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Abstract

A platform capable of specifically delivering an antiviral drug to the liver infected with hepati-

tis B is a major concern in hepatology. Vaccination has had a major effect on decreasing the

emerging numbers of new cases of infection. However, the total elimination of the hepatitis

B virus from the body requires prolonged therapy. In this work, we aimed to target the liver

macrophages with lipid polymer hybrid nanoparticles (LPH), combining the merit of poly-

meric nanoparticles and lipid vesicles. The hydrophilic antiviral drug, entecavir (E), loaded

LPH nanoparticles were optimized and physicochemically characterized. A modulated

lipidic corona, as well as, an additional coat with vitamin E were used to extend the drug

release enhance the macrophage uptake. The selected vitamin E coated LPH nanoparticles

enriched with lecithin-glyceryl monostearate lipid shell exhibited high entrapment for E

(80.47%), a size� 200 nm for liver passive targeting, extended release over one week,

proven serum stability, retained stability after refrigeration storage for 6 months. Upon mac-

rophage uptake in vitro assessment, the presented formulation displayed promising traits,

enhancing the cellular retention in J774 macrophages cells. In vivo and antiviral activity

futuristic studies would help in the potential application of the ELPH in hepatitis B control.

1. Introduction

Lately an increased alertness about the role of hepatic macrophages in viral hepatitis has been

recognized [1, 2]. Being members of the reticuloendothelial system, they have been acknowl-

edged as key participants in the prevention of the disease progression [2]. Delivery strategies

using nanotherapeutics to target the macrophages had been well specified [3]. The nanocar-

riers should possess a defined size, with a targeted engineered modified surface to facilitate

both passive and active (cellular targeting) liver targeting [4].
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Hepatitis B virus (HBV) infection accounts for increased deaths worldwide, due to the risk

of cirrhosis, hepatocellular cancer, portal hypertension and liver failure [5]. To date, the antivi-

ral therapies, have failed to realize complete removal of the virus from the body and treatment

prolonged duration, without the possible emergence of drug resistance [6, 7]. Due to its high

lethality, researchers advanced that in the future, good therapy of HBV should be a composite

treatment build up from nucleot(s)ide analogs, immunostimulants and possibly curative

vaccines.

Among the antiviral nucleot(s)ide analogues, entecavir (E), has been highly recommended

due to various merits: (i) potency, (ii) low resistance, and (iii) low systemic toxicity [8–10]. In

a very recent multicenter cohort study conducted by Chinese researchers, E monotherapy

offered evidence of lowered virological breakthrough and heightened HBV-DNA suppression

compared to combination therapy of antiviral agents; lamivudine and adefovir [9]. Zoutendijk

and coworkers suggested E monotherapy for 48 weeks [11]. However, the oral administration

of E is associated with poor patient compliance and adverse reactions, resulting from intake of

E on empty stomach, necessitating the fabrication of sustained release formulation [6]. In this

context, long-acting parenteral formulations of E have been well-investigated by various

research groups, including liquid crystals [12], lipidic prodrug [13], albumin nanoparticles [8]

and PLGA microspheres [6].

Highly optimized carriers with sub-cellular targeting moieties have been opted to enhance

hepatic (Kupffer cells and hepatocytes) targeting efficiency for competent antiviral delivery

[5]. Fabrication of polymeric nanoparticles and lipid nanocarriers is considered as the most

noticeable tool to fulfill such purpose. Polymeric nanoparticles have been employed to provide

good hydrophobic drug loading, biodegradability, structural integrity and stability characteris-

tics [14, 15]. On the other hand, the use of lipid nanocarriers such as liposomes is well-consoli-

dated, due to their good biocompatibility as well as the ease of modification by different

targeting moieties [16], Besides, up till now, they are the only nanocarriers being approved in

clinical applications and scaled-up for industrial production [17]. However, both nanocarriers,

when utilized separately, have some limitations due to poor loading of hydrophilic bioactive

compounds and uncontrolled drug release from polymeric nanoparticles and drug leakage

and instability during storage from lipid nanocarriers [18, 19].

Hence, lipid-polymer hybrid nanoparticles (LPH) was designed, combining the advantages

of both polymer- and lipid-based nanoparticles. LPH are archetype of nanocarriers composed

of an internal polymeric core enclosed by an outer lipid bioactive shell composed of one or

more layers or components [20, 21]. By virtue of their unique structure, LPH have versatile

competence to encapsulate different types of payloads such as hydrophilic, hydrophobic drugs

or nucleic acids, highlighting promising in vivo therapeutic outcomes [22–25]. The concomi-

tance of both polymer and lipid imparts the LPH structural integrity, serum stability, sustained

drug release (from the polymer core) and high biocompatibility (from the lipid shell) [21].

Finally, rapid opsonization induced by the lipidic shell resulting in rapid uptake of the particles

by the mononuclear phagocyte system (MPS) in the liver and spleen has been previously

proven [26, 27].

Different polymers and lipids have been exploited for the fabrication of LPH. PLGA, a syn-

thetic polyester, approved by US FDA and European Medicine Agency for human use has

been extensively investigated in the fabrication of LPH [28]. Lecithin (LEC) is a type of phos-

pholipids which are vital components of the cell membrane to conserve membrane fluidity

[29]. Generally, phospholipids play a crucial role in solubilization, sustainment of drug release,

improvement of therapeutic efficacy and biocompatibility [30, 31].

In light, the aim of this study is to formulate and evaluate a new long-acting macrophage-

directed platform for the antiviral agent E. This work provides the first utilization of LPH in E
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(ELPH) parenteral delivery. The optimized formulae, obtained from Box-Behnken (BBD) sta-

tistical design, were subjected to different modulations to prolong the drug release to the maxi-

mum. Firstly, lecithin (LEC) lipid shell was admixed with other lipids such as cholesterol (CH)

or glyceryl monostearate (GMS) and secondly the NPs were further coated with vitamin E.

Both CH and GMS have been reported to control drug release from different carriers [32, 33].

CH is well-reputed neutral lipid commonly used in liposomes, heightening the packing of

phospholipid molecules, rigidity and stabilization of liposomes [34]. GMS is a single-chained

biocompatible self-assembly amphiphilic monoglyceryl ester, showing significant applications

in drug delivery as self-nanoemulsifying drug delivery systems, solid lipid nanoparticles, poly-

mer lipid nanoparticles [35–37]

Vitamin E, is a lipid soluble vitamin with antioxidant [38] and immunomodulatory activi-

ties [39]. It has been reported to improve the phagocytic potential of macrophage in broilers

[40]. Moreover, it has several transport pathways from serum to liver by different vitamin E–

binding proteins as α-tocopherol-associated proteins (SEC14L2, SEC14L3, and SEC14L4) and

the albumin-related protein, afamin[41, 42].

It is worth mentioning that this investigation assesses for the first time macrophage target-

ing of vitamin E coated E loaded nanopharmaceuticals, as an indicator of the efficient hepatic

therapeutic system, an issue that has not been attempted yet in previously reported E carriers.

In this regard, confocal laser scanning microscopy (CLSM) and flow cytometry was performed

to evaluate the qualitative and quantitative macrophage retention of ELPH respectively.

2. Materials and methods

2.1. Materials

Entecavir (E): kindly provided by Mash Premiere for Pharmaceutical Industry, Egypt. Glyceryl

monostearate (GMS): purchased from Carl Roth GmbH, Germany. 50/50 DL-lactide/glycolide

conjugate, acid terminated (PLGA, with an inherent viscosity midpoint of 0.2 dl/g): kindly

supplied from Purac Biomaterials. Lecithin (LEC) soybean (3-sn-Phosphatidylcholine �99%

(TLC) lyophilized powder), cholesterol (CH), vitamin E (α-Tocopherol�95.5%), acetonitrile

(HPLC grade), ethanol absolute, dimethylformamide (DMF), dimethylsulphoxide (DMSO),

40,6-Diamidino-2-phenylindole (DAPI), RPMI and fetal bovine serum (FBS): purchased from

Sigma–Aldrich Company, UK. Mannitol: purchased from BDH Chemicals Ltd, Poole, UK.

Potassium dihydrogen orthophosphate, sodium hydroxide, sodium chloride, potassium chlo-

ride, sodium dibasic hydrogen orthophosphate, hydrochloric acid and Tween 80 (polysorbate

80): obtained from Fluka Chemika-BioChemika, Switzerland. Triton™ X-100 and 1,1’-Diocta-

decyl-3,3,3’,3’-Tetramethylindocarbocyanine Perchlorate (DiI): purchased from Fisher Scien-

tific, UK. Vectashield1mounting media was from Vector Labs (UK).

2.2 Methods

2.2.1. Determination of entecavir solubility in different lipids. The solubility of enteca-

vir (E) in different single lipids or different mixtures of LEC with CH or GMS was determined

as described in supplementary information [43, 44].

2.2.2. Preparation of E LPH. Different formulations ELPH were prepared using modified

single-step nanoprecipitation self-assembly method as described elsewhere [14]. Briefly, differ-

ent amounts of PLGA and E were dissolved in DMF forming the organic phase. According to

the output needed from the study, the aqueous phase containing different weights of LEC with

or without CH or GMS and Tween 80 (1% w/v) were dissolved in 4%v/v hydroalcoholic solu-

tion and heated to 70˚C for 15 min. The amounts and concentrations of polymers/lipids in dif-

ferent ELPH formulations are listed in Table 1. Slow dripping of the organic phase into the
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aqueous phase was done while stirring at room temperature for 2 h. The ratio of organic to

aqueous phase was kept at 1:9 v/v. The resultant LPH dispersions were centrifuged at 12000

rpm for 30 min at 4˚C and the harvested pellets were re-suspended in PBS (pH 7.4) for further

analysis. The optimized ELPH was incubated with vitamin E (1 mL for 2h) to produce EELPH.

After soaking, the dispersions was re-centrifuged under the same conditions to remove excess

vitamin E. For estimations of entrapment efficiency (EE %) and loading capacity (LC), a fixed

volume was removed before centrifugation as a total drug reference. DiI-labelled ELPH and

EELPH were prepared by dissolving the dye into the lipid phase at 1% w/w. Freeze-dried

ELPH and EELPH were obtained after 48h lyophilization to obtain a free-flowing powder,

when required.

2.2.3. Experimental design and construction of Box-Behnken (BBD) design. Optimiza-

tion of ELPH was done using BBD (Design-Expert 9.0.5.2, State-Ease Inc., USA) to construct

matrix and explore both the response surfaces and the statistical models [45]. The selected crit-

ical process parameters (CPPs) i.e. the independent variables were PLGA, LEC, E amounts

and stirring speed which respectively labelled as A, B, C and D. Each variable was tested at

three levels; low (-1), medium (0) and high (+1). The particle size (PS) (Y1) and entrapment

efficiency (EE %) (Y2) were the critical quality attributes (CQAs). The ELPH were designed to

deliver quality target product profile (QTPP) of PS less than 200 nm and maximum EE%. The

defined CPPs and CQAs, as well as the desired QTPP, are listed in Table 1.

The design matrix generated by the software consisted of 29 different runs (Table 2).

ANOVA was used for the statistical validation of the polynomial equations generated by

Design Expert software. All the responses observed were simultaneously fitted to linear; two-

factor interactions (2FI) and quadratic models. The three-dimensional (3-D) response surface

plots were constructed by the software and the polynomial equations were authenticated.

Based on the highest desirability, the design space was created to define the optimum CPPs

[46]. Three optimum checkpoints were picked for validation of the chosen domain and equa-

tions. The experimental values of the responses were quantitatively compared with that of the

predicted values and prediction error (%) were calculated.

2.2.4. Determination of particle size, size distribution and zeta potential (ξ). The PS (z-

average) and size distribution expressed as polydispersity index (PDI) of the prepared ELPH,

as well as ξ of the optimized ones, were estimated by dynamic light scattering technique (DLS)

with a Nanosizer ZS Series (Malvern Instruments, UK).

2.2.5. Entrapment efficiency and loading capacity. The entrapment efficiency (EE %)

was determined directly by measuring the amount of E entrapped inside the LPH. Accordingly,

a specified volume of the prepared dispersions (5 mL) was centrifuged at 12000 rpm for 30 min

at 4˚C and the collected pellets were dissolved into DMF (10 mL). The amount of encapsulated

drug was quantified using a previously validated HPLC method (Agilent 1100, Germany,

Table 1. Levels of critical process parameters for the preparation of ELPH using the BBD.

Critical process parameters (Coded independent variables)a Levels

Low (-1) Medium (0) High (1)

A: PLGA (mg) 5 10 15

B: LEC (mg) 1 2 3

C:Drug (mg) 5 10 15

D:Stirring speed (rpm) 500 750 1000

a The quality attributes and quality target product profiles was PS (< 200 nm) and maximum Entrapment efficiency

(EE %).

https://doi.org/10.1371/journal.pone.0227231.t001
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equipped with G 1311A quaternary pump and UV detector (VWD-G1314 A). A reverse phase

C18 column (Thermo1 BDS, 250X4.6 mm, 5μ) was used at 25˚C. The wavelength of the UV

detector was set at 254 nm. The flow rate of the mobile phase, composed of acetonitrile and 10

mM phosphate buffer pH 3.5 at a ratio of (80:20), was adjusted at 1 mL/min.

The EE % and LC % were calculated according to the following equations [24]:

EE% ¼
amount of entecavir inside the pelletes

Total amount of entecavir added
� 100 ð1Þ

LC% ¼
mass of entecavir inside the pelletes

Total mass of entecavir LPH NPs
� 100 ð2Þ

Table 2. Experimental design matrix of the CPPS and the related CQAs.

Run Critical process parameters (CPPs) Critical quality attributes (CQAs)

A PLGA (mg) B LEC (mg) C Drug (mg) D Stirring speed (rpm) Y1 PS (nm)a,c Y2 EE (%)b,c

1 10 2 10 750 150±2 63.21±2

2 15 2 15 750 215±2 77.63±3

3 10 2 15 500 310±3 72.05±1

4 10 3 10 1000 165±3 74.89±3

5 10 2 10 750 160±2 68.09±4

6 10 2 10 750 161±3 69.81±3

7 10 1 10 1000 137±2 76.61±3

8 10 2 10 750 159±2 68.39±4

9 5 2 5 750 134±2 38.25±3

10 15 2 10 500 285±2 59.61±3

11 15 2 5 750 157±4 38.91±3

12 10 3 15 750 189±2 76.84±2

13 10 1 15 750 196±2 78.59±3

14 5 2 15 750 137±4 68.09±4

15 15 3 10 750 194±2 60.16±5

16 10 2 15 1000 190±3 76.51±3

17 5 2 10 500 269±4 55.87±3

18 10 2 5 1000 125±3 46.86±3

19 5 3 10 750 137±4 76.6±3

20 5 1 10 750 128±3 47.09±2

21 5 2 10 1000 138±4 64.41±3

22 15 2 10 1000 169±2 68.54±3

23 15 1 10 750 139±3 75.74±2

24 10 3 10 500 295±2 63.86±4

25 10 2 5 500 266±3 34.09±2

26 10 3 5 750 188±3 51.09±3

27 10 1 10 500 275±3 60.44±1

28 10 2 10 750 180±3 76.59±2

29 10 1 5 750 135±4 40.98±5

a PS was measured by DLS.
b Calculated as percentage of initial E added, determined directly by HPLC.
c Expressed as mean ± SD (n = 3).

https://doi.org/10.1371/journal.pone.0227231.t002
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2.2.6. In vitro drug release study. Aliquots of ELPH or EELPH (equivalent to 5mg E) was

placed in the presoaked dialysis membrane (cut off: 10,000 Da), diluted with 1mL of PBS (pH

7.4) and mixed with fresh rat serum (FRS) at 50% v/v final concentration [47]. The dialysis

membrane method with slight modifications was used [48]. The tightly closed membranes

were put in containers filled with 50 mL PBS (pH 7.4) in a thermostatically controlled shaking

water bath at 250 strokes/min ±0.1 at 37±0.5˚C. At predetermined time intervals, an aliquot of

0.5 mL was withdrawn and replaced. The samples were analyzed using the validated HPLC

method and the percentage of E released was calculated.

The release profiles were compared by applying the similarity factor (f2). Two dissolution

profiles were considered similar when the f2 value is�50 [48].

2.2.7. Morphological studies. 2.2.7.1. Transmission electron microscope (TEM). EELPH

was visualized using transmission electron microscope (TEM, Jeol, JEM-1230, Japan). A drop

of the optimized EELPH dispersion was deposited on a copper 300-mesh grid, coated with car-

bon and allowed to stand for 10min after which, any excess fluid was absorbed by a filter

paper. Before the examination, one drop of 1% phosphotungstic acid was applied and allowed

to dry for 5min.

2.2.7.2. Atomic force microscope. The 3-D surface profile and topographical image for

EELPH were visualized by atomic force microscope (AFM, Wet-SPM 9600, Scanning probe

microscope, Shimadzu, Japan.) under normal atmospheric conditions. One drop of the opti-

mized EELPH dispersion was placed on a silicon wafer and allowed for air drying. The mea-

surements were performed using high-resonant-frequency pyramidal cantilevers with silicon

probe. The cantilever had a nominal force constant of 0.35–6.06 N/m with a scan speed of

2Hz. The AFM images were analyzed using non-contact mode software [49].

2.2.8. In vitro serum stability assay. The in vitro stability of EELPH was assessed by

recording the PS, PDI and ξ after incubation with 10% and 50% v/v fetal bovine serum (FBS)

for 4, 24 and 48 h at 37± 0.5˚C [50].

2.2.9. In vitro hemolytic assay. Haemolytic activity of the optimized EELPH was assessed

using fresh male albino rat’s red blood cells (RBCs). All animal experiments were conducted in

agreement with the project license (PBE6EB195) granted by the UK Home Office and in accor-

dance with the U.K. Animals (Scientific Procedures) Act, 1986 and associated guidelines, EU

Directive 2010/63/EU for animal experiments. Briefly, blood was withdrawn on heparinized

tube from male albino rat (aged 2–3 months, 200g ±10%) tail vein (1 mL from each animal).

The blood was centrifuged at 4000 rpm for 10 min to collect the RBCs. The collected RBCs

were incubated with different quantities of EELPH and incubated for 2 h at 37˚C. The samples

were then centrifuged at 4000 rpm for 5 min at 4 ˚C. The absorbance of each supernatant was

determined at 545 nm. The RBCs were incubated with 0.5 w/v% Triton X-100 and PBS (pH

7.4) as positive and negative controls, respectively [51, 52]. Percentage (%) hemolysis was cal-

culated using the following equation:

%Hemolysis ¼
absorbance sample � absorbance negative control

absorbance positive control � absorbance negative control
� 100 ð3Þ

2.2.10. Shelf life stability study. The optimized EELPH were kept at 4˚C for 6 months.

PS, ξ, as well as EE% were evaluated after 1, 3 and 6 months as previously described.

2.2.11. In vitro cellular uptake study of DiI-labelled ELPH. 2.2.11.1. In vitro MTT cyto-
toxicity assay. J774 macrophage cells (catalogue number ATCC1 TIB-67™) were purchased

from ATCC, UK. Cells were deprived from reticulum cell sarcoma of BALB/cN mice. J774

macrophage cells were seeded in 96-well plate at a density of 10 K/ well in RPMI media and
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incubated overnight before being treated with the optimized ELPH or EELPH at serial drug

concentrations ranging from 0.01–100 μM. Untreated cells or cells treated with the same con-

centration range of sodium lauryl sulfate were used as negative and positive control respec-

tively. The in vitro cytotoxicity was assessed by MTT assay after 48 h of incubation, media was

aspirated and cells were incubated with 120 μL of MTT solution at 37˚C and 5% CO2. After 4

h, the formed formazan crystals were dissolved in 200 μL of DMSO and the plate read at 570

nm using FLUO star OPTIMA plate reader (BMG Labtech) [53]. The results were expressed as

the percentage cell survival and calculated using the following equation:

%Cell survival ¼
A570 nm of treated cells

A570 nm of untreated control cells
� 100 ð4Þ

2.2.11.2 Determination of cellular uptake by confocal laser scanning microscope. J774 macro-

phage cells were seeded onto sterile glass coverslips in 24-well plate at density 50 K cells/ well

in RPMI media overnight. After incubation with 50 nM of the optimized DiI-labelled EELPH

for 4 and 24 h, the cells were washed by PBS (pH 7.4) and fixed with 200 μL of 4% PFA for 15

min at room temperature. Subsequently, nucleus was counterstained with DAPI and the cov-

erslips were mounted on glass slides by VectaShield™ mounting media. Cells were visualized

by confocal laser scanning microscope (CLSM) (Carl Zeiss Microscopy GmbH, Germany)

[54].

2.2.11.3 Determination of cellular uptake by flow cytometry. The cellular uptake of DiI-

labelled ELPH and EELPH was quantified using flow cytometry (BD FACS Calibur™ flow

cytometer, BD Biosciences). An overnight seeded J774 macrophage cells in 24-well plate at

density 50 K cells /well were incubated with two different concentrations of the labelled opti-

mized ELPH or EELPH (25 and 50 nM) for 4 and 24 h. Consequently, cells were washed twice

with PBS, trypsinized and centrifuged at 1750 rom for 3 min at 4 ˚C. The collected cells were

re-suspended into 200 μL of PBS. The uptake study was conducted at 10 K gated cells by quan-

tifying the fluorescence using FL-2 detector and the obtained data was analysed using FlowJo

software [55].

2.2.12. Statistical analysis. Three replicates were done for each experiment and the

recorded results were the mean ± SD. For comparing two variables student t-test was applied.

For comparing different parameters between groups one-way analysis of variance (ANOVA)

was applied followed by Tukey HSD test. All the analyses were performed using SPSS 18 (Chi-

cago, USA) and differences were considered significant at probability (p) value <0.05.

3. Results and discussion

Designing nanocarriers capable of entrapping hydrophilic drugs in matrices with a delayed

degradation, high encapsulating abilities and protected by a stabilizing coat to evade the

immune system has attracted various researches in the last decade giving birth to the new

progeny of LPH [56]. The molecular lipid barricade has to be optimized for adjusted size and

noticeable prolonged release. In this context we aimed to prepare ELPH with high drug EE%

and PS suitable for liver targeting of E, adopting a three steps study: 1) an optimization study

to achieve the QTPP required for ELPH [57]; 2) a release experiment for the suggested ELPH

by the model and finally 3) the effect of vitamin E coating on the optimized LPH physicochem-

ical characteristics.

3.1. Optimization of ELPH using BBD

Generally, the physicochemical properties of nanocarriers affect their intracellular internaliza-

tion and their subsequent therapeutic applications [58]. In this context, response surface
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methodology, using BBD, was constructed to ascertain the effect and interactions of different

CPPs on PS (Y1) and EE% (Y2) (Table 2). According to the highest R2 and the lowest PRESS

values, quadratic model was selected as the best fit statistical model for both PS and EE%

responses (S1 and S2 Tables).

3.1.1. Effect of different CPPS on Y1 and Y2. Table 2 shows that the fabricated ELPH

had PS ranging between 125–310 nm, while drug EE % varied between 34.09 to 78.59%. All

formulae showed a PDI less than 0.25 with a unimodal distribution. The effects of various sig-

nificant CPPs on PS and EE% were described according to the following equations after omit-

ting the non-significant terms:

Y1 ¼ þ162þ 18Aþ 13:17Bþ 19:33C � 64:67Dþ 13:75AC � 15:00BCþ 56:46D2 ð5Þ

Y2 ¼ þ69:22þ 2:52Aþ 2:00Bþ 16:63Cþ 5:16D � 11:27AB � 5:07A2 � 8:94C2 ð6Þ

ANOVA (S3 and S4 Tables) of the data reveals the regression coefficients of all assessed

CPPs have p-values <0.05 indicating their significant effect.

According to Eq (5) and Fig 1, it is clear that ELPH PS was positively correlated with PLGA
(A), lipid (B), drug amounts (C) and AC interaction with higher coefficients of A and C. The

higher organic phase component amounts, the polymer and the drug, would increase the vis-

cosity of this phase thus decreasing its evaporation rate producing larger PS [59]. Moreover,

this thick solution would hinder the breakdown of the droplets into smaller particles, opposing

the shear force impact of stirring [60]. Similar findings were previously reported [14, 61, 62].

The positive interaction between A and C indicates an enhanced effect of both variables on

LPH PS producing larger nanoparticulates (Fig 1).

Likewise, the polymer and drug effects on PS, increasing LEC content, significantly,

enlarges PS. However, BC interaction shows an antagonistic effect on PS (Fig 1). This might

be due to the possible attraction between the cationic E and the anionic LEC producing more

compact smaller particles [12]. In contrast, the stirring speed (D) shows a negative effect on

PS. The mechanical and hydraulic shear generated by increasing the stirring speed produced

ELPH with lower PS [63].

Eq (6) shows a positive correlation between all factors effects and EE % with the highest one

being that of the drug amount (C). Being a hydrophilic drug, increasing E amount enhanced

its encapsulation. These results are in agreement with others who reported that EE% enhance-

ment of glibenclamide was directly correlated to the increased drug content[64]. A direct posi-

tive effect was also found for LEC amount (B) on EE %, where the more the lipid content of

the bilayer, the more its barrier effect is pronounced, hindering E diffusion from the polymer

core [65]. An antagonistic effect of AB interaction between the polymer and lipid amounts on

drug EE% was seen in Fig 2. Generally, the solubility of drug- polymer mixture into the melted

lipid phase is a crucial parameter that determines the drug loading [66]. The miscibility of

drug with the formulation components mainly depends on their mutual solubilities and polari-

ties. By virtue of E hydrophilicity (log p -1.11) [67], the milieu is thought to be too hydrophobic

to encapsulate it.

The EE% is significantly increased by rising the stirring speed (D). This might be attributed

to the critical turbulent flow time when accompanied with high stirring speeds. In nanopreci-

pitation, nanoparticles are formed by interfacial phenomena due to the convection effects

caused by interfacial turbulence. A physicochemical instability is produced by solvent trans-

port and local regions of supersaturation are formed [68]. It might be assumed that turbulence,

applied for a specified time, would enhance the evaporation of the organic solvent preventing

drug leakage. Optimum flow rate was also reported during flash precipitation [69].

Entecavir lipid polymer hybrid for efficient macrophage uptake
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3.1.2. Design space and optimization. The design space was plotted by overlapping dif-

ferent CPPs influence on CQAs contour plots to obtain QTPP. The yellow area represents the

values of CPPs when optimized to fulfill QTPP criteria; minimum PS and maximum EE% (S1

Fig). Based on the high desirability and for model validation, three ELPH (F1-LEC, F2-LEC

and F3-LEC) were selected and prepared as checkpoint. Table 2 depicts their compositions,

sizes and EE %. It is worth mentioning that the linear correlation plots between experimental

Fig 1. Response 3D plot for the significant parameters interaction on ELPH PS (Y1). Interaction of (AB) between PLGA and E (A). Interaction of

(BC) between LEC and E (B). The positive interaction between PLGA and E indicates an enhanced effect of both variables on LPH PS. On the contrary,

LEC-E interaction shows an antagonistic effect on PS.

https://doi.org/10.1371/journal.pone.0227231.g001
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and predicted responses showed R2 value of 0.9932 and 0.9943 for Y1 and Y2 respectively indi-

cating model suitability.

3.2. Evaluation of optimized ELPH and effect of lipid modification and

vitamin E coating

Three optimized ELPH were characterized, displaying PS<200 nm, EE% values >75% and

PDI values below 0.2. The ξ values were found to be from -14.51±1.85 to -25.51±2.62 depend-

ing on LEC and drug content (Table 3).

Moreover, the drug LC % of the optimized formulae ranged from 6.13 to 8.45% (Table 3).

This was consistent with previous literature that showed similar LC% for different drugs, when

formulated as LPH, such as:�9% for amphotericin B [51], 1.8–9% with erlotinib [70] and

8–10% in case of etoposide [71]. It is to be pointed out that though the differences between LC

% of the three ELPH (F1-LEC, F2-LEC and F3-LEC) were significantly different (p> 0.05), yet

the values are not critical from a practical point of view.

3.2.1. Effect of lipid modification on ELPH characteristics. Previous studies had out-

lined the effect of lipid composition on the physicochemical properties of LPH including drug

release [72]. Others have reported that the drug content affected the drug release from LPH

[73] and a third group proved a 7 day release for docetaxel sodium from LPH with LEC and

GMS as lipid components [74].

Accordingly, various lipid mixtures were tested and tailored to control the drug release

from the selected ELPH. Following a preliminary screening, optimized ELPH were prepared

using LEC to CH in 1:1.5 ratio and LEC to GMS 1:1, while keeping the total lipid amount

Fig 2. Response 3D plot for the interaction of (AB) between PLGA and LEC on ELPH EE% (Y2). The interaction between the polymer and lipid

amounts has a negative influence on drug EE%.

https://doi.org/10.1371/journal.pone.0227231.g002
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constant. These formulae were labeled F1-CH, F2-CH and F3-CH for CH modified systems or

F1-GMS, F2-GMS and F3-GMS for GMS based ones (Table 3).

Increasing CH or GMS amounts significantly increased the PS of all the fabricated lipid

modified ELPH (p<0.05). LPH prepared using lipid combinations were reported to be larger

than those prepared using single ones [56]. By comparing the impact of CH and GMS modifi-

cation on the PS, it could be concluded that GMS based LPH had significantly higher PS than

their counterparts, CH based ones (p<0.05). This could be due to the larger molecular area of

GMS (40 A˚2) in comparison to CH (32 A˚2) [75]. Similarly, the addition of either CH or GMS

increased significantly the electronegativity of LPH (p<0.05). The higher absolute ξ values

obtained with GMS, might be due to the possible free fatty acids of GMS [76]. In contrast, the

incorporation of CH or GMS (Table 3) exhibited non-significant effect on both drug EE% and

LC% whatever the composition of the LPH lipid shell (p>0.05).

3.3. Drug release study

The controlled release pattern in nanoparticulate systems is an essential prerequisite for effi-

cient therapeutic outcomes [77], possibly by avoiding the undesirable circulation drug leakage

[50]. A feature generally enhanced by LPH due to the barrier effect of the lipid shell [26].

All LPH formulations, prepared using LEC as the sole component of the lipid shell exhib-

ited the same release pattern for 12–18 h (<24 h). (Fig 3A–3C) A release controlled by PLGA

and the phospholipid. By applying the similarity factor calculations, F1-LEC and F3-LEC and

F2-LEC vs. F3-LEC with respective (f2 = 44.55% and 46.84%) exhibited dissimilar release pro-

files. Accordingly, increasing the drug amount enhances the drug release. On the other hand,

increasing polymer content prolonged E release. Additionally, the concomitant increase in PS

observed with increasing PLGA content diminish the particles surface area available for drug

release [78].

Modified lipid shell of ELPH by lipid variations may reduce the water penetration to the

polymeric core, decreasing the polymer hydrolysis rate [19]. Generally, blending either CH or

GMS with the LEC in the lipid shell during the fabrication of ELPH presented a more pro-

longed drug release than that of unmodified LEC based formulae. CH addition caused ~ 100%

E release after 36, 48 and 42 h for F1-CH, F2-CH and F3-CH respectively (Fig 3A–3C) in com-

parison to less than 24 h with the phospholipid alone. Admixing GMS with LEC resulted in

more drug release sustainment over 72, 120 and 96 h for the LPHs, F1-GMS, F2-GMS and

F3-GMS respectively (Fig 3A–3C).

Fig 3. In vitro release profile of drug from different lipid polymer hybrid nanoparticles. In vitro E release from F1 prepared

using LEC, LEC-CH, LEC-GMS and vitamin E coated LEC-GMS as lipid shell (A), F2 prepared using LEC, LEC-CH, LEC-GMS

and vitamin E coated LEC-GMS as lipid shell (B), F3 prepared using LEC, LEC-CH, LEC-GMS and vitamin E coated LEC-GMS

as lipid shell (C) after exposure to 50% final concentration rat serum. E release was measured by dialyzing each formula against

PBS (pH 7.4). Drug concentration in the dialysate was quantified by HPLC. Data point represents mean and SD (n = 3).

https://doi.org/10.1371/journal.pone.0227231.g003

Entecavir lipid polymer hybrid for efficient macrophage uptake

PLOS ONE | https://doi.org/10.1371/journal.pone.0227231 January 10, 2020 12 / 25

https://doi.org/10.1371/journal.pone.0227231.g003
https://doi.org/10.1371/journal.pone.0227231


CH, an essential membrane-stabilizing lipid, has been widely explored in liposome formu-

lations [79]. In addition to its stabilizing effect, CH was found to reduce water permeability

through the lipid bilayer [72]. Similarly, the incorporation of GMS increased the LPH hydro-

phobicity, decreasing the interfacial area between the system and the dissolution medium [80].

Consequently, GMS significantly decreased the E release (p<0.05).

The more prolonged E release from GMS based formulae over CH based ones, could

be correlated with the inverse relation between the drug-lipid solubility. Solubility studies

show higher drug solubility in GMS, either alone or combined with LEC than in individual

CH or CH- LEC mixture (S1 File, S5 Table). The high affinity of the drug to the lipid

could hamper the partitioning of E to the dissolution medium as stated earlier [81]. Sec-

ondly, GMS was reported to be able of packing with LEC due to hydrophobic interaction

between their respective hydrophobic parts and hydrogen bonds between their hydrophilic

segments resulting in higher viscosity upon contact with water [82]. Thirdly, the higher

PS, attained with GMS modified ELPH, could increase the diffusion path length [83]. in

addition, the bigger PS with its smaller the surface area per unit volume available for release

[84].

As hypothesized, combined coating of lipid shell (i.e LEC-GMS mixture) and the lipo-

philic vitamin E could offer more prolonged release prospects. Therefore, ELPH enriched

with GMS were surface coated with vitamin E. Vitamin E, is a lipid soluble antioxidant with a

partition coefficient 12.18. It exhibits a potent protective and repairing activity against peroxy

radical induced biological membrane damage [85]. Moreover, vitamin E could be transferred

physiologically from serum to the liver [86]. Hence, E GMS modified LPH were coated with

vitamin E by physical adsorption producing EELPH. This could result in drug sustainment

with possible stability and bioavailability improvement as described by [87]. Binding of vita-

min E to the LEC in the lipid shell could occur via the interaction between the vitamin E phe-

noxyl hydroxyl group and the LEC phosphate and/or carbonyl group as well-described

previously [88].

Successful coating due to the layer deposition on the fabricated systems was proved by a sig-

nificant increase in PS (p<0.05). These results are in agreement with previous reports which

demonstrated PS increase after coating of various NPs e.g.: TPGS coated polystyrene NPs,

PEG and chitosan coated PLGA- Vitamin-E-TPGS NPs [87, 89]. The obtained PS and PDI val-

ues of the EELPH remained < 200 nm and<0.2 respectively. Moreover, the ξ. of EELPH for-

mulae was significantly reduced if compared to naked uncoated formulae (p<0.05). This may

be attributed to the ability of the coat to shift the shear plane of the diffusion layer to longer

distance thus decrease the absolute value of ξ. relative to stern potential [87].

EE% in EELPH did not significantly changed (p> 0.05), while LC% exhibited a significant

reduction due to mass increase (p<0.05) [70]. Similar results were obtained by Meng and

coworkers [90] who explored the inverse relation between the number of coat layers on the

PLGA and the loading efficiency of the encapsulated drug. However, the calculated loading

efficiency values were still in acceptable range [70].

A more drug sustainment was noticed from all the vitamin E ELPH where about 100% of

the drug was liberated after 96, 168 and 144 h with minimal burst effect from F1-GMS-vit E,

F2-GMS-vit E and F3-GMS-vit E respectively (Fig 3A–3C). Vitamin E coat provided an addi-

tional partial lipophilic barricade on the LPH surface, offering steric force to E diffusion to the

release medium [91]. It could be concluded that the approach of lipid coat tuning was efficient

to control drug release for one week.

Therefore, formula vitamin E coated F2-GMS (will be referred as EELPH), showing the

highest E retardation over one week, was selected for further characterization studies.
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3.4. Morphological studies

A representative TEM of the selected EELPH is illustrated in Fig 4A. Spherical non-aggregated

particles with a PS in the range of 180–190 nm could be seen in the TEM which is consistent

with the DLS measurements. The photomicrograph demonstrated the core-shell structure of

the coated LPH. The white core in the center is the PLGA core while the gray ring around the

polymer core is the coat “lipid shell” [70].

A core-shell structure of EELPH could be depicted from AFM Fig 4B. Moreover, the 3-D

structure showed district particles with a PS in accordance with both TEM and DLS (Fig 4C).

3.5. In vitro serum stability assay

The colloidal stability of the chosen EELPH was tested in 10% and 50% v/v FBS at 37 ˚C for 4

and 24 h. As shown in Fig 5A–5C, the formula was stable in 10% and 50% v/v FBS as proved

by non-significant effect on PS, PDI and ξ at all tested time points (p> 0.05). The negligible

effect of serum proteins could be ascribed by the electrostatic repulsion between the negatively

charged LPH with the serum proteins [50, 92].

3.6. In vitro hemolytic assay

The biocompatibility of the fabricated EELPH was assessed by the in vitro hemolytic assay.

The hemolytic activity was found to be heightened by a concomitant increase in the EELPH

concentration. However, the calculated % hemolysis was < 5% in all tested quantities (Fig 6).

Previous reports indicated that the accepted limit of hemolysis is from 5% to 25% [93]. How-

ever, the new consensus ASTM E2524-08 -Standard test method for analysis of hemolytic

properties of nanoparticles limited the threshold to 5% [94]. The safety of NPs coated with

vitamin E was reported by many previous studies [94, 95].

3.7. Shelf life colloidal stability study

The selected formula kept its original color with no phase separation or turbidity. No signifi-

cant change (p>0.05) in the PS, PDI, ξ .or EE% was seen after 1, 3 and 6 months storage at 5˚C

at different time intervals (Table 4). It is worth noting that as stated earlier, following storage

of LPH nanoparticles at climatic conditions of room temperature (25˚C) over a period of 6

months, dramatic changes in the physicochemical properties of the hybrid particles, aggregates

Fig 4. Morphological characterization of the optimized EELPH. Transmission electron micrograph (A), Atomic force micrograph

planner view (B) and 3-D view (C) of EELPH. EELPH appeared as core-shell nanostructure with PS in consistency with DLS

technique.

https://doi.org/10.1371/journal.pone.0227231.g004
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Fig 5. The effect of serum incubation on EELPH PS, PDI and ξ. The selected EELPH were incubated with 0%, 10%

and 50% FBS for 4, 24 and 48h then PS (A), PDI (B) and ξ. (C) were measured using DLS as described. Data points

represent mean and SD (n = 3). Statistical analysis was carried out using one-way ANOVA followed by Tukey HSD

test and P<0.05 was considered significant. Serum protein had a non-significant effect on LPH PS, PDI or ξ.

https://doi.org/10.1371/journal.pone.0227231.g005
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formation, degradation and possible corruption were noticed, signifying the necessity of keep-

ing the storage temperature of LPH at 5˚C [96].

3.8. The effect of vitamin E coating on the cellular uptake of ELPH

High cell viability exceeding 80% was obtained up to a concentration equivalent to 100 μM E

for the tested ELPH with or without vitamin E coating (Fig 7). The viability of cells treated

Fig 6. The in vitro hemolysis assay of EELPH. Rat RBCs were incubated with EELPH at different E concentrations (0–250 μg/mL)

for 2 h at 37˚C. Positive and negative controls were 0.5 w/v% Triton X-100 and PBS (pH 7.4), respectively. Samples were centrifuged

at 4000 rpm for 5 min at 4 ˚C and the absorbance of the released haemoglobin was determined at 545 nm. Results are expressed as

mean ± SD (n = 3). The dotted line represents the acceptable hemolysis range.

https://doi.org/10.1371/journal.pone.0227231.g006

Table 4. Characteristics of the selected EELPH at various time intervals following storage at 5˚C over a 6 months period.

Parameter Freshly prepared Storage at 5 ˚C

1 month 3 month 6 month

PS (nm) a, c, d 188.66±4 185.26±5 183.58±1.5 185.57±1

PDI a, c, d 0.143±0.02 0.143± 0.01 0.155±0.01 0.148±0.01

ξ. (mV) a, c, d -21.55±1 -20.69± 2 -20.96±1 -20.79±2

EE% b, c, d 80.47±2 80.57±2 79.71±1 81.51±2

a Measured by DLS.
b Calculated as percentage of initial E added, determined directly by HPLC.
c Expressed as mean ± SD (n = 3).
d Statistical analysis was carried out using one-way ANOVA followed by Tukey HSD test and P<0.05 was considered significant.

https://doi.org/10.1371/journal.pone.0227231.t004
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with either ELPH or EELPH was significantly higher than that treated with sodium lauryl sul-

fate at the same concentration (P< 0.05).

Meaningful association between the in vitro phagocytosis of delivery nanoplatforms by

macrophage and the in vivo liver retention is well-addressed [52]. In light of this, internaliza-

tion of DiI-labelled EELPH (50 nM) in J774 cells was investigated qualitatively by CLSM. Due

to the crucial potential of incubation time, boosting the cellular uptake efficiency [97], the cells

Fig 7. Cell viability assay of ELPH and EELPH after incubation for 48h. J774 macrophage cells were incubated with either

ELPH or EELPH at increasing E concentrations (0.01–100 μM). Cells viability were assessed by MTT assay and results are

presented as a percentage of the viable cells to the control untreated cells. Both tested formulae showed highe cell viability at all

tested E concentrations. Data points are expressed as mean ± SD (n = 5).

https://doi.org/10.1371/journal.pone.0227231.g007

Fig 8. In vitro intracellular uptake of EELPH in J774 by confocal laser scanning microscopy. EELPH uptake was assessed by

incubating J774 macrophage cells with 50 nM DiI-labelled EELPH for 4 h and 24. Untreated J774 cells appeared as blue due to the

staining of the nucleus by DAPI (A), J774 cells treated with 50 nM DiI-labelled EELPH for 4 h (B) and 24 h (C). The uptake was

confirmed by green fluorescence inside the cells while the cell nuclei appeared as blue due to the counterstaining with DAPI. The

fluorescence intensity was increased in time-dependant manner.

https://doi.org/10.1371/journal.pone.0227231.g008
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Fig 9. Intracellular uptake of ELPH and EELPH in J774 macrophage cells by flow cytometry. Cells were incubated

with DiI-labelled ELPH or EELPH at 25 (brown) or 50 nM (blue) for 4 h or 24 h. Flow cytometry histogram for uptake of

DiI-labelled ELPH and EELPH (A). Cellular uptake was quantified by mean florescence intensity (MFI) using flow

cytometry and FL-2 detector (B). LPH uptake was higher for EELPH than ELPH and was shown to be dose- and time-

dependent. Data points represent mean and SD (n = 3). Statistical analysis was carried out using one-way ANOVA

followed by Tukey HSD test and P<0.05 was considered significant.

https://doi.org/10.1371/journal.pone.0227231.g009
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were treated with coated LPH, considering two incubation times (4h and 24h). The DiI-

labelled EELPH displayed green fluorescence, while J774 cells’ nuclei, stained with DAPI,

showed blue fluorescence. Expectedly, enhanced time-dependent fluorescence intensity in the

cytoplasm of J774 cells was exhibited (Fig 8), indicating meaningful retention efficiency in the

cells and subsequent therapeutic efficacy of E [70].

The intracellular internalization of DiI-labelled EELPH was further quantitatively assessed

by flow cytometry. Moreover, in order to inspect the effect of vitamin E coating on the cellular

uptake, cells were incubated with either EELPH or its uncoated counterpart ELPH (F2-GMS).

Control J774 cells, without treatment, displayed auto fluorescence that was highly intensified

following treatment of cells with DiI-labelled ELPH or EELPH in both time and concentra-

tion-dependent manners (Fig 9A).

As displayed in Fig 9B, increasing the concentration of either ELPH or EELPH from 25 to

50 nM yielded�1.5–2 fold increase in the mean fluorescence intensity (MFI) after 4 h. Mean-

while prolonging the incubation period to 24 h demonstrated�2 fold in the measured MFI. In

addition, EELPH exhibited a significant 1.7–2 fold increase in the measured MFI values over

the uncoated one. The presence of vitamin E significantly improved the cellular uptake effi-

ciency by the macrophages (p< 0.05). This could be attributed to the potential ability of vita-

min E to stimulate the phagocytic activity of macrophage as immunomodulatory to improve

the phagocytic activity of macrophage as mentioned early [41].

4. Conclusion

HBV infection was considered as a major cause of death worldwide, due to the risk of cirrhosis,

hepatocellular cancer, portal hypertension and liver failure. E monotherapy have been sug-

gested for 48 weeks. Hence, the study offers a long-acting parenteral LPH of E. A platform,

which combines the benefits of both polymeric and lipid carriers. The lipid shell was modu-

lated with GMS to extend the drug release followed by Vitamin E coating to enhance liver tar-

geting with more hydrophobic barriers for drug liberation. The optimized vitamin E coated

LPH with LEC-GMS shell displayed favorable PS (188.66 nm) for passive targeting, an E

entrapment of 80.47% and sustained release for one week. In addition, ELPH coated with vita-

min E proved an increased in vitro macrophage retention, in comparison to the uncoated

ones. In vivo antiviral activity should be considered in the future.
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