 0.05).
1BGase—β-glucanase; SCFA—short chain fatty acids; Ace—Acetic acid; Pro—Propionic acid; But—Butyric acid; Isob—Isobutyric acid; Val—Valeric acid; Isov—

Isovaleric acid; Cap—Caproic acid.
2SEM—pooled standard error of mean (n = 18 birds per treatment).

https://doi.org/10.1371/journal.pone.0236231.t013
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Measurements of the contents of the digestive tract, and digestive organ morphology.

The content weight of the small intestine was lower, with the addition of BGase to the diets

without medication (Table 18). Medication reduced the content weight of the crop and caeca,

while BGase reduced the content weight of the gizzard, jejunum, ileum and colon. Diet medi-

cation reduced the pancreas weight, and diet enzyme increased liver weight and decreased

pancreas weight.

The content weights of the duodenum and colon decreased with the use of BGase at d 33

(Table 19). Medication similarly decreased the content weight of the duodenum. Interactions

between medication and enzyme were found for the content weights of the gizzard (P = 0.06),

jejunum, ileum, small intestine and colon (P = 0.06). For the jejunum, ileum, small intestine

and colon segments, the enzyme reduced weights in non-medicated diets but did not affect

content weights in medication presence. For gizzard content weights, enzyme tended to

increase and decrease values in diets without and with medication, respectively. An interaction

was also found for liver weight. The largest weight was found for the birds fed diets with no

medication or enzyme; the addition of enzyme to the unmedicated diet resulted in lower

weight, and the liver weights for medicated diets were smallest and unaffected by the enzyme

in the diet.

Body weight gain, feed intake and feed to gain ratio. Interactions between BGase and

medication were significant for body weight gain for all periods (Table 20), but the nature of

the response changed with age. From 0–11 d, medication increased gain in the birds given

diets with or without BGase, while enzyme did not affect the gain. Weight gain from 11 to 22 d

was increased by enzyme regardless of diet medication, and medication increased the gain in

the treatments with or without BGase. From 22–32 d, enzyme increased gain in the non-

Table 14. Effects of diet medication and diet on gastro-intestinal pH of broiler chickens (Experiment 2).

Medication 1BGase (%) pH

d 11 d 33

Crop Gizzard Duodenum Jejunum Ileum Caeca Crop Gizzard Duodenum Jejunum Ileum Caeca

without 0 4.78 2.81 5.88 5.91 6.29 6.36a 4.94 3.67 6.15 5.93 6.50 6.22

0.1 4.62 2.41 5.99 5.92 6.61 5.78b 4.84 3.44 6.01 5.99 6.94 6.03

with 0 4.93 2.49 5.90 5.90 6.62 5.70b 5.01 3.75 6.18 5.97 7.20 6.19

0.1 5.09 2.55 6.06 6.01 6.97 5.77b 4.91 3.28 6.18 5.99 7.39 5.96

SEM2 0.052 0.057 0.024 0.018 0.053 0.061 0.052 0.057 0.024 0.018 0.053 0.061

Main effects

Medication

without 4.70b 2.61 5.94 5.92 6.45b 6.07 4.89 3.55 6.08 5.96 6.72b 6.12

with 5.01a 2.52 5.98 5.96 6.80a 5.74 4.96 3.52 6.18 5.98 7.30a 6.08

BGase (%)

0 4.85 2.65 5.89b 5.91 6.45b 6.03 4.97 3.71a 6.16 5.95 6.85b 6.21a

0.1 4.86 2.48 6.03a 5.97 6.79a 5.78 4.87 3.36b 6.09 5.99 7.17a 5.99b

Probability

Medication 0.001 0.41 0.33 0.25 0.0001 0.001 0.46 0.71 0.09 0.61 < .0001 0.65

BGase 0.97 0.12 0.004 0.10 0.0002 0.01 0.29 0.001 0.22 0.28 0.0007 0.04

Medication × BGase 0.10 0.04 0.66 0.14 0.84 0.002 0.98 0.24 0.21 0.61 0.16 0.88

a-bMeans within a main effect or interaction not sharing a common superscript are significantly different (P� 0.05).
1BGase—β-glucanase
2 SEM—pooled standard error of mean (d 11; n = 12 birds per treatment, d 33; n = 18 birds per treatment).

https://doi.org/10.1371/journal.pone.0236231.t014
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medicated diets but had no effect when diets contain medication. Overall, weight gain (0–32

d) was increased by enzyme use, regardless of diet medication, but to a greater extent in the

absence of medication.

Medication and enzyme use increased feed intake from 0–11 d, and medication similarly

increased feed intake from 11–22 d. Interactions between medication and enzyme were signifi-

cant from 22–32 d and approached significance (P = 0.06) for the overall experiment. Medica-

tion increased the feed intake in the treatments with BGase from 22–32 d. In the overall

period, medication increased the feed consumption.

Interactions were found between medication and BGase for F:G in all periods. Medication

improved the feed efficiency throughout the trial, but as was the case for body weight gain, the

nature of the interaction with enzyme use changed with bird age. During the 0–11 d period, F:

G worsened with enzyme use when birds were fed non-medicated diets but had no effect when

the medication was used. For the remainder of the periods, including the total trial, enzyme

improved F:G in birds fed non-medicated diets but did not affect broilers consuming medi-

cated diets.

The total mortality of the trial was 3.9% and not affected by HB or BGase. The causes of

death include infectious (yolk sac infection, coccidiosis, systemic), metabolic (sudden death

syndrome, heart failure), and other diseases in both experiments. The mortality attributed to

coccidiosis (by necropsy) was identified as 4.3% of the total mortality. However, 46.7% of the

total mortality was detected as a systemic infection, including necrotic enteritis. Subclinical

coccidiosis in the birds may damage the intestinal epithelial membrane and enhance systemic

infections due to bacterial translocation.

Table 15. Effects of medication and β-glucanase on histomorphology responses in the ileum of broiler chickens (Experiment 2).

Medication BGase1

(%)

d 11 d 33

Villi

height

(μm)

Villi

width

(μm)

Number of goblet cells/

villus

Crypt

depth

(μm)

Villi

height:

Crypt

depth

Villi

height

(μm)

Villi

width

(μm)

Number of goblet cells/

villus

Crypt

depth

(μm)

Villi

height:

Crypt

depth
Acidic Neutral Mixed Acidic Neutral Mixed

without 0 402 101 30 12 4 136 3.1 657 117 77 20 7 134 5

0.1 446 92 35 17 6 139 3.2 656 115 63 20 9 160 4

with 0 405 104 41 11 5 107 3.7 734 113 87 20 6 136 5

0.1 383 88 37 15 4 121 3.2 746 124 91 25 3 143 5

SEM2 22.27 2.20 2.59 1.30 0.46 5.21 0.19 23.26 2.60 4.44 1.74 0.96 4.61 0.18

Main effects

Medication

without 424 97 32 14 5 137a 3.1 656 116 70b 20 8a 147 4b

with 394 96 39 13 5 114b 3.4 740 118 89a 22 4b 140 5a

BGase (%)

0 404 102a 35 11 5 121 3.4 695 115 82 20 6 135 5

0.1 414 90b 36 16 5 130 3.2 701 120 77 22 6 151 4

Probability

Medication 0.54 0.91 0.21 0.56 0.82 0.01 0.41 0.07 0.62 0.03 0.48 0.04 0.39 0.03

BGase 0.83 0.01 0.96 0.08 0.96 0.32 0.58 0.90 0.29 0.52 0.51 0.98 0.06 0.13

Medication × BGase 0.50 0.43 0.39 0.94 0.22 0.53 0.43 0.88 0.17 0.28 0.59 0.21 0.25 0.17

a-b Means within a main effect or interaction not sharing a common superscript are significantly different (P� 0.05).
1BGase—β-glucanase.
2SEM—pooled standard error of mean (n = 6 birds per treatment).

https://doi.org/10.1371/journal.pone.0236231.t015
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Discussion

With minor exceptions, all three molecular weight responses for soluble ileal digesta β-glucan

were lower with the enzyme use, which confirms exogenous BGase mediates the depolymeri-

zation of HB β-glucan in broiler chickens. In addition, the reduction of MW-10% with BGase

in both experiments further supports β-glucan depolymerization since it demonstrates the

increased proportion of small molecular weight soluble β-glucan in ileal digesta. Overall, the

response for Mp was similar in both experiments, which indicates that β-glucan depolymeriza-

tion is independent of the vaccination status of the animal. Further, Mw from Experiment 1

also supports the reduction of molecular weight in the ileal digesta soluble β-glucan with the

use of BGase. In contrast, BGase increased Mw at d 33 (numerically increased at d 11) in

Experiment 2 in the treatments with antibiotics. The reason for the increased β-glucan Mw is

unknown but could relate to the aggregation of smaller weight β-glucan molecules [33] [34,

35] or enzyme-mediated release of higher molecular weight, insoluble β-glucan that had not

yet been depolymerized. The release of higher molecular weight β-glucan would be the more

credible explanation since the increased Mw has been only observed in Experiment 2, which

might be affected by the bird age. The reduction of β-glucan molecular weight and the

increased proportion of small molecular weight soluble β-glucan encourage the assessment of

performance and digestive tract characteristics due to the potentially increased fermentation

of small molecular weight β-glucan. Further, the proportion of small molecular weight β-glu-

can is an important assessment since chicken microbiota preferred small molecular sugars and

peptides over complex polysaccharides and proteins in a study that investigated the utilization

of nutrients by chicken caecal and human faecal microbes using an in vitro assay [36].

Table 16. Effects of diet medication and β-glucanase on gastro-intestinal tissue weights and lengths (proportional to body weight) of broiler chickens at day 11

(Experiment 2).

Medication BGase1

(%)

Empty weight (%) Length (cm/100g)

Crop Proven Gizzard Duodenum Jejunum Ileum SI Caeca Colon Duodenum Jejunum Ileum SI Caeca Colon

without 0 0.53 0.83 2.63 1.92a 2.97a 2.11 7.00a 0.66a 0.26 7.22 17.42 15.66 40.29 5.40 1.39

0.1 0.48 0.79 2.61 1.77ab 2.63b 1.88 6.27b 0.60ab 0.22 6.90 15.16 14.97 37.02 5.24 1.36

with 0 0.46 0.87 2.69 1.51b 2.40b 1.74 5.65c 0.50b 0.25 7.13 15.45 13.56 36.14 4.62 1.40

0.1 0.48 0.77 2.54 1.69ab 2.67b 1.78 6.13bc 0.62ab 0.25 6.11 14.64 13.75 34.49 4.99 1.34

SEM2 0.018 0.018 0.043 0.039 0.053 0.043 0.109 0.020 0.006 0.219 0.273 0.329 0.584 0.121 0.035

Main effects

Medication

without 0.50 0.81 2.62 1.84 2.80 2.00a 6.64 0.63 0.24 7.06 16.29a 15.31a 38.65a 5.32a 1.37

with 0.47 0.82 2.62 1.60 2.54 1.76b 5.89 0.56 0.25 6.62 15.05b 13.65b 35.31b 4.80b 1.37

BGase (%)

0 0.49 0.85a 2.66 1.72 2.69 1.93 6.33 0.58 0.25 7.17 16.43a 14.61 38.21a 5.01 1.39

0.1 0.48 0.78b 2.58 1.73 2.65 1.83 6.20 0.61 0.24 6.50 14.90b 14.36 35.76b 5.12 1.35

Probability

Medication 0.16 0.77 0.92 0.0009 0.001 0.003 <

.0001

0.07 0.44 0.26 0.004 0.01 0.001 0.03 0.92

BGase 0.70 0.04 0.29 0.90 0.62 0.19 0.42 0.43 0.11 0.09 0.0007 0.69 0.01 0.65 0.41

Medication × BGase 0.15 0.42 0.41 0.02 0.0004 0.08 0.0005 0.01 0.15 0.36 0.08 0.48 0.40 0.26 0.74

a-bMeans within a main effect or interaction not sharing a common superscript are significantly different (P� 0.05).
1BGase—β-glucanase; Proven—proventriculus; SI—small intestine.
2SEM—pooled standard error of mean (n = 12 birds per treatment).

https://doi.org/10.1371/journal.pone.0236231.t016
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Table 17. Effects of diet medication and β-glucanase on gastro-intestinal tissue weights and lengths (proportional to body weight) of broiler chickens at day 33

(Experiment 2).

Medication BGase1 (%) Empty weight (%) Length (cm/100g)

Crop Proven Gizzard Duo Jejunum Ileum SI Caeca Colon Duo Jejunum Ileum SI Caeca Colon

without 0 0.30 0.38 1.12 0.87 1.64a 1.13 3.64 0.37 0.17 1.80 4.49a 4.42 10.70a 0.63 0.41

0.1 0.29 0.39 1.23 0.86 1.53a 1.00 3.38 0.38 0.15 1.63 3.88b 3.86 9.37b 0.71 0.38

with 0 0.33 0.44 1.14 0.71 1.24b 0.98 2.92 0.35 0.15 1.57 3.43c 3.36 8.35c 0.60 0.32

0.1 0.27 0.36 1.16 0.70 1.28b 0.92 2.90 0.37 0.15 1.47 3.40c 3.34 8.20c 0.64 0.35

SEM2 0.006 0.015 0.022 0.014 0.029 0.018 0.051 0.008 0.004 0.029 0.078 0.089 0.172 0.031 0.010

Main effects

Medication

without 0.29 0.38 1.17 0.86a 1.58 1.06a 3.51a 0.38 0.16a 1.71a 4.19 4.14a 10.03 0.67 0.40a

with 0.30 0.40 1.15 0.70b 1.26 0.95b 2.91b 0.36 0.15b 1.52b 3.41 3.35b 8.27 0.62 0.33b

BGase (%)

0 0.31a 0.41 1.13 0.79 1.44 1.05a 3.28a 0.36 0.16 1.68a 3.96 3.89a 9.52 0.62 0.37

0.1 0.28b 0.38 1.20 0.78 1.40 0.96b 3.14b 0.38 0.15 1.55b 3.64 3.60b 8.78 0.67 0.36

Probability

Medication 0.80 0.57 0.62 < .0001 < .0001 0.0005 < .0001 0.36 0.01 0.0003 < .0001 < .0001 < .0001 0.15 0.0004

BGase 0.005 0.27 0.12 0.55 0.33 0.005 0.04 0.22 0.11 0.01 0.009 0.04 0.004 0.11 0.88

Medication × BGase 0.12 0.20 0.31 0.83 0.05 0.28 0.10 0.88 0.15 0.47 0.01 0.06 0.02 0.68 0.09

a-cMeans within a main effect or interaction not sharing a common superscript are significantly different (P� 0.05).
1BGase—β-glucanase; Proven—proventriculus; Duo—duodenum; SI—small intestine.
2SEM—pooled standard error of mean (n = 18 birds per treatment).

https://doi.org/10.1371/journal.pone.0236231.t017

Table 18. Effects of diet medication and β-glucanase on gastro-intestinal content and organ weights as a percentage of body weight of broiler chickens at day 11

(Experiment 2).

Medication BGase1 (%) Content Weight

Crop Proventriculus Gizzard Duodenum Jejunum Ileum SI Caeca Colon Liver Spleen Pancreas

without 0 0.48 0.06 0.89 0.08 0.59 0.60 1.26a 0.08 0.06 4.05 0.13 0.57

0.1 0.54 0.05 0.81 0.05 0.45 0.41 0.89c 0.11 0.04 4.74 0.11 0.50

with 0 0.29 0.11 0.99 0.05 0.53 0.51 1.08b 0.07 0.07 4.19 0.13 0.50

0.1 0.37 0.06 0.73 0.04 0.45 0.44 0.93bc 0.07 0.05 4.48 0.12 0.49

SEM2 0.035 0.008 0.034 0.006 0.018 0.018 0.727 0.006 0.004 0.070 0.004 0.011

Main effects

Medication

without 0.51a 0.05 0.85 0.06 0.52 0.50 1.08 0.09a 0.05 4.39 0.12 0.53a

with 0.33b 0.08 0.86 0.04 0.49 0.47 1.00 0.07b 0.06 4.34 0.12 0.50b

BGase (%)

0 0.38 0.08 0.94a 0.06 0.56a 0.55a 1.17 0.07 0.07a 4.12b 0.13 0.54a

0.1 0.46 0.05 0.77b 0.04 0.45b 0.42b 0.91 0.09 0.04b 4.61a 0.11 0.50b

Probability

Medication 0.008 0.08 0.89 0.09 0.29 0.36 0.11 0.03 0.09 0.63 0.64 0.04

BGase 0.26 0.08 0.009 0.06 < .0001 0.0001 < .0001 0.20 0.005 0.0002 0.10 0.03

Medication × BGase 0.85 0.15 0.15 0.22 0.16 0.06 0.02 0.22 0.91 0.09 0.57 0.13

a-bMeans within a main effect or interaction not sharing a common superscript are significantly different (P� 0.05).
1BGase—β-glucanase; SI—small intestine
2SEM—pooled standard error of mean (n = 12 birds per treatment).

https://doi.org/10.1371/journal.pone.0236231.t018
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Table 19. Effects of diet medication and β-glucanase on gastro-intestinal content and organ weights as a percentage of body weight of broiler chickens at day 33

(Experiment 2).

Medication BGase1 (%) Content Weight

Crop Proventriculus Gizzard Duodenum Jejunum Ileum SI Caeca Colon Liver Spleen Pancreas

without 0 1.54 0.11 1.18 0.12 1.31a 1.49a 2.91a 0.27 0.23 3.16a 0.12 0.27

0.1 1.44 0.06 1.33 0.09 0.86b 0.97b 1.91b 0.32 0.14 2.88b 0.12 0.27

with 0 1.46 0.34 1.56 0.08 1.03b 1.12b 2.21b 0.25 0.17 2.57c 0.12 0.26

0.1 1.11 0.07 1.24 0.07 0.95b 0.91b 1.92b 0.27 0.17 2.58c 0.12 0.26

SEM2 0.096 0.043 0.060 0.006 0.039 0.050 0.084 0.015 0.011 0.040 0.004 0.005

Main effects

Medication

without 1.49 0.09 1.26 0.10a 1.08 1.23 2.41 0.29 0.18 3.02 0.12 0.27

with 1.28 0.20 1.40 0.07b 0.99 1.02 2.07 0.26 0.17 2.57 0.12 0.26

BGase (%)

0 1.50 0.23 1.37 0.10a 1.17 1.31 2.56 0.26 0.20a 2.86 0.12 0.26

0.1 1.27 0.06 1.29 0.08b 0.90 0.94 1.91 0.29 0.15b 2.73 0.12 0.26

Probability

Medication 0.28 0.16 0.22 0.006 0.15 0.009 0.01 0.21 0.61 < .0001 0.54 0.13

BGase 0.24 0.06 0.46 0.02 0.0002 < .0001 < .0001 0.20 0.03 0.01 0.93 0.81

Medication × BGase 0.52 0.19 0.06 0.37 0.006 0.04 0.007 0.52 0.06 0.01 0.93 0.90

a-cMeans within a main effect or interaction not sharing a common superscript are significantly different (P� 0.05).
1BGase—β-glucanase; SI—small intestine
2SEM—pooled standard error of mean (n = 18 birds per treatment).

https://doi.org/10.1371/journal.pone.0236231.t019

Table 20. Effects of diet medication and β-glucanase on body weight gain, feed intake and feed efficiency of broiler chickens vaccinated for coccidiosis (Experiment

2).

Medication BGase1 (%) BWG (kg) FI (kg) F:G

d 0–11 d 11–22 d 22–32 d 0–32 d 0–11 d 11–22 d 22–32 d 0–32 d 0–11 d 11–22 d 22–32 d 0–32

without 0 0.243b 0.562d 0.788c 1.594d 0.328 0.979 1.540bc 2.846 1.321b 1.617a 1.939a 1.721a

0.1 0.236b 0.622c 0.881b 1.740c 0.331 0.982 1.499c 2.813 1.372a 1.471b 1.688b 1.561b

with 0 0.262a 0.675b 0.963a 1.900b 0.331 1.049 1.581ab 2.961 1.242c 1.429b 1.627c 1.497c

0.1 0.270a 0.702a 0.981a 1.954a 0.339 1.071 1.588a 2.998 1.236c 1.423b 1.593c 1.479c

SEM2 0.002 0.640 0.904 0.025 0.002 0.008 0.009 0.017 0.011 0.015 0.024 0.017

Main effects

Medication

without 0.240 0.591 0.835 1.667 0.329b 0.981b 1.520 2.829b 1.347 1.544 1.813 1.641

with 0.266 0.689 0.972 1.927 0.335a 1.060a 1.584 2.905a 1.239 1.426 1.610 1.488

BGase (%)

0 0.252 0.618 0.876 1.747 0.329b 1.014 1.560 2.904 1.282 1.523 1.783 1.609

0.1 0.253 0.662 0.931 1.847 0.335a 1.027 1.544 2.905 1.304 1.447 1.641 1.520

Probability

Medication < .0001 < .0001 < .0001 < .0001 0.01 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001

BGase 0.77 < .0001 < .0001 < .0001 0.01 0.18 0.14 0.92 0.01 < .0001 < .0001 < .0001

Medication × BGase 0.006 0.02 0.001 0.002 0.29 0.33 0.04 0.06 0.001 < .0001 < .0001 < .0001

a-cMeans within a main effect or interaction not sharing a common superscript are significantly different (P� 0.05).
1BGase—β-glucanase; BWG—body weight gain; FI—feed intake; F:G—feed to gain ratio.
2SEM—pooled standard error of mean (n = 9 pens per treatment).

https://doi.org/10.1371/journal.pone.0236231.t020
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The molecular weight values were numerically lower at d 33 compared to d 11 in Experi-

ment 2, which might be associated with an age-related adaptation of gut microbiota to utilize

fibre [37]. Further, molecular weight responses were lower in Experiment 1 compared to both

ages in Experiment 2. Although the experiments cannot be compared statistically, it does draw

attention to experimental variation. The analyses of samples were completed at three different

times. However, the probability that analytical error accounted for the variation is unlikely

because the determination of β-glucan molecular weight using size exclusion chromatography

and Calcofluor post-column derivatization is a well-established technique in food science [29],

and all laboratory work was completed in the same lab by the senior author. A more plausible

explanation for the difference relates to variation in β-glucan characteristics in the barley sam-

ples. The birds were fed diets containing CDC Fibar in both experiments; however, the sam-

ples were different in the two experiments. Although they were the same cultivar,

environmental conditions such as germination may have impacted β-glucan molecular weight.

High moisture content in the environment might activate endogenous enzymes in barley and

degrade non-starch polysaccharides, including β-glucan, supported by the improved nutritive

value of barley with water treatment [38]. Moreover, the molecular weight differences in the

two experiments could be attributed to the resident gut microbiota being markedly different

between the studies that could harbor different β-glucanase capabilities. The variable gut

microbiota composition among the broiler chickens derived from the same breeder flock and

raised under the same conditions, including diets, support the difference in microbial enzyme

activity [39]. The BGase effect on the reduction of ileal β-glucan molecular weight in this study

is in agreement with previous results from our lab [40].

The molecular weight responses in the two experiments decreased with medication when

there was no added BGase in the diet, which is an unexpected finding since the medication

does not contain endo-β-glucanase activity. It is possibly due to the effect of the antibiotics on

modification of the gastro-intestinal microbial population [41–43], resulting in microbiota

with an increased capacity to degrade β-glucan into low molecular weight polysaccharides and

oligosaccharides. In vitro studies have demonstrated that strict anaerobic caecal microbiota,

including Bacteroides ovatus, B. uniformis, B. capillosus, Enterococcus faecium, Clostridium per-
fringens and Streptococcus strains in broiler chickens are capable of degrading mixed-linked β-

glucan [44]. However, medication was not able to breakdown high molecular weight β-glucan

to the same extent as BGase. Exogenous BGase depolymerizes high molecular weight soluble

β-glucan into low molecular weight β-glucan in the ileal digesta, which leads to a reduction of

viscosity of the ileal supernatant in broiler chickens. However, the medication did not affect

viscosity of the ileal supernatant in broiler chickens, although the molecular weight was

reduced with the addition of antibiotics to the broiler diets.

Overall, BGase appears to reduce the empty weights, lengths, and content weights in the

digestive tract segments, which agrees with previous broiler research that used the same diets

but without medication [45]. The size reduction coincides with increased digestive efficiency

associated with enzyme use reported previously [46, 47]. Medication decreased the empty

weights and lengths from the duodenum to colon and the digestive tract segments’ content

weights. The reduction of digestive tract size and content follows previous research that used

in-feed antibiotics (Bacitracin methylene disalicylate and virginiamycin) in broiler chickens

[48]. The use of specific antibiotics in feed reduces the growth of pathogenic bacteria in the

digestive tract of chickens through the modification of microbial diversity and relative abun-

dance, and immune status [19, 20], thereby increasing nutrient digestibility. The reduction of

relative abundance of gut microbiota reduces the competition with the host and enables the

host to extract all the required nutrients, and thereby the digestive tract size might be reduced

[49, 50]. Further, diet medication might increase nutrient digestion due to increased utilization
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of non-starch polysaccharides by the gut microbiota by selecting a more effective fibre degrad-

ing microbiome, supported by β-glucan molecular weight reduction with antibiotics addition

to the diets in the current research. The effects of medication on relative digestive tract size

and content weights were mostly significant when the HB based diets did not contain BGase

since the enzyme also decreased digestive tract size.

Levels of SCFA and pH in the digestive tract were used to estimate the effects of diet BGase

and antibiotics on carbohydrate fermentation because diet BGase and medication depolymer-

ized soluble β-glucan in the ileal digesta of broiler chickens. Ileal pH was higher with BGase

use at both ages of broiler chickens in Experiment 2. A BGase mediated increase in ileal pH is

contradictory to the current hypothesis of an enzyme-dependent enhancement of carbohy-

drate fermentation that might be expected based on a large quantity of low molecular weight

β-glucan resulting from β-glucan depolymerization due to enzyme use. The increased ileal pH

might relate to the increased feed passage rate from the ileum to caeca with the reduction of

soluble β-glucan molecular weight, which permits less time for the bacterial fermentation in

the ileum [51]. However, ileal pH is contradictory to total and individual SCFA concentrations

in the ileum since BGase increased SCFA levels at d 33 in the current study. A reduction of cae-

cal pH with the enzyme (d 11 without medication; d 33) might indicate increased carbohydrate

fermentation in the caeca, which is in agreement with previous research [51]. Further, BGase

increased SCFA concentrations in the caeca (d 11 without medication) in the current study,

which corresponds with the caecal pH at d 11. Overall, the results suggest BGase has shifted

bacterial fermentation from the ileum to caeca in broiler chickens.

The antibiotic-induced modification of the gastro-intestinal microbial population might

affect the production of SCFA, which influences the enzyme response on carbohydrate fer-

mentation in broiler chickens. Medication affected intestinal pH in a similar fashion to BGase,

and similar to the findings of [52], who found increased ileal pH and lowered caecal pH with

the addition of salinomycin and Zn bacitracin to broiler diets. However, diet medication did

not affect the concentrations of SCFA in the ileum, whereas it decreased total and most of the

individual SCFA concentrations in the caeca in the current study, which is again contradictory

to the caecal pH. The reduction of caecal pH might be because of antibiotics reducing protein

putrefaction to a greater extent than it did SCFA production in the caeca. However, the con-

centrations of alkalizing metabolites, including the biogenic amines, are not available in the

current study. Nevertheless, the reduction of caecal SCFA concentration was according to the

study completed by [52] that used salinomycin in broiler feed. Antibiotics modulate the micro-

bial population of the chicken digestive tract [53, 54], and these microbes might not effectively

utilize the fermentable fibre, including β-glucan in the chicken digestive tract due to the lower

production of microbial-derived non-starch polysaccharidases. However, it is contradictory to

the ileal β-glucan molecular weight findings since medication reduced the molecular weight,

demonstrating gastro-intestinal bacteria that could secrete non-starch polysaccharidases. The

resulting SCFA might have been immediately utilized by gut microbes to produce other meta-

bolic products and affects the measured levels of SCFA. Of note, the crop pH was higher with

diet medication. The crop is colonized by BGase-secreting microbiota [55], and medication

modifies the crop microbiota, thereby affects carbohydrate fermentation [56].

Medication increased villus height to crypt depth ratio in the ileum, which indicates

increased nutrient absorption surface [57] that eventually leads to the enhancement of nutrient

digestion and weight gain of chickens. The effect of diet medication on reducing digestive tract

size and content also supports the increased nutrient digestibility, which is indicated by the

higher villus height to crypt depth ratio. In addition, medication decreased crypt depth in the

ileum. Increased crypt depth indicates high cell proliferation in the intestinal epithelial cells

[58], which indicates inflammation in the intestinal mucosa. Thus the mucosa enhances
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healing from the inflammatory damage by increasing cell proliferation [59, 60]. Inflammation

is a protective mechanism, although uncontrolled and chronic inflammation may damage the

affected tissues [61, 62]. Therefore, the reduction of crypt depth is considered as a positive

entity that enhances bird health.

Treatment affected SCFA concentrations and intestinal pH in coccidiosis vaccinated broiler

chickens, but not in battery-cage raised and unvaccinated birds. Further, the treatment effects

were larger for broilers at 11 d (mostly infected with Eimeria spp) compared to the same birds

at 33 d (mostly recovered from the disease) in the coccidiosis vaccinated study. Eimeria spp

disturbs the lower gastro-intestinal microbial population in broilers [63, 64] due to the epithe-

lial damage of the intestinal mucosa, which affects SCFA production [65]. On the other hand,

a precise estimate of SCFA production might not be measured in the current study due to the

digesta collection procedure’s limitations. Partial absorption of SCFA to the portal circulation

before sample collection leads to under-estimation of the values, and ileal and caecal evacua-

tion that is affected by the time of the sample collection results in individual bird variability in

results. In addition, protein fermentation affects digesta pH since some protein fermentation

products, including ammonia, indoles, phenols and biogenic amines, increase pH in the diges-

tive tract of chickens [18].

Body weight gain, feed intake and feed efficiency were within the normal range, according

to Ross 308 Broiler Performance Objectives [26]. The interaction between BGase and medica-

tion was significant for body weight gain and feed efficiency at all the broiler ages in Experi-

ment 2. Over the entire experiment, medication increased both body weight gain and feed

efficiency of broilers. However, the medication response was higher without BGase since exog-

enous BGase increased body weight gain and feed conversion in the current study. Both Zn

Bacitracin and ionophore anticoccidials have been classified as growth-promoting drugs in

broiler chickens due to their positive impact on body weight gain and feed efficiency [18, 66,

67] because the antibiotics in the diets shift the gastro-intestinal microbial population towards

a diversified and potentially beneficial microbiota [19, 68]. Villi height to crypt depth ratio in

the ileum increased with medication in the current study, supporting the antibiotics-mediated

enhancement of the ileal absorptive surface area. However, total and individual SCFA concen-

trations in the caeca decreased with the addition of antibiotics, which is contradictory to car-

bohydrate fermentation induced improvement of physiological and growth responses in the

current research.

Beta-glucanase decreased the body weight gain and feed efficiency in the birds aged< 11 d

but increased these responses after d 11. These results agree with previous research that used

the same diets without medication [45]. The poor weight gain and feed efficiency of younger

birds may be attributed to an undesirable effect of the increased quantity of low molecular

weight carbohydrates on the gut microbiota due to the coccidiosis vaccination and the imma-

ture status of the digestive system and gut microbiota. In the study of [45], BGase dosage of

0.01% increased broiler weight gain and feed efficiency for the same age period (0 to 11 days)

compared to 0% BGase. However, 0.1% BGase did not affect the body weight gain and reduced

the feed efficiency in the birds aged< 11 d but increased these responses after d 11. Moreover,

BGase decreased the total requirement of medication in HB-based diets to achieve a high body

weight gain and feed conversion, as the medication response on weight gain and feed effi-

ciency decreased with the addition of BGase to the diets. It demonstrates the ability of BGase

to partially replace diet medication in HB-based diets to feed broiler chickens. In contrast to

the results of Experiment 2, the effects of medication and BGase on body weight gain, feed

intake and feed efficiency were not significant in the broiler ages except the period of d 0–7 in

Experiment 1, where birds were grown in battery cages without coccidiosis vaccination. The

environment of battery cages is relatively hygienic compared to litter floor pens and is
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generally considered to present less pathogenic bacterial exposure with the birds. It might be

the reason for the fewer effects of medication and enzyme on body weight gain, feed intake

and feed efficiency in the battery cage study.

In conclusion, feed BGase and medication can depolymerize high molecular weight soluble

β-glucan of HB into low molecular weight β-glucan in the digestive tract of broilers in both

experiments; however, the response was higher with BGase compared to medication. The

effects of diet medication and BGase on carbohydrate fermentation were not consistent across

sample collections in the two experiments according to SCFA levels and intestinal pH,

although treatment effects were observed in certain instances. Exogenous BGase and medica-

tion increased the growth performance of broiler chickens. Moreover, BGase reduced the

necessity of antibiotics and anticoccidials in HB-based diets to achieve a high level of body

weight gain and feed efficiency of broiler chickens vaccinated for coccidiosis.
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