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Abstract

Fish spawning aggregations (FSA) act as biological hotspots that concentrate food and

nutrients across a broad trophic spectrum. In Pohnpei (Federated States of Micronesia), 20

female grey reef sharks (Carcharhinus amblyrhynchos) were acoustically tagged at two

multi-species grouper (Epinephelidae) FSA to examine the likelihood that these mesopreda-

tors utilize FSA as a seasonal food source. Both FSA sites are within small-scale MPAs,

thus providing a secondary opportunity to examine their conservation potential during these

ephemeral events. Shark movement and residency was gauged against known spatial and

temporal grouper reproductive patterns using an array of 15 and 50 acoustic receivers at

Ant Atoll and Pohnpei (Island), respectively. Activity space was investigated using Kernel

Density estimates of individual sharks, and residency indices (RI) were analyzed based on

daily and monthly occurrence at the array. Three distinct residency patterns were identified:

transient, semi-transient, or resident (Daily RI <0.40, >0.40 to 0.80, or >0.80, respectively).

Generalized linear mixed models (GLMMs) were used to identify biological and environmen-

tal factors influencing shark activity space, including month, temperature, shark size, spawn-

ing month, and residency pattern. Findings revealed significant changes in average monthly

residency indices and kernel densities during spawning months in support of an opportunis-

tic foraging strategy around FSA. Monthly residency was higher during spawning months

among semi-resident and transient sharks, while average monthly activity space was con-

centrated around FSA. Best-fit models for the GLMM indicated that activity spaces were

most influenced by month and grouper spawning month. Seven of 20 sharks demonstrated

inter-island movement and wide variations in individual movement and spatial requirements

were shown. The concentration of sharks and groupers at unprotected FSA sites increases

their vulnerability to fishing and supports the need for combined area and non-area manage-

ment measures to effectively protect these species.
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Introduction

Fish spawning aggregations (FSA) represent critical life history phases for a number of coral

reef fishes [1] and serve as biological hotspots that provide food and nutrients to marine organ-

isms across a wide trophic spectrum [2–7]. In many locales, FSA are multi-species and may be

comprised of 100s or 1000s of individuals [8–10], thus representing a rapid and substantial

increase in biomass and nutrient flow within areas used as spawning sites. Since FSA are spa-

tially and temporally predictable, they are highly attractive to both fishers who can extract high

catch volumes over brief time periods [11–13] and to marine organisms that gain from the ele-

vated food and nutrients available during these events [14]. For fisheries, the benefits of FSA

fishing are well known [13, 15] as are the impacts that targeted FSA fishing can have on stocks

[16, 17], particularly when FSA remain unprotected. In extreme instances, aggregation fishing

can fully extirpate FSA [18], with concomitant losses in food and nutrients to the organisms

reliant on them.

Among the many species benefitting from FSA through foraging are sharks and rays, with

perhaps the most spectacular foraging events associated with whale sharks (Rhincodon typus)
[4, 19–22] and reef-associated mantas (e.g. Alfred manta, Mobula alfredi) [23]. Less observed,

but equally spectacular are the foraging events on FSA by subtropical and tropical reef-associ-

ated requiem sharks (Carcharhinidae), including lemon sharks (Negaprion brevirostris; Poey

1868) [24], grey reef sharks (Carcharhinus amblyrhynchos; Bleeker 1856) [14, 25], and blacktip

reef sharks (Carcharhinus melanopterus; Quoy and Gaimard 1824) [26]. During these periods,

sharks may become vulnerable to the same types of gear used for target aggregating fish

(Rhodes pers. observ.), thus protective measures that target spawning fishes may also provide a

temporary respite from fishing for sharks.

In the tropics, there is a drive to establish marine protected areas (MPAs) as a means to pro-

tect reef-associated marine resources. Similarly, the International Marine Protected Area Con-

gress seeks to designate 10% of the world’s oceans as MPAs by 2020 [27]. Thus, the need to

examine the utility and optimal design of these set-asides for highly mobile and migratory

organisms, such as transient spawners and reef-associated sharks is imperative. For transient

FSA-forming species, a number of conventional and acoustic telemetry studies has been con-

ducted to examine seasonal and monthly movement patterns, residency, visitation frequency

and fishing vulnerability [28–33]. Those studies largely confirm the utility of MPAs in protect-

ing aggregating fish, but point to the need for additional management measures to protect

migrating fish and fish using aggregation sites. Similarly, numerous tagging studies have

focused on reef-associated and pelagic shark movement, both to assess MPA effectiveness and

identify other appropriate conservation measures [24, 34–38].

Among coastal sharks, grey reef sharks are one of the most prominent tropical reef-associ-

ated Indo-Pacific species. Several studies have investigated their movement [34–38] and the

potential benefits of small-scale MPAs (herein�1 to 5 km2). In general, findings have shown

sex-specific differences in habitat preferences and movement patterns and distances, with

females generally less likely to undergo long-distance movement than males. Grey reef sharks

also tend to be more resident when reefs are continuous or closely spaced [37]. Where reefs

are semi-isolated, grey reef sharks appear to be largely resident with some long-distance move-

ment possible [38–40]. In contrast, in isolated reef settings, grey reef shark residency can be

high [36], but movements away from isolated habitats may also be substantial, covering hun-

dreds of kilometers [41].

In the western and central Pacific, the Micronesia Challenge was initiated in 2005 with the

primary goal of incorporating 30% of available nearshore marine habitat into marine reserves

(http://micronesiachallenge.org). While there has been success in achieving this goal, most
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reserves are small (<10 km2), nearly all are unenforced and only a few have been placed in

areas of biological significance, i.e. critical habitat or areas of high biodiversity. Indeed, a recent

assessment showed a limited efficacy of MPAs in the region [42]. Currently, it is unclear

whether the intended benefits of these reserves will be realized, particularly for mobile animals,

such as reef-associated sharks and aggregating groupers [43]. Questions about the efficacy of

MPAs for sharks have arisen based on empirical evidence. For example, in the Great Barrier

Reef grey reef sharks have continued to experience large-scale declines (17% yr-1) in spite of

relatively strict enforcement in four types of management zones that include no-entry reserves

[44]. In contrast, subsequent fishery-dependent findings [45] reported that current manage-

ment for sharks was effective, although the majority of shark by-catch was grey reef sharks.

Similar to the use of MPAs for sharks, the results of small-scale MPAs for FSA have been

mixed. In Pohnpei, Micronesia, year-over-year declines in fish density have continued inside a

small-scale MPA meant to protect spawning grouper [10]. In contrast, improvements in fish

density have been shown for MPA-protected FSA in Papua New Guinea [46]. In the Carib-

bean, improvements in FSA abundance and size were demonstrated following combined area

and harvest measures for red hind (Epinephelus guttatus) [47]. Clearly, there is a need for

greater understanding of habitat use, movement and vulnerability of these mobile organisms.

Although grey reef sharks are among the most common reef-associated mesopredators,

they are also among the most vulnerable to small-scale fisheries. Grey reef sharks were listed

by the International Union for the Conservation of Nature (IUCN) as Near Threatened (NT)

during the last global evaluation in 2005. Population trends at that time were listed as

unknown [48]. In recent years, declines in grey reef sharks have been associated with targeted

and non-targeted fisheries that are drawn to the commercial value of dried fins, meat and

teeth. In many small-scale commercial fisheries in the tropics, grey reef sharks are commonly

taken as by-catch [49] and often killed and discarded because of the perception by some fishers

that they impede fishing success (Rhodes pers. observ.). Among larger scale commercial fisher-

ies, passive sexual selection of sharks has been reported from longline fishing [50–51], due in

part to segregation by depth in some shark species [52]. Moreover, high site fidelity and philo-

patry have also been identified among coastal shark species [53–55], suggesting localized

depletions are possible where sharks are concentrated and remain unprotected. As a result of

these various shark fisheries and observed sex-specific behavioral differences [56–57], popula-

tions in some locales have been severely depleted [58]. Even with fisheries management in

place, grey reef sharks may be vulnerable to fishing mortality as they have a moderate rebound

potential, with gestation over 9-months, litter size ranging from 3–6 pups, and a mean of 4.1

pups (e.g. Hawaii) [59].

In Pohnpei (Federated States of Micronesia, FSM hereafter), populations of all nearshore

shark species are anecdotally reported as declining (Rhodes, pers. observ.). Local fisheries for

sharks include the capture of juveniles for teeth and jaws for the curio trade, however on the

main island and atolls immediately surrounding Pohnpei (Island), there is no targeted food

fishery for sharks. Small-scale commercial and subsistence fishers view sharks of all kinds as a

nuisance and are known to remove the tail and discard the carcass when landed (Rhodes, pers

observ.). Some small-scale shark finning is known to occur within the artisanal fishery. Further

investigation is needed to gauge the scale and impact of the existing fishery, notably in light of

the ban on shark fishing in Pohnpei’s territorial waters enacted by the FSM Government in

2013. The national ban was expanded as part of the declaration of the Regional Micronesia

Shark Sanctuary in 2015, which encompasses 6.5 million square kilometers, and where the

region’s governments prohibit the commercial fishing of sharks, retention of sharks caught as

by-catch, and the trade, possession, and sale of shark products. The impact of the sanctuary on

a reversal in declines of shark populations has not been evaluated.

Grouper spawning aggregations influence activity space of Carcharhinus amblyrhynchos in Pohnpei, Micronesia

PLOS ONE | https://doi.org/10.1371/journal.pone.0221589 August 28, 2019 3 / 19

https://doi.org/10.1371/journal.pone.0221589


Within the state, there are currently 16 small-scale no-take marine reserves ranging in cov-

erage from 0.34 km2 to 41.4 km2 (mean = 7.4 km2; median = 2.1 km2); however, most are

poorly enforced [10, 60], including the Kehpara Marine Sanctuary (KMS) (Fig 1). The KMS

was established in 1999 to protect seasonal spawning aggregations of camouflage grouper, Epi-
nephelus polyphekadion (Bleeker 1849; VU A2bd), brown-marbled grouper, Epinephelus fusco-
guttatus (Forsskål 1775; VU A2bd+4bd), and squaretail coralgrouper, Plectropomus areolatus
(Rüppell 1830; VU A2bd) (http://www.iucnredlist.org).

Four sections of nearby Ant Atoll were also designated for marine area protection by Pohn-

pei State in 2007 (Fig 1) and in 2008 the entirety of Ant (34 km2) became a UNESCO Man and

Biosphere Reserve (http://www.unesco.org). The lagoon and channel are now regularly

patrolled by private enforcement. Within the KMS, decadal declines in the FSAs of all three

aggregating groupers have been associated with fishing, following a relaxation in enforcement

[10]. There has been no baseline assessment of aggregating groupers at Ant or of sharks at any

location in Pohnpei.

Within both the KMS and the main channel of Ant Atoll, seasonal (January-May) FSA of

these aforementioned three groupers form c. two weeks prior to each full moon [35]. Aggrega-

tion abundance and density increases daily for all species prior to spawning and the arrival

time and duration of individuals varies by sex [61–63]. Spawning occurs on the last day or

days of the FSA for each respective species, after which time individuals disperse to home reef

areas. Each aggregation typically numbers in the 100s to 1,000s of individuals. At Ant, a num-

ber of other teleosts also aggregate during these months, creating an additional attraction to

fishers and possibly sharks. Sharks have always been present at the Kehpara and Ant FSA dur-

ing past research studies [63] and were often captured and released, however it is unclear

whether this presence simply represented resident grey reef sharks or whether there was an

attraction to the site for trophic opportunism.

The objectives of the current study were to:

i. examine monthly activity spaces, as kernel densities, residency and timing of grey reef shark

movement in order to discern whether there are significant differences between grouper

non-spawning and spawning periods to imply attraction to the site for trophic interactions,

and;

ii. identify what level of protection the small-scale MPAs that characterize much of the devel-

oping Pacific, including the existing MPAs at Kehpara and Ant Atoll, might provide for

grey reef sharks times when they are concentrated, e.g. during grouper reproductive

periods.

Materials and methods

Site description

Between 22 and 26 January 2010 and 31 January to 16 March 2012, grey reef sharks were cap-

tured at two separate seasonal (transient) grouper spawning aggregation sites each located

within small-scale MPAs (Fig 1). In Pohnpei, the KMS was established by a private landowner

as a permanent no-take zone in 1995 and formalized by Pohnpei State in 1999. The KMS

encompasses a well-studied multi-species grouper FSA site that has been described in detail in

previous reports [35, 39–41]. The KMS is ca. 1.5 km2 and includes both inner and outer reef

habitat along the southwestern portion of Pohnpei (Kitti Municipality). Within the KMS,

groupers aggregate monthly on the outer reef wall over an approximate 2-week period prior to

full moon between January and May: P. areolatus—January-May; E. fuscoguttatus—February-
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May; E. polyphekadion—February-March or March-April. The initiation of each species’

spawning season and the month of peak density are all dependent on the timing of full moon

relative to winter solstice [10]. In this way, the reproductive season for E. polyphekadion, for

example, can be either February-March or March-April. For P. areolatus, there are indications

the FSA in January represents an all-male aggregation that starts around new moon and

remains in place over a 6-week period [62]. In subsequent months, male P. areolatus depart

along with females following spawning around the full moon. All three species have been

shown or observed utilizing common reproductive migratory corridors to reach and depart

the FSA site and at last some individuals travel up to 25 km from the FSA to reach home reefs

immediately after spawning [62–64]. As previously indicated, the species-specific duration of

FSA varies, with P. areolatus and E. fuscoguttatus maintaining aggregations over c. 2 weeks

during each reproductive month, while the E. polyphekadion FSA currently extends over 5

days or less [10]. This truncated aggregation period is considered an effect of overfishing and

represents a decline from two decades earlier when these FSA formed and persisted for 10–12

days [61]. Depending on the timing of seasonal aggregation formation, February, March and

April are peak aggregation months in terms of abundance, and months where either two or all

three species can be present.

Prior acoustic telemetry studies and fishery-independent surveys for grouper at the KMS

showed that grey reef sharks inhabit the area and readily prey on line-caught groupers during

Fig 1. Map of the study site. Pohnpei and Ant Atoll, Federated States of Micronesia showing receiver locations. Boxes

with yellow shading indicate the boundaries of no-take marine reserves and land masses are shaded grey. Orange

boxes denote fish spawning aggregation (FSA) sites.

https://doi.org/10.1371/journal.pone.0221589.g001
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retrieval. Enforcement at KMS occurred from the time of its designation as an MPA until 2005

when the private landowner died. Since that time, poaching has been ongoing, with year-over-

year declines in grouper abundance and density [10]. Another FSA site, located in the channel

of neighboring Ant Atoll was chosen as the second location for grey reef shark tagging. Unlike

Kehpara, the Ant FSA was largely unprotected and actively fished until 2015, particularly dur-

ing grouper spawning times. Ant Sanctuary was established as a no-take zone in 2007 and is

comprised of four sections totally 34 km2, however only about one-quarter of the total area is

dedicated to the channel where the FSA forms (Fig 1). The site is currently being enforced by

private individuals residing on the atoll.

Tagging

For tagging, grey reef sharks were captured by traditional fishers fishing on snorkel. Fishing

was conducted in open water seaward of the reef. Fishers used standard 80-lb clear monofila-

ment tuna line fitted with braided 1/16” stainless steel wire leader and a swivel attached to a

16/0 gauge circle hook. Fishing was conducted during daylight hours using various baits,

including grouper, skipjack (Katsuwonus pelamis) or kawakawa (Euthynnus affinis). Once cap-

tured, grey reef sharks were brought to the surface, held boatside on the fishing line to allow

water movement across the gills, immobilized using a tail rope and subsequently inverted to

induce tonic immobility and facilitate tag implantation. Each captured shark was then mea-

sured across the body length in a curved line to the nearest cm pre-caudal (PCL) and total

length (TL) [65], and sexed visually prior to surgery. For implantation of acoustic tags (Vemco

V16-6L coded acoustic transmitter, 69 kHz, 90-sec blanking interval, estimated tag life = 1877

d) (Amirix Systems, Nova Scotia, Canada), a c. 4–5 cm incision into the peritoneal cavity was

made using a sterile #10 surgical scalpel blade. Prior to insertion, tags were coated with over-

the-counter triple antibiotic ointment. Following insertion, incisions were closed using Ethi-

con 5–0 cutting edge needle and braided silk sutures. Tagging procedures typically lasted c. 8

to 10 min. All fish were checked to ensure they were healthy and active prior to release at or

near the point of capture. Of the nine tags deployed in 2010, one was recovered from an animal

previously tagged in a separate study and had a maximum of 1411 days remaining battery life.

Twelve new tags were implanted in grey reef sharks in 2012, bringing the study total to 21 ani-

mals. Pohnpei State Office of Fisheries and Aquaculture reviewed and approved the protocols

and provided oversight of the research.

Acoustic monitoring

Between January 2010 and October 2013, monitoring was conducted on tagged grey reef

sharks using 65 Vemco VR2W receivers that were moored along the outer barrier reefs and

channels leading into Ant and Pohnpei lagoons (Fig 1). A concentration of receivers was

placed within and adjacent to the KMS as part of a separate, ongoing grouper tagging study.

Otherwise, receivers were placed north and south of the FSA at c. 4-km intervals. The receivers

were placed to simultaneously research grey reef sharks and aggregating groupers [63] and

covered c. 80 km of combined reef area. All receivers were suspended in the water column at c.
15–20 m using a hard plastic sub-surface float. All receivers were downloaded and maintained

at 1-year intervals or less, depending on opportunity and need. At Ant Atoll, 15 receivers

remained deployed along 45 km of outer barrier reef, inclusive of two receivers along the main

channel leading into the lagoon (Fig 1). Prior range testing showed that detections of 250 m

were common in unobstructed areas [64], similar to that which characterizes the outer reef

mooring sites.
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Data analysis

Total detections at each receiver within the array were examined for the study period. Detec-

tions at Pohnpei and Ant Atoll were examined by day and month to examine changes in shark

presence over time and determine activity spaces. Daily detections (shark detected at the array

at least twice during one 24-hr period) of individual sharks were calculated to monitor pres-

ence of the sharks within the receiver array and at the FSA, and to assess changes in detection

frequency during grouper spawning months. Residency of sharks (residency index = RI) was

calculated as the total number of days detected divided by the total number of days the shark

was expected at the array if it were detected every day (date array removed-date tagged) [66].

RI was also calculated for days spent within the FSA and the KMS, and during new and full

moon cycles. Sharks were considered “resident” when overall RI > 0.80, “semi-transient”

when RI> 0.40 and < 0.80, and “transient” when RI < 0.40, similar to the ‘cut-off’ values used

by other recent researchers [14]. A monthly RI was also calculated for each shark to determine

how individuals’ residency patterns changed over the course of the year. Monthly RI was plot-

ted separately for the resident groups to assess whether these patterns differed among tran-

sient, semi-transient, and resident sharks at Ant Atoll and Pohnpei. Differences in RI by

month and transient group were examined using Analysis of Variance (ANOVA) if data were

determined to be normally distributed and homogenous, otherwise a Kruskal-Wallis test was

applied [67]. Monthly RI differences between grouper spawning months and non-spawning

months were tested using a Student’s t-test. Differences in mean daily RI between new and full

moon periods at the FSA were also tested using a Student’s t-test. Lunar phases were deter-

mined using the R package Lunar [68].

The utilization distribution (UD) of individual sharks was examined using fixed Kernel

Density (KD) analyses of detections for each individual at 30-minute time steps using a bivari-

ate normal kernel function [69]. The KD calculation uses a kernel method to estimate the KD

using relocation (detection) data [70], and a smoothing parameter was chosen based on visual

choice after several trials. Core activity space (50% KD) and the activity space extent (95% KD)

were examined for changes in habitat use over the course of 46 months. Sequential monthly

KD values were calculated for each individual; in instances where the number of detections

was insufficient to calculate KD, the individual was omitted from analysis for that month. All

calculations and KD were made using the adehabitatHR and sp packages in R [69, 71–72], and

visualizations for KD were made in QGIS.

Generalized linear mixed models (GLMMs) were used to examine the monthly changes in

activity spaces of sharks in relation to seasonal (January—May) grouper spawning aggrega-

tions and other factors, such as water temperature, shark size (TL), and residency status of

individuals (transient, semi-transient, resident). Individual (transmitter code) was included in

the model as a random factor to account for repeated-measures [73]. Estimates of KD were

tested for normality and square root transformed, if necessary [74], and models were checked

for multicollinearity by calculating variance inflation factors (VIF). Final model selection was

based on Akaike Information Criteria (AIC) [73, 75], and the dredge function [76] (package

MuMIn) was used to generate a suite of models for comparison [77]. Models were built with

all combinations of factors for 50% and 95% KD (global model: KD ~ month + spawning

month + temperature + TL + residency status) and were tested against the null model using

maximum likelihood. Model averaging on the top candidate models was conducted: parameter

estimates were averaged for a subset of models where deltaAIC < 2, and cumulative AIC

weights (wi) were used to determine the influence of each factor on activity space, with wi >

0.5 considered significant drivers of activity space [73, 77]. Month was a sequential factor and

spawning months were binary (spawning months = January through the end of May of each
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year), based on previously published information [10]. Temperature was a calculated monthly

average based on data loggers that were concurrently placed at the study area.

Differences in monthly estimated 50% and 95% KD were analyzed using a non-parametric

Kruskal-Wallis test because the data were non-normal and non-homogenous [67]. In order to

assess individual variation in monthly activity space use, Kruskal-Wallis tests were also run

separately for monthly KD estimates by residency status (transient, semi-transient, and resi-

dent) and plotted. A post-hoc pair-wise Wilcox test was run if differences were significant to

determine where differences occurred. A student’s t-test was run to assess differences in activ-

ity spaces between grouper spawning months and non-spawning months.

Results

Spatial habitat use and residency

Between 22 and 26 January 2010 and 31 January to 16 March 2012, a total of 21 grey reef

sharks were captured and fitted internally with an acoustic transmitter, which included four

sharks inside Ant Channel and the remainder of sharks within the KMS (Table 1). All individ-

uals were adult females as determined by a combination of size and the absence of claspers.

Adult females ranged in size from 101 to 160 cm TL (mean = 147.0 cm TL). The smallest grey

reef shark (101 cm TL) tagged at Ant (Transmitter 51334) was detected at the array for only a

single day and was removed from the analysis. Among the 20 remaining individuals, total

detection days ranged from 250–1347 d (Table 1).

Table 1. Tagging information, residency indices (RI), and Kernel Density (KD) estimates1.

Transmitter Date

tagged

Location

tagged

TL Tag life

(days)

Days

monitored

Days

detected

Overall

RI

RI inside

KMS

Overall 50% KD

(km2)

Overall 95% KD

(km2)

48007 2-Feb-12 Kehpara MPA 147.5 1877 626 250 0.40 0.29 0.05 0.36

53832 23-Jan-10 Kehpara MPA 152 1850 1366 501 0.37 0.28 2.22 17.87

53838 26-Jan-10 Kehpara MPA 150 1850 1363 321 0.24 0.24 0.19 1.27

53840 22-Jan-10 Kehpara MPA 147 1850 1367 466 0.34 0.33 0.41 2.72

65071 26-Jan-10 Kehpara MPA 150 3650 1363 253 0.19 0.04 2.44 14.16

65075 26-Jan-10 Kehpara MPA 156 3650 1363 298 0.22 0.14 0.37 2.3

7785� 22-Jan-10 Kehpara MPA 158 1411 1411 909 0.64 0.63 0.38 1.82

48006� 28-Jan-12 Kehpara MPA 107 1877 631 432 0.68 0.68 0.13 0.89

48008� 3-Feb-12 Kehpara MPA 151 1877 625 471 0.75 0.46 4.39 43.65

51335� 6-Mar-12 Kehpara MPA 154 1870 593 458 0.77 0.03 2.81 17.83

48010� 31-Jan-12 Ant Channel 146 1877 628 261 0.42 0.03 9.41 109.02

51336� 5-Mar-12 Ant Channel 140 1870 594 435 0.73 0.25 1.92

51337� 4-Mar-12 Ant Channel 152 1870 595 428 0.72 2.39 24.92

65072� 26-Jan-10 Kehpara MPA 148.5 3650 1363 642 0.47 0.24 0.32 2.82

51328�� 3-Mar-12 Kehpara MPA 154 1870 596 582 0.98 0.97 0.01 0.07

51329�� 3-Mar-12 Kehpara MPA 154 1870 596 585 0.98 0.53 1.22 7.47

51338�� 3-Mar-12 Kehpara MPA 156 1870 596 590 0.99 0.98 0.02 0.15

51339�� 3-Mar-12 Kehpara MPA 153 1870 596 596 1.00 0.99 0.008 0.06

65074�� 26-Jan-10 Kehpara MPA 160 3650 1363 1347 0.99 0.94 0.05 0.79

65076�� 26-Jan-10 Kehpara MPA 151 3650 1363 1272 0.93 0.90 0.01 0.88

1 One asterisk indicates semi-transient sharks, two asterisks denote resident sharks, and those with no asterisks are transient.

Tagging information, residency indices (RI), and Kernel Density (KD) estimates of mature female Carcharhinus amblyrhynchos tagged with internal transmitters at

Pohnpei and Ant Atoll from January 2010-March 2012. Sharks were monitored from January 2010-October 2013.

https://doi.org/10.1371/journal.pone.0221589.t001
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Residency indices at the array by daily occurrence were high for all sharks combined, with

an average (±SD, hereafter) RI of 0.64±0.29 (Table 1). Of the 20 sharks used in the analysis, six

individuals were considered transient, eight were semi-transient and six were highly resident

(Table 1). All sharks tagged at Ant were considered semi-transients (Table 1).

The number of days sharks were detected within the KMS was similar to those spent outside

the KMS (8,103 days inside vs. 7,439 outside; 64% vs. 71% of total days each shark was detected

at the array). Two of the 20 sharks were never detected at the KMS, both of which were initially

tagged at Ant. Residency within the KMS was highly variable, with an average overall RI

of 0.48±0.36. Sharks that were considered transient at the array spent the least amount of

time within the KMS (RI = 0.22±0.11), followed by semi-transient sharks (RI = 0.34±0.29)

(Table 1). Of six sharks considered to be resident to the array, five had a daily RI� 0.90±0.17

within the KMS (Table 1). The 18 sharks detected at the FSA throughout the study had an

average daily RI of 0.47±0.35. The daily RI was not significantly different at the FSA between

full moon and new moon periods (Student’s t-test, p = 0.37). Average monthly RI at the array

for all sharks was not significantly different across all months (ANOVA, p>0.05), with an aver-

age of 0.80±0.30 (Fig 2). There were insignificant trends (ANOVA, p>0.05) in decreasing

average monthly RI among semi-transient and transient sharks, while resident sharks main-

tained similarly high RI across all months (Fig 3A). Monthly average RI was significantly

higher at the FSA during spawning months versus non-spawning months for all residency

types (0.59±0.38 vs. 0.52±0.37, respectively; Student’s t-test, p<0.05).

Activity space

Large variations in activity space (KD) were observed among individuals. By residency type,

semi-transient and transient sharks showed a much wider range of movement and activity

space outside of the aggregation periods (Fig 3B). Activity spaces were small overall, with only

one shark utilizing both Pohnpei and Ant Atoll regularly (Transmitter 48010, 95% KD = 109.0

km2). The extent of activity spaces of all other sharks was < 45 km2 (95% KD; Fig 4; Table 1)

and most were under 20 km2. The semi-transient sharks had the largest average activity spaces

(mean 50% KD = 2.1 km2, 95% KD = 20.6 km2), while the resident sharks had the smallest

(Table 1). The six resident sharks at the array had an average activity space core of just 0.32

km2 (50% KD) and an extent of 2.1 km2 (95% KD). All resident sharks spent a high number of

days within the KMS (Table 1).

In general, activity spaces increased over the course of the year, although there were not sig-

nificant differences detected among months (averaged by calendar month) (Kruskal-Wallis

p> 0.05, Fig 2). Overall, activity spaces for resident sharks remained constant, while non-sig-

nificant increases were observed among semi-transient and transient sharks for the core (50%

KD) (Fig 3B) and extent (95% KD) of activity spaces. Average monthly 50% KD and 95% KD

estimates were significantly lower during grouper spawning months than non-spawning

months (2.5 vs. 7.3 km2 and 7.8 vs. 38.8 km2, respectively; Student’s t-test, p < 0.05) (Figs 2

and 4).

Results for mixed models indicated that month and grouper spawning period influenced

the activity space of sharks at the study site (Tables 2 and 3). The best-fit model for core activity

space (50% KD) (Table 2) included month and grouper spawning period, and the best-fit

model for the extent of activity space (95% KD) (Table 3) included only month. All candidate

models were significantly different than the null model (p< 0.001). Model results were similar

between the 50% and 95% KD estimates, with the top three models for both scenarios includ-

ing month, grouper spawning period, and residency status (Tables 2 and 3). AIC values were

similar for the top candidate models, indicating weak support.
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Results from the 15 top-ranked GLMMs for the 95% Kernel Density (KD) activity spaces of

female grey reef sharks Carcharhinus amblyrhynchos at Pohpei and Ant Atoll from January

2010-October 2013. The best-fit model with the lowest AIC is shown in bold. Month: sequen-

tial month from the start of the study; Spawning: grouper spawning period (binary); Resident:

residency status (transient, semi-transient, resident); Temp: temperature; TL: total length.

Model averaging of cumulative AIC weights supported the model selection, and parameters

in the top candidate models for both 50% and 95% KD estimates were shown to influence (wi

> 0.5) activity spaces of grey reef sharks tagged at Pohnpei (Table 4). Month was the most

influential parameter for the core and extent of activity space, followed by grouper spawning

period, with activity spaces contracting during these periods (Fig 4 and Table 4).

Fig 2. Kernel density and residency index estimates. Monthly 50% and 95% kernel density utilization (KD) and residency index (RI) estimates for all female grey reef

sharks Carcharhinus amblyrhynchos monitored by acoustic array at Pohnpei and Ant Atoll from January 2010-October 2013. Error bars represent standard error. The

outlined box represents the aggregation months.

https://doi.org/10.1371/journal.pone.0221589.g002
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During aggregation months, RI was lowest and most variable during January when only P.

areolatus is present in the FSA site. Previous work at the FSA site suggests that it is during this

period when P. areolatus aggregations are highly or exclusively composed of males.

Inter-reef and long-distance movement

In general, grey reef sharks tended to be highly resident to the island or atoll where they were

captured, however six females tagged at Pohnpei (35%) were detected at Ant Atoll. Of the four

sharks tagged at Ant Atoll, Transmitter 51334 was detected only for one day and subsequently

removed from the analysis. Two females were never detected at any station at Pohnpei and the

fourth (Transmitter 48010) was detected at Pohnpei for 39 days out of the 318 total detection

days, with the remainder of detections at Ant.

Discussion

In Pohnpei, Micronesia, grouper spawning events appear to influence the movement patterns

and activity spaces of semi-transient and transient female grey reef sharks. During the grouper

spawning season, grey reef shark activity spaces contracted around FSA sites, daily detections

increased and the number of tagged sharks present at the FSA rose, in support of prior

research that demonstrated the use of FSA for foraging by elasmobranchs. While the scale of

movement and activity space for all sharks extended well beyond MPA boundaries (95% KD

Fig 3. Monthly residency index and kernel density. (A) Monthly residency index (number of days detected divided by the number of days in each month)

and (B) Monthly KD for transient, semi-transient, and resident female grey reef sharks tagged at Pohnpei and Ant Atoll, Micronesia during two tagging

events in 2010 and 2012. The black box outlines aggregation months (January–May), while the shaded area represents months when either two or all three

groupers are present (February–April).

https://doi.org/10.1371/journal.pone.0221589.g003
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range = 2.1–109.0 km2; average = 12.0±25.3 km2) during non-spawning months, most sharks

tagged were detected within the KMS on more than 50% of monitored days. For resident

sharks, the small activity space and extensive time within the MPA provides proof that small-

scale MPAs have benefits to at least some individuals and offers partial benefits to others.

Fig 4. Shark activity space. Activity spaces for 20 female grey reef sharks calculated as 95% Kernel density (KD) utilization for A) resident sharks overall; B) resident

sharks during grouper spawning months; C) semi-transient sharks overall; D) semi-transient sharks during grouper spawning months; E) transient sharks overall; and

F) transient sharks during grouper spawning months.

https://doi.org/10.1371/journal.pone.0221589.g004

Table 2. The 15 top-ranked GLMMs for the 50% Kernel Density (KD) activity spaces.

Model 50% KD df Loglik AIC deltaAIC w

Month+Spawning 5 -751.55 1513.30 0.00 0.22

Month 4 -753.01 1514.10 0.88 0.14

Month+Spawning+Resident 6 -751.10 1514.40 1.18 0.12

Month+Temp 5 -752.32 1514.80 1.54 0.10

Month+Spawning+TL 6 -751.47 1515.20 1.92 0.08

Month+Spawning+Temp 6 -751.50 1515.20 1.98 0.08

Month+Resident 5 -752.65 1515.50 2.21 0.07

Month+Resident+Temp 6 -751.84 1515.90 2.66 0.06

Month+TL 5 -752.92 1516.00 2.74 0.06

Month+Temp+TL 6 -752.24 1516.70 3.45 0.04

Month+Resident+TL 6 -752.61 1517.50 4.19 0.03

Spawning+Resident 5 -756.65 1523.50 10.20 0.00

Spawning 4 -757.76 1523.60 10.36 0.00

Spawning+Resident+Temp 6 -756.01 1524.30 11.00 0.00

Spawning+Temp 5 -757.21 1524.60 11.32 0.00

Results from the 15 top-ranked GLMMs for the 50% Kernel Density (KD) activity spaces of female grey reef sharks Carcharhinus amblyrhynchos at Pohpei and Ant Atoll

from January 2010-October 2013. The best-fit model with the lowest AIC is shown in bold. Month: sequential month from the start of the study; Spawning: grouper

spawning period (binary); Resident: residency status (transient, semi-transient, resident); Temp: temperature; TL: total length.

https://doi.org/10.1371/journal.pone.0221589.t002
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These combined findings highlight that, although limited spatially and temporally, small-scale

MPAs have utility in reducing the vulnerability of sharks and groupers to fishing during peri-

ods when they are concentrated. Conversely, the large-scale movements and associated activity

spaces of sharks outside of grouper spawning times, and the use of common reproductive

migratory corridors by groupers, supports a combined approach to management that limits

fishing impacts outside of reproductive periods and away from MPAs.

Previous published reports have shown the direct trophic benefits to elasmobranchs from

FSA foraging [2–4, 14, 20–21, 23–25, 35]. For example, spawning aggregations of E. polypheka-
dion in Fakarava, French Polynesia, and presumably elsewhere, create the conditions for an

Table 3. The 15 top-ranked GLMMs for the 95% Kernel Density (KD) activity spaces.

Model 95% KD df Loglik AIC deltaAIC w

Month 4 -877.39 1762.90 0.00 0.20

Month+Spawning 5 -876.43 1763.00 0.15 0.19

Month+Spawning+Temp 6 -875.93 1764.10 1.22 0.11

Month+Resident 5 -877.11 1764.40 1.51 0.09

Month+Spawning+Resident 6 -876.09 1764.40 1.53 0.09

Month+TL 5 -877.37 1764.90 2.03 0.07

Month+Temp 5 -877.38 1764.90 2.05 0.07

Month+Spawning+TL 6 -876.42 1765.10 2.20 0.07

Month+Resident+TL 6 -877.11 1766.50 3.58 0.03

Month+Temp+Resident 6 -877.11 1766.50 3.58 0.03

Month+Temp+TL 6 -877.37 1767.00 4.10 0.03

Spawning 4 -881.41 1770.90 8.05 0.00

Spawning+Resident 5 -880.51 1771.20 8.30 0.00

Spawning+Temp 5 -881.36 1772.90 10.01 0.00

Spawning+TL 5 -881.41 1773.00 10.10 0.00

https://doi.org/10.1371/journal.pone.0221589.t003

Table 4. Cumulative AIC weights (w), parameter estimates, standard error (SE), and p-values where

deltaAIC< 2.

Parameter Estimate SE p wi

50% KD (km2)

Month 0.0004 0.0001 0.0004 1.00

Spawning -0.0033 0.0020 0.1030 0.68

Temp 0.0022 0.0032 0.4907 0.25

Resident -0.0032 0.0033 0.3352 0.17

TL -0.0001 0.0002 0.6963 0.12

95% KD (km2)

Month 0.0720 0.0211 0.0007 1.00

Spawning -0.5579 0.3855 0.1493 0.48

Temp -0.3767 0.6081 0.5368 0.22

Resident -0.6980 0.8759 0.4272 0.23

TL -0.0098 0.0585 0.8672 0.09

Cumulative AIC weights (w), parameter estimates, standard error (SE), and p-values from an average subset of

candidate models where deltaAIC < 2. Parameters considered influential drivers of activity space (50% and 95% KD)

are in bold. Resident: residency status (transient, semi-transient, resident); Temp: temperature; TL: total length.

https://doi.org/10.1371/journal.pone.0221589.t004
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inverted biomass pyramid that allows grey reef (and possibly other) sharks to maximize forag-

ing success and minimize energetic, long-distance movements during aggregation periods

[14]. Although typically less abundant than Fakarava, E. polyphekadion FSA of similar densities

[33, 47] are known throughout the Indo-Pacific [32, 78], many in association with the same

(or congeneric) grouper species found in Pohnpei. While predation success rates were

recorded as low in Fakarava, the concentration of prey nonetheless increased opportunities for

foraging relative to non-reproductive periods [14]. The FSA also appeared to attract sharks

from a substantially larger catchment area. Similar foraging events have been observed by

whale sharks on cubera snapper (Lutjanus cyanopterus) (Cuvier 1828) FSA [4] and whale

sharks and bull sharks (Carcharhinus leucas) (Muller & Henle 1839) on mutton snapper (Lut-
janus analis) (Cuvier 1828) spawn and spawners, respectively [79]. Alfred mantas have been

observed schooling and feeding on eggs produced within surgeonfish FSA [23]. For other reef

and nearshore species, oophagy has been widely reported, while defecation of digested materi-

als provide nutrients to a wide range of pelagic and benthic organisms [2–7]. Clearly, FSA

serve as productivity hotspots and have important benefits to ecosystem health and trophody-

namics at multiple scales [5–7]. These benefits are expected to increase as FSA biomass and

reproductive output increase. In recognition of these food web linkages, FSA protection pro-

vides multiple benefits to ecosystems, including sharks and rays.

In Pohnpei, acoustic telemetry surveys clearly suggest that small-scale MPAs can provide

ephemeral protection to female C. amblyrhynchos, with the level of protection varying by

shark residency type. Specifically, resident sharks would be expected to receive greater benefits

both spatially and temporally from these small set-asides, while for transient and semi-tran-

sient sharks, the protections more closely resemble that of aggregating grouper, given the

extent of movement and use of common reproductive migratory corridors by these transient

spawners. For aggregating groupers, at least some individuals have been detected or captured

up to 27 kms from the FSA site [62–64], with pathways typically along outer reef areas to reach

home reefs. The scale of movement suggests that catchment areas for groupers are on the

order of 100s of km2 [63], thus similar to non-resident sharks. For coastal sharks as well as

aggregating grouper, large-scale no-entry or no-take management options appear to be more

optimal solutions than small MPAs to long-term population persistence. However, the degree

of area protection needed is both politically and socially untenable in PICTs where coastal fish-

eries represent important sources of protein and income, and fishing areas are inherently

limited.

Although there is no formal enforcement, the Federated States of Micronesia provided

blanket protection for sharks from fishing within the 3-million km2 economic exclusion zone

(EEZ) in 2015 through the passage of Public Law No. 18–108. Owing to the limited reliance on

sharks for either food or income, the law received little opposition. In addition to the FSM

shark law, in 2017 Pohnpei State extended its own exclusion zone from 12 to 24 miles (38.6

km) (Public Law 19–167) preventing foreign commercial fishing from nearing its coastlines.

Such large-scale MPAs could provide the protection required by these animals, however it is

currently unclear how effective enforcement of such large areas can be accomplished.

For grouper FSA, Pohnpei modified its two-month (1 March– 30 April) grouper sales ban

to extend protection throughout the spawning season (1 January to 31 May). The law was fur-

ther amended to extend the sales ban to include catch and possession of groupers during this

period. Unfortunately, the law provided a loophole allowing individual fishers to take 10 grou-

pers per person per day, which greatly offsets any gains that would have otherwise been real-

ized. Moreover, extended seasonal bans tend to exert greater fishing pressure on other

vulnerable species when fishers’ primary goals are catch volume and not species composition

[80]. In contrast, an inclusion of a catch ban to the grouper sales ban may lessen the
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attractiveness of FSA fishing and thus reduce vulnerability on both groupers and sharks at the

aggregation site. Ultimately, an ecosystem-based management plan would benefit these vari-

ous species and, in particular, be more suitable to both resident and transient sharks.

Sharks are often sex segregated during non-reproductive periods [51, 53, 59] and are

reportedly impacted differentially by various types of fishing gear. In Pohnpei, fishing in rela-

tively shallow water (c. 30 m) along outer barrier reef walls and slopes predominantly yielded

only large females. The paucity of males and juveniles in this (and other) study somewhat lim-

its the conclusions that can be made regarding species-level conservation for grey reef sharks

using small-scale MPAs, however it also highlights the need to conduct more robust investiga-

tions integrating all life history stages. The studies conducted to date also reveal the complexity

associated with shark conservation using small-scale area protection. Reef connectivity, shark

development stage, reproduction, parturition and sex clearly have a bearing on reserve design,

including placement, area and depth [81]. Future efforts to describe the conservation benefits

of small- and large-scale MPAs, especially those focused on FSA areas should, if possible,

incorporate all sizes and sexes of target animals utilizing a wider capture area, and use a range

of habitats to enable more generalized statements on the design and spatial habitat required

for effective nearshore shark conservation. Finally, information on grey shark reproductive

periods and locations would benefit our understanding of spatial habitat associations and con-

servation needs.
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