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Abstract

This paper presents ECOTOOL, a new free MATLAB toolbox that embodies several rou-

tines for identification, validation and forecasting of dynamic models. The toolbox includes a

wide range of exploratory, descriptive and diagnostic statistical tools with visual support,

designed in easy-to-use Graphical User Interfaces. It also incorporates complex automatic

procedures for identification, exact maximum likelihood estimation and outlier detection for

many types of models available in the literature (like multi-seasonal ARIMA models, transfer

functions, Exponential Smoothing, Unobserved Components, VARX). ECOTOOL is the out-

come of a long period of programming effort with the aim of producing a user friendly toolkit

such that, just a few lines of code written in MATLAB are able to perform a comprehensive

analysis of time series. The toolbox is supplied with an in-depth documentation system and

online help and is available on the internet. The paper describes the main functionalities of

the toolbox, and its power is shown working on several real examples.

Introduction

The rapid development of Information and Communication Technologies has open the door

to the use of massive amounts of data in virtually any area of science and industry. When try-

ing to forecast such amount of information, there is an imperative need for methods and tools

capable of providing automatic, general, efficient and reliable solutions in many different

contexts.

One of such tools for time series analysis and forecasting is ECOTOOL, a new MATLAB

toolbox introduced in this paper. It includes routines for well-know methods, like regression,

ARIMA(X), Transfer Functions, VAR(X), ExponenTial Smoothing (ETS), but it also includes

less common methods, mainly Unobserved Components models (UC). It offers abundant

descriptive and diagnostic statistics in friendly Graphical User Interfaces (GUI), automatic

procedures of identification and outliers detection, auxiliar functions for building calendar

typical intervention variables, additional tools to make routine operations easy and a long list

of demos.

There are some commercial and open-source pieces of software similar and complementary

to ECOTOOL: Econometrics and GARCH official MATLAB toolboxes [1], CAPTAIN [2],
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SCA [3], TRAMO/SEATS [4], forecast package in R [5], gretl [6], STAMP [7], Eviews [8], SAS

[9], Stata [10], etc.

ECOTOOL gathers in a single toolbox many flexible features scattered among other pack-

ages that served as inspiration. Many users might find similarities with other pieces of soft-

ware, mainly CAPTAIN, SCA, TRAMO/SEATS and the forecast package. Most of such

similarities have to do with visualisation interfaces, treatment of missing data, automatic iden-

tification methods, outliers detection procedures, diagnostic testing, etc.

But, despite all the similarities with previous work, there are some unique features of ECO-

TOOL that very rarely are found elsewhere, to the author knowledge. Six most important are:

i) automatic identification routines for multi seasonal ARIMA models; ii) estimation of UC

and ETS models with inputs modeled as linear transfer functions (also linear regressions, as

they are particular cases of transfer functions); iii) estimation of most models by Exact Maxi-

mum Likelihood, this is usual for many types of models, but rather unusual for ETS, see e.g.

[11]; iv) automatic outliers detection in UC and ETS models; v) particular handy ways to spec-

ify transfer function and ARIMA models, since they are directly passed to ECOTOOL as string

variables very similar to the analytical expression written on a paper (see the Toolbox overview

section); vi) forecasting transfer function models with stochastic inputs taking into account

the uncertainty around univariate forecasts of input variables.

Further advantages of ECOTOOL, shared with other packages, is that it is integrated with

the rest of toolboxes available in MATLAB as a unified environment and it is freely available at

https://github.com/djpt999/ECOTOOL.

The methods implemented in ECOTOOL have potential applications in many areas of

research, from economics to engineering, including many other areas related to life and social

sciences or environmental sciences, see e.g., [2, 12–19]

The rest of the paper is organised as follows. Next section shows the main methods available

in ECOTOOL. Then, a quick guide to the most important features of the toolbox is presented.

Afterwards, several real examples are discussed in depth to show the capabilities of ECO-

TOOL. Finally, the paper concludes with some relevant remarks.

Models and methods implemented in ECOTOOL

ECOTOOL offers the possibility of identifying, estimating, testing and forecasting time series

by methods with different degrees of complexity, from pure univariate to full multivariate sys-

tems. The next sub-sections show the full list of methods implemented.

Naïve methods

The simplest methods, commonly used as benchmarks, are a set of naïve methods, i.e., mere

rules of thumb that needs just simple computations or no computations at all. They are strictly

correct under some severe restricting assumptions, but usually most of them have no meaning

at all for many time series.

Let’s call yt, t = 1, 2, . . ., T a time series; s the seasonal period; l the forecasting horizon and

bxc the integer part of x. Then, the l steps ahead forecasts conditional on all information avail-

able up to time T (i.e., ŷTþl) is estimated by each of the naïve methods as shown in Table 1. It is

assumed in general that if more sophisticated methods are better in forecasting terms, they

should outperform all these naïve options.Mean forecasts are just the mean of the in-sample

data; RW forecasts are just the last observation propagated into the future; seasonal RW is the

repetition of the last seasonal cycle available;mean seasonal RW is the mean of the last seasonal

cycle of data; drift is a linear forecast with a slope calculated by joining the last and the first

observations;mean drift is similar but the slope is based on themean seasonal RW forecast.
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All these naïve methods are implemented in the function modelNAIVE.

ARIMA

The ARIMA models implemented in ECOTOOL in the function modelTF are rather general

[12], since it allows for multiple seasonal polynomials. This is what some authors have called

multi-seasonal ARIMA models. The general formulation is in Eq (1), where zt is a stationary

time series; B is the back-shift operator such that Bl zt = zt−l; yQiðB
siÞ and �PiðB

siÞ are moving

average and autoregressive polynomials of order Qi and Pi, respectively, in which the exponent

of the backshift operator in each summand is a multiple of the seasonal frequency, si (i = 1,

2, . . ., k); and at is a Gaussian serially independent white noise with zero mean and constant

variance.

zt ¼
yQ0
ðBÞ

�P0
ðBÞ

yQ1
ðBs1Þ

�P1
ðBs1Þ

yQ2
ðBs2Þ

�P2
ðBs2Þ

� � �
yQkðB

skÞ

�PkðB
skÞ
at ð1Þ

Time series zt in Eq (1) is assumed stationary, but usually is the result of applying the

differencing operators to a non stationary time series yt, as in Eq (2).

zt ¼ ð1 � BÞ
d0ð1 � Bs1Þd1 . . . ð1 � BskÞdkyt ð2Þ

ECOTOOL offers an automatic identification procedure inspired in [5] applied to multi

seasonal ARIMA models. It is effectively a much more complex process than [14] in the sense

that identification is fully automatic and that it allows for moving average terms. As far as the

author is concerned, this is the first time such identification procedure is implemented suc-

cessfully in a time series package for multi seasonal models (see the ‘Case studies’ section

below).

Unobserved Components (UC)

ECOTOOL allows for UC models known as a Basic Structural Model of Harvey in the function

modelUC [13]. The formulation of this model is shown in Eq (3), where a time series yt is

decomposed into a long term trend (Tt), a seasonal component (St) and an irregular compo-

nent (It).

yt ¼ Tt þ St þ It ð3Þ

Particular formulations are possible by selecting different alternatives of each component.

For trend models, the possibilities are condensed in Eq (4), where T�t is referred to as the trend

‘slope’, α is a parameter between zero and one, and ηt and Z�t are independent white noise

Table 1. Naïve methods implemented in function modelNAIVE.

Method Forecast calculation (ŷTþl)

Mean PT
t¼1
yt=T

RandomWalk (RW) yT
Seasonal RW yT+l−(b(l−1)/sc+1)s

Mean Seasonal RW Pl
k¼l� sþ1

ẑTþk, where ẑTþk are the seasonal RW forecasts

Drift yt + (yT − y1) × l/(T − 1)

Mean Drift yt + (xT − y1) × l/(T − 1), where xT is the mean of the data in the last season available

https://doi.org/10.1371/journal.pone.0221238.t001
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sequences with variances s2
Z

and s2
Z�

, respectively.

Ttþ1

T�tþ1

2

4

3

5 ¼
a 1

0 1

" # Tt

T�t

" #

þ
Zt

Z�t

" #

ð4Þ

This model is called Generalised Random Walk Trend and subsumes the following specific

cases implemented in ECOTOOL: i) Random Walk (RW), by eliminating the second equation

and α = 1; ii) Integrated Random Walk (IRW) with α = 1 and s2
Z
¼ 0; iii) Smoothed Random

Walk (SRW) with s2
Z
¼ 0; and iv) Local Linear Trend (LLT) with α = 1, see e.g., [13], [2] and

[20].

Seasonal components are included as the so called dummy seasonality [13], that depends

on a single parameter, namely the variance of white noise ωt, see Eq (5).

S1;tþ1
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� 1 � 1 � 1 � � � � 1
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0 1 0 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð5Þ

The full UC model is built by assembling all the State Space models for the components. As

a matter of fact, Eq (3) is the observation equation of a State Space system and the block con-

catenation of all models for the trend in Eq (4) and seasonal in Eq (5) form the transition equa-

tion. The Kalman Filter and other recursive algorithm provides the optimal solution to state

estimation, see details in [2, 13, 20].

ExponenTial Smoothing (ETS)

The ETS models implemented in function modelETS are taken from [11], see Table 2 for the

full list of possibilities. Multiplicative forms are possible by using the log transformation.

In Table 2, lt, bt, St and et stand for the level, slope, seasonal and irregular components

respectively; and α, β, γ and ϕ are unknown parameters that should be estimated. The code is

composed of two letters and defines the model components, the first letter specifies the trend

and the second letter is reserved for the seasonal component. ‘N’ indicates that the component

is not present; ‘A’ implies that the component is additive; ‘D’ implies a damped component,

applicable to trends only (with 0< ϕ< 1). When specifying an ETS model with a seasonal
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component, the two letters ought to be followed by a number indicating the fundamental

period in samples per cycle.

Transfer function (TF)

Multiple Input Single Output TF models are implemented in ECOTOOL by means of the

modelTF function. The model may be written as in Eq (6).

yt ¼
Xh

i¼1

oni
ðBÞ

dmiðBÞ
ui;t þ NðBÞat ð6Þ

In this equation, oni
ðBÞ ¼ ðo0 þ o1Bþ o2B2 þ � � � þ oni

BniÞ and dmiðBÞ ¼ ð1þ d1Bþ
d2B2 þ � � � þ dmiB

miÞ are polynomials in the backshift operator of order ni andmi, respectively;

and N(B)at is a general representation for any of the univariate alternatives in ECOTOOL,

namely ARIMA, UC, and ETS. Mind that linear regression is a particular case of model (6) if

all numerator and denominator polynomials are of order zero.

When the noise model in Eq (6) is specified as an AR, ARMA or ARIMA model, it is possi-

ble to transform the TF model into an ARX, ARMAX or ARIMAX, by setting appropriate con-

straints on the polynomials. This operation is straightforward in ECOTOOL due to the way

the models are specified (see section Case studies).

While linear regression or TF models with ARIMA noise have been used abundantly for a

long time since the first edition of [12] in 1970, ETS or UC combined with TF models is a

unique feature of ECOTOOL toolbox, as far as the author is concerned. Taking advantage of

this feature, function modelTF also allows for the automatic detection of four types of outliers

in ARIMA, UC and ETS models (see Case studies section). Once more, automatic identifica-

tion of outliers in UC or ETS models is a unique feature of ECOTOOL.

Table 2. ETS type of components in modelETS.

Code Model

NN yt = lt−1 + et
lt = lt−1 + αet

AN yt = lt−1 + bt−1 + et
lt = lt−1 + bt−1 + αet
bt = bt−1 + βet

DN yt = lt−1 + bt−1+ et
lt = lt−1 + bt−1 + αet
bt = ϕbt−1 + βet

NA yt = St−s + et
St = St−s + γet

AA yt = lt−1 + bt−1 + St−s + et
lt = lt−1 + bt−1 + αet
bt = bt−1 + βet
St = St−s + γet

DA yt = lt−1 + bt−1 + St−s + et
lt = lt−1 + bt−1 + αet
bt = ϕbt−1 + βet
St = St−s + γet

https://doi.org/10.1371/journal.pone.0221238.t002
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VARX

VARX models in Eq (7) are the multivariate option implemented in ECOTOOL by means of

the function modelVARX, where boldface letters indicate either matrices or vectors.

ðIþΦ1Bþ � � � þΦpB
pÞzt ¼ ðΩ0 þΩ1Bþ � � � þΩqB

qÞut þ at ð7Þ

In this equation, zt stands for a vector of p stationary outputs (generally obtained by appro-

priate differencing of corresponding vector of non-stationary time series yt); ut represent a set

ofm inputs; Φi are a set of squared matrices of dimension p × p; Ωj are a set of matrices of

dimension p ×m; and at are a vector of p white noises with zero mean and non-diagonal

covariance matrix Γ.

Optimal estimation of unconstrained VARX models is easy, since equation by equation

estimation by least squares renders consistent and efficient estimates. ECOTOOL allows for

imposing constraints on the coefficients for which iterative generalised least squares are used

to reach efficient estimation with a number of iterations controlled by the user [16].

Toolbox overview

ECOTOOL is user oriented in the sense that the coding effort demanded from the user is

reduced to a minimum at the cost of the programmer elaborating long and comprehensive

functions. The result is that it is possible to carry out an exhaustive analysis of time series with

the recourse to a few functions. The main ones are listed on Table 3 in separated sections

showing the GUI and demo tools, model functions, functions for the generation of calendar

Table 3. Main ECOTOOL functions.

GUI and demos

toolTEST Exploratory, descriptive and diagnostic checking tool

toolFORECAST Forecasting tool

ECOTOOLdemos ECOTOOL demos

Modeling functions

modelAUTO Automatic identification of ARIMA models

modelETS Exponential Smothing models

modelNAIVE Forecasting with several naive models

modelTF MISO Transfer Function analysis

modelUC Unobserved Components models

modelVARX VAR model with eXogenous variables analysis

Calendar effects

days Dummy variable for number of days in months or quarters

easter General dummy Easter variables on monthly or quarterly data

leapy Dummy variable for leap year intervention

trading Trading day variables on monthly or quarterly frequency

General purpose functions

acft Theoretical autocorrelation functions of ARMA processes

varstep Var impulse and step function analysis

vboxcoxinv Inverse of Box-Cox transformation

vConv Multiplication of vector polynomials

vdif Differenciation of a vector of variables

vfilter Filters a vector of inputs with a vector digital filter

vRoots Roots of a vector polynomial

https://doi.org/10.1371/journal.pone.0221238.t003
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effects dummies and general purpose functions. The real number of functions in ECOTOOL

is actually much greater because all the available options in the menus of the toolTEST GUI

are actually implemented as separate functions that may be run independently, see the docu-

mentation. Some explanations about this functions are included in the next paragraphs and

the way to use them is illustrated in the worked examples below.

The main features of ECOTOOL are:

• As shown in the previous section, a number of time series methods are implemented, rang-

ing from simple naïve univariate models to multivariate methods.

• Extensive and detailed documentation is available. All functions are provided with a thor-

ough help accessible in the usual way. Eleven detailed demos with extensive explanations

that show all the properties of the toolbox are also provided (accessed by ECOTOOLdemos).

• The design of the toolbox is such that it is possible to perform a full time series analysis with

just a few MATLAB instructions. In this way, the memory effort demanded from the user is

reduced to a minimum. In addition, function names are selected following mnemonic rules

such that they are easy to remember and easy to look for.

• The toolbox is composed of four types of functions, see Table 3: i) GUI tools to perform sev-

eral tasks that are named as tool� (where ‘�’ stands for a name, at the moment two are avail-

able, toolTEST and toolFORECAST, see below); ii) Modeling methods that are named

as model� (like modelNAIVE, modelTF, etc.); iii) functions that facilitates building

dummy variables to deal with calendar effects; and iv) general purpose functions to perform

a number of important tasks when dealing with time series analysis, like transforming the

data (standardising, differencing, Box-Cox variance transforming, etc.) or doing other tasks

(filtering and differencing vector time series, calculating convolutions of multivariate poly-

nomials, calculating roots of multivariate polynomials, etc.).

• Specification of models is rather simple and flexible. All functions for estimation of models,

i.e., model� functions, are written with a common syntax in order to make the model specifi-

cation task easier to the user. Besides, in the case of modelTF for TF or ARIMA model

estimation and forecasting, the way the models are specified is in fact very similar to its ana-

lytical expression according to Eqs (1) and (2). For example, the MATLAB code for specify-

ing an ARIMA(0, 1, 2) is ‘(1+ma1�B+ma2�B2)/(1-B)’, where ma1 and ma2 stand for

two arbitrary names chosen to label the moving average coefficients and B is the back-shift

operator.

One advantage of this feature is that imposing constraints among parameters are straightfor-

ward. For example, if in the previous model for a given dataset the constraint ma1 = ma2
wanted to be imposed, the model code would be ‘(1+ma1�B+ma1�B2)/(1-B)’ instead,

and only the ma1 parameter would be estimated.

• Either conditional or exact Maximum Likelihood (ML) estimation of ARIMA models are

available, see e.g., [12]. Conditional ML is always used as a mean to obtain initial conditions

for exact estimation, but it is convenient when the model involves very long time series or it

is very complex, as is the case of models with multiple seasonal factors or many parameters.

• An algorithm for automatic identification of ARIMA models (function modelAUTO) is

included, inspired in [5] and coded in the widespread forecast package in R. The procedure

follows this reference except in the way differencing orders are identified. In particular,

instead of relying on formal unit root tests, ECOTOOL selects difference orders by minimiz-

ing the variance of the resulting time series. This discrepancy is introduced due to many
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problems detected with formal unit root tests when applied to real time series. In addition,

the automatic method is expanded to multi-seasonal models, making ECOTOOL the unique

piece of software that implements this procedure, to the author knowledge.

• Automatic identification of four types of outliers are coded for ARIMA and TF models, fol-

lowing [21] and [4]. The types are additive, innovative, level shift and transitory change

(coded in ECOTOOL as AO, IO, LS and TC). They are modeled as particular TFs applied to

impulse dummy variables.

• ETS and UC models are estimated from their equivalent ‘reduced’ or ARIMA form, as in

[22]. This allows to incorporate to these methods all the power ECOTOOL offers for

modeling ARIMA processes. In particular, they may be estimated by exact ML, may

include inputs as transfer functions and automatic detection of outliers may be carried

out. All these are, once more, unique properties of ECOTOOL, as far as the author is

concerned.

• The estimation output of any sort of models is rather exhaustive in tabular form. Such tables

show parameter values with their standard errors and T tests, information criteria, correla-

tion among parameters and, in the case of TF and ARIMA models, warnings about problems

with unit roots in either numerator or denominator polynomials.

There are two functions that produce GUI interfaces that deserve special attention, namely

toolTEST and toolFORECAST.

toolTEST is conceived as a friendly and exhaustive environment for descriptive statistics,

as well as an identification tool and model validation tool of multivariate time series. When it

is invoked, three menus unfold in a standard figure window in addition to the usual figure

menus: i) a comprehensive ‘Tests’ menu, briefly explained below; ii) a ‘Series’ menu if the

input is multivariate and allows to apply the tests to any individual and/or to all the time series

at once; and iii) an ‘Options’ menu to deal with specific options for each item in the ‘Tests’

menu.

The ‘Tests’ menu offers a thorough combination of tabular and graphical information for

many tests available. The following is a non-exhaustive list of such tests, classified in different

categories:

• Descriptive information: time plots, box plots, scatter plots, descriptive statistics, histograms,

formal Gaussianity tests [23, 24].

• Identification tools: univariate and multivariate sample autocorrelation and partial

autocorrelation functions, Ljung-Box Q and Monti tests [25, 26], information criteria,

Akaike’s, Schwarz, Hannan and Quin, [27–29], Granger causality tests based on VAR mod-

els [30].

• Constant mean and heteroscedasticity tests: CUSUM and CUSUMSQ tests [31], mean vs

standard deviation scatter plots, formal ratio of variances heteroscedasticity test, Box-Cox

transformation estimation [32, 33].

• Integration and cointegration tests: Dickey-Fuller and Perron unit root tests, Johansen coin-

tegration tests [34–36].

• Non-linearity tests: [26, 37–39], Schwarz criterion on squares.

• Frequency domain tools: cumulative periodogram, smoothed or raw periodogram, AR-spec-

trum [16, 40].
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The second useful GUI is the so called toolFORECAST, that is designed to show graphi-

cally the forecasting output of the model functions in ECOTOOL and to print out tables with

plenty of error metrics (see examples in Case studies section).

Function toolFORECAST allows to plot one or several forecasts and forecasting errors for

each time series in turn, selecting the output to be displayed interactively by menus. For

long time series several pushbuttons permit to slide side-wise along the time series (as in

toolTEST). Tabular results may be displayed in three different forms, i) actual values, fore-

casts, errors and error metrics for each time series and each forecasting step separately; ii)

overall error metrics for one time series but many methods altogether to do fast comparisons;

and iii) Diebold-Mariano test, sign test and Wilcoxon signed-rank test for testing statistical

significant differences among several forecasting methods [41, 42].

Case studies

The present section considers three case studies chosen to illustrate ECOTOOL working on

real data. Not all the capabilities of the toolbox are shown in these examples, due to space

restrictions. The documentation shows a wide range of thorough examples, run step-by-step

with their respective coding, covering all the models and tools available in ECOTOOL. There,

the implementation is shown deploying the code necessary to run the examples, together with

the output produced.

The three forecasting cases shown below are designed following some common rules.

They are rolling forecasting experiments in which the training in-sample data length, the test-

ing out-of-sample data length, and the forecast origin are fixed initially depending on the

properties of each dataset. The first round of forecasts with all the appropriate models is run

and forecasted and the corresponding actual values stored. Then, the window is moved sev-

eral samples ahead and all the forecasts are produced again with the models identified and

estimated with the most recent information. This updating step is repeated to the end of the

data.

This exhaustive evaluation of forecasting performance of each model is completed with the

help of two error metrics that have proven very useful in many applications and are free from

some inconveniences, namely the symmetric Mean Absolute Percentage Error (sMAPE) and

the Mean Absolute Scaled Error (MASE), see Eqs (8) and (9) and [43, 44].

sMAPEh ¼ h� 1
Xh

i¼1

2 j yi � ŷi j
j yi j þ j ŷi j

� 100 ð8Þ

MASEh ¼ h� 1
Xh

i¼1

j yi � ŷi j
ðn � sÞ� 1Pn

r¼sþ1
j yr � yr� s j

ð9Þ

In Eqs (8) and (9) yt and ŷt are the actual and forecasted values at time t, respectively; h is

the forecast horizon; s is the seasonal period of the data, if applicable, or just 1 if the data is not

seasonal; and n is the number of observations in the fitting sample. The sMAPE metric avoids

the distortions of the standard non-symmetric MAPE criterion and problems for values close

to zero. The MASE metric compares the out-of-sample performance of the model with the in-

sample performance of a simple seasonal RW (see Table 1), i.e. assuming that the model for

the data is yt = yt−s + at, with at white noise with zero mean, constant variance and serially

independent.
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Forecasting analysis of Mauna Loa CO2 concentration data

The measured CO2 concentration at Mauna Loa is represented in Fig 1 (ftp://aftp.cmdl.noaa.

gov/products/trends/co2/co2_mm_mlo.txt). It consists of sixty years of monthly data collected

from March 1958 to May 2018. The data show a growing trend during the full period associ-

ated with long run emissions and a seasonal component rather stable related to the global net

uptake and release of CO2 in summer and winter.

The upward trend and the seasonal variations may be also checked out by either the

pseudo-periodogram (pseudo because the time series is not mean-stationary) or the AR

pseudo-spectrum available in the toolTEST GUI tool (not shown here to save space). Clear

peaks appear for zero frequency related to the trend and the seasonal periods 12 and 6 samples

per cycle. The rest of harmonics do not show up.

To give the feeling of how the ECOTOOL code looks like, some coding is shown for this

example. The next listing shows how to load the data, select the raw CO2 data (stored in the

fifth column of the matrix data downloaded from the official web page), avoid the first two

years of monthly observations, select 480 months after that and select two parameters that will

be used later on, namely the number of forecasts (nofs) and the seasonal period (s). The last

line is useful for those users who want to try the variance stabilizing Box-Cox transformation

of the data (applied to the first 480 months). It can also be accessed by the ‘Box-Cox Transfor-

mation’ option in the ‘Tests’ menu of the toolTEST GUI. By this command the λ parameter

of the transformation is estimated according to [33] and returns the transformed variable (ty)

and λ (lambda).

Fig 1. The Mauna Loa CO2 concentration data from March 1958 to May 2018.

https://doi.org/10.1371/journal.pone.0221238.g001
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load maunaLoa.data % Load data
y = maunaLoa(25:504, 5); % Select in-sample CO2
nofs = 24; % Number of forecasts
s = 12; % Seasonal period
[ty, lambda] = vboxcox(y); % Box-Cox transform
The models used in this case study are all those available in ECOTOOL that may sensibly

applied to this data. In particular:

• Airline: ARIMA(0, 1, 1) × (0, 1, 1)12 estimated with modelTF. The architecture of the

model is maintained along the whole experiment, but the parameters are updated at each

step.

• Auto: ARIMA automatically identified by modelAUTO. Both architecture and parameters

are updated.

• AR: pure AR model automatically identified by a procedure similar to modelAUTO but

truncated to avoid MA terms.

• UC: Unobserved components model composed of a Local Linear Trend with a trigonom-

metric seasonal component of period 12 samples per cycle. This is provided by modelUC
with model option ‘LLT12’.

• ETS: additive Exponential Smoothing with level, slope and seasonal (modelES with model

option ‘AA12’).

• Naïve: seasonal naïve, i.e. forecasts are taken as the last observation of the same season avail-

able (third column of output from modelNAIVE function).

The next listing shows how the previous models may be run for the first 480 months of the

data (see details on how to use these functions in the toolbox documentation). Pure AR models

are not included in the listing because they were produced with an ad-hoc particular function

not included in ECOTOOL.

model = '(1+ma1�B)(1+ma12�B12)/(1-B)(1-B12)';
m1 = modelTF(ty, [], model, nofs); % Airline model
m2 = modelAUTO(y, [], [1 s]); % Auto ARIMA model
m3 = modelUC(ty, [], 'LLT12', nofs); % UC model
m4 = modelETS(ty, [], 'AA12', nofs); % ETS model
m5 = modelNAIVE(ty, nofs, s); % Naive models
Mind that the syntax for all models are very similar and that the first input to modelAUTO

is the time series without Box-Cox transformation because such change is tested inside this

particular function. The output variables m1 to m5 are MATLAB structures with all the rele-

vant information about the model output, like residuals, forecasts, etc.

The automatic ARIMA identification procedure implemented in ECOTOOL (by means of

modelAUTO function) produces an ‘airline’ model, i.e. ARIMA(0, 1, 1) × (0, 1, 1)12. This

model is perfectly supported by the Simple and Partial Autocorrelation functions for the differ-

enced data shown in Fig 2. It certainly shows that the MA terms are essential to avoid over

parameterisation if only AR terms are used, since finite order MA models are theoretically

equivalent to infinite order AR models, as in [14].

Fig 2 is the result of the following code, though it can also be produced by toolTEST.

z = vdif(ty, [1 1], [1 s]); % Difference series
vident(z); % Identification
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Calculating error metrics and statistical tests about forecast errors, and performing some

graphical checks of forecasts are very simple with the help of the toolFORECAST function

(actually a GUI). Next listing shows how to produce such outputs in the original scale of the

variable. This requires to undo the Box-Cox transformation on the model forecasts, stored in

field .py of all model structures (m1 to m5).

ACTUAL = maunaLoa(505:528, 5);
FORECASTS = vboxcoxinv([m1.py m2.py m3.py m4.py m5.py],

lambda);
toolFORECAST(ACTUAL, FORECASTS)
The forecast exercise consists of a rolling out experiment in which the initial forecast origin

is chosen at 480 observations from the beginning (March 1998) and the forecast horizon is 24

months ahead. Then, one month is added to the sample and the whole process is repeated to

the end of the sample. Therefore, 220 total rounds of 24 months-ahead forecasts from all mod-

els are produced. The average forecasting performance of all models used are shown in

Table 4. The table is divided in two parts reporting the average SMAPE and MASE metrics for

each model for selected horizons ranging from 1 to 24 months.

Table 4 offers some interesting insights into the forecasting issue of the Mauna Loa data.

Firstly, forecasts deteriorate with the horizon for all models, as expected. Secondly, all models

show significant performance improvements over the Naïve, implying that they are really cap-

turing the structure of the data beyond a naïve seasonal pattern. Thirdly, all errors are very

small implying that the series can be forecast with great accuracy (take, for example, the Airline

Fig 2. Simple and Partial Autocorrelation functions for the Mauna Loa differenced data. Dotted lines signal the seasonal lags.

https://doi.org/10.1371/journal.pone.0221238.g002
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model that produces an average sMAPE of only 0.139% for 24 months ahead). Fourthly, no

big differences in performance may be reported among models up to one year ahead with the

exception of Naïve, though strictly speaking, Airline outperforms the rest at every single step.

However, that is not the case for 24 steps ahead, where the best model is Auto, instead. Finally,

ARmodel lies in a middle range, better than UC and ETS, while ETS deteriorates importantly

for 24 months ahead.

The overall conclusion is that ECOTOOL provides a set of models rather reasonable for

modelling and forecasting the Mauna Loa data. Moreover, the Unobserved Components may

be used to extract the trend of the data (stored in field comp of structure m3) and compared to

the ‘official’ one reported in the original web page. Fig 3 shows a detail of the data with the

‘official’ trend and the one estimated by modelUC. One single trend is visible because, though

they are not exactly the same, both are consistent.

Table 4. Average sMAPE and MASE metrics for different models on the Mauna Loa experiment.

sMAPE MASE

Steps Airline Auto AR UC ETS Naïve Airline Auto AR UC ETS Naïve

1 0.065 0.067 0.072 0.068 0.067 0.549 0.166 0.170 0.181 0.171 0.170 1.386

2 0.072 0.074 0.077 0.077 0.075 0.549 0.182 0.187 0.196 0.194 0.189 1.386

3 0.078 0.079 0.083 0.084 0.081 0.549 0.197 0.199 0.210 0.213 0.205 1.387

4 0.082 0.083 0.088 0.090 0.086 0.550 0.209 0.212 0.224 0.227 0.218 1.388

5 0.086 0.087 0.092 0.095 0.091 0.550 0.218 0.222 0.234 0.240 0.229 1.388

6 0.089 0.091 0.095 0.099 0.094 0.550 0.226 0.231 0.242 0.250 0.238 1.388

1 year 0.107 0.107 0.112 0.114 0.118 0.547 0.273 0.274 0.287 0.290 0.299 1.381

2 years 0.139 0.137 0.144 0.145 0.168 0.818 0.355 0.351 0.370 0.371 0.426 2.068

https://doi.org/10.1371/journal.pone.0221238.t004

Fig 3. Detail of Mauna Loa data with the ‘official’ and modelUC trends.

https://doi.org/10.1371/journal.pone.0221238.g003
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Hourly electricity demand in Spain

The data for the Spanish electricity demand used in this case study is publicly available at the

Iberian Energy Market Operator web page (OMIE: http://www.omie.es). The data is continu-

ously updated from 29 June 2001. Fig 4 shows a portion of such data, from 1 January 2017 to

12 June 2018.

These data are characterised by a number of periodic components superimposed that have

to be dealt with, if a comprehensive model wants to be fitted. Firstly, the data exhibits a clear

annual cycle with two peaks in winter and summer, respectively, closely related to tempera-

tures. Secondly, a strong diurnal cycle, with different profiles depending on the season of the

year. Thirdly, a weekly cycle is present with lower demand during weekends, mainly due to the

absence of industrial activity. Finally, the data is affected by a number of special days, special

events, moving festivals and holidays, etc.

In general, it is common to avoid modelling the year cycle for short term forecasting with

hourly data, for several reasons: i) the most important drivers of the data in the short run are

the daily and weekly cycle, while the annual cycle would become of paramount importance

for longer horizons (from one week onwards); ii) it is parametrically unfeasible and much

research should be conducted if trivial extensions of existing models want to be avoided. The

problem is that the annual cycle holds 8,760 hours and a trivial extension of models to take

into account the periodic behaviour would involve 4,380 harmonics. One way to tackle with

these problems is with the aid of time aggregation techniques, e.g., [17], but they are rather

Fig 4. Spanish hourly electricity load demand from January 2017 to June 2018.

https://doi.org/10.1371/journal.pone.0221238.g004
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specific methods that require specialised software, far beyond the scope of this paper, that

focuses on presenting a toolbox for general use.

In this context is where ECOTOOL offers an important innovation, since automatic identi-

fication of ARIMA models is extended for these complex type of databases, namely the multi-

seasonal ARIMA model, i.e., models that include as multiplicative seasonal factors as neces-

sary. As far as the author is concerned, this is the first time that an automatic algorithm is

developed for such complex cases. Certainly, in this case the model is composed of the multi-

plication of three ARMA factors, namely regular, daily and weekly seasonals. The general spec-

ification is in Eq (10), with the same nomenclature of Eq (1).

zt ¼
yQ0
ðBÞ

�P0
ðBÞ

YQ1
ðB24Þ

FP1
ðB24Þ

YQ2
ðB168Þ

FP2
ðB168Þ

at ð10Þ

θq(B)/ϕp(B) is a ratio of polynomials in the back-shift operator of appropriate orders,

respectively; YQ1
ðB24Þ=FP1

ðB24Þ is similarly a ratio with orders Q1 and P1 in multiples of 24

hours per day; and YQ2
ðB168Þ=FP2

ðB168Þ is similarly defined, though for 168 hours per week.

The multi-seasonal extension of the ‘airline’ model used later is shown in Eq (11).

yt ¼
ð1þ yBÞ
ð1 � BÞ

ð1þY24B24Þ

ð1 � B24Þ

ð1þY168B168Þ

ð1 � B168Þ
at ð11Þ

yt in Eq (11) is the undifferenced time series because the differences are included explicitly

in the model denominators.

The automatic identification applied to these data suggests that daily differencing is not

necessary, implying that the ‘airline’ model in Eq (11) is strictly wrongly specified because of

over-differentiation. However, manual identification of demand series imposing the differ-

ences implied by the ‘airline’ model (i.e., ð1 � BÞð1 � B24Þð1 � B168Þdemandt) produces a clear

evidence in favour of the airline model except for the non-seasonal part of the correlogram

(lags 1 to 11, see Fig 5). Therefore, the airline model will be kept as a benchmark to compare

with.

The models trained are: i) a weekly Naïve of period 168 hours per cycle as a bottom bench-

mark (Naïve, daily naïve with period 24 was also tried, but was discarded because the results

were systematically worse); ii) multi-seasonal airline in Eq (11) as a more sophisticated bench-

mark (Airline); iii) multi-seasonal model in Eq (10) automatically identified with modelAUTO
(Auto); and iv) multi-seasonal AR model identified in a similar manner (AR).

All models were estimated and used to forecast a week ahead along a full year (from July

2017 to June 2018) with a rolling forecast origin every 6 hours and samples of 8 weeks length.

Thence, 1,460 rounds of 168 hours-ahead forecasts were calculated with each model. The

window size (8 weeks) allow the models to adapt for the changing profile of the seasonal

components over the year. A full year of data was reserved as the test set to give a better over-

all idea of forecasting performance, since such performance varies with the season of the

year.

Results for sMAPE and MASE metrics are shown in Table 5 for a selection of forecast hori-

zons. Some relevant observations follow. Firstly, the forecast performance deteriorates with

the forecast horizon for all methods. Secondly, the Automethod is the best for all horizons

when compared with Airline, meaning that the automatic identification implemented in ECO-

TOOL makes sense in terms of forecasting performance. Thirdly, Auto is better than AR as

well, implying that including moving average terms in the models pays back in terms of fore-

casting performance. Finally, a striking result is that the deterioration of the Naïvemodel is
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Fig 5. Simple and Partial Autocorrelation functions for the Spanish load demand data. Dotted lines signal daily lags.

https://doi.org/10.1371/journal.pone.0221238.g005

Table 5. Average sMAPE and MASE metrics for different models on electricity demand data.

sMAPE MASE

Steps Airline Auto AR Naïve Airline Auto AR Naïve

1 1.945 1.910 2.101 6.061 0.236 0.232 0.255 0.774

2 2.347 2.316 2.563 6.130 0.285 0.283 0.312 0.786

3 2.607 2.575 2.844 6.200 0.320 0.317 0.350 0.798

4 2.797 2.753 3.037 6.251 0.346 0.341 0.377 0.808

5 2.928 2.863 3.163 6.276 0.364 0.356 0.395 0.812

6 3.021 2.934 3.252 6.289 0.377 0.366 0.407 0.812

7 3.135 3.032 3.382 6.257 0.391 0.378 0.423 0.806

8 3.268 3.151 3.529 6.250 0.408 0.393 0.442 0.805

9 3.398 3.260 3.666 6.260 0.424 0.407 0.460 0.807

12 3.672 3.488 3.952 6.291 0.460 0.437 0.498 0.812

1 day 4.399 4.084 4.734 6.289 0.557 0.516 0.602 0.812

2 days 5.400 4.860 5.607 6.282 0.688 0.616 0.718 0.811

3 days 6.216 5.369 6.205 6.282 0.795 0.682 0.797 0.811

4 days 6.920 5.737 6.663 6.294 0.888 0.730 0.860 0.813

5 days 7.634 6.096 7.074 6.303 0.982 0.778 0.917 0.814

6 days 8.383 6.436 7.483 6.309 1.080 0.823 0.974 0.815

7 days 9.106 6.711 7.819 6.314 1.175 0.859 1.024 0.816

https://doi.org/10.1371/journal.pone.0221238.t005
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much slower than in the rest of cases (though its performance for shorter horizons is rather

poor), but it is the best options for the long horizons, for 6 and above days.

This latter observation means that standard time series models focus on short-term hori-

zons and more sophisticated extensions should be provided for longer horizons. One clear

extension would be to add the annual cycle into the models, since it could be the case that for

horizons long enough the lack of a annual cycle starts to be felt.

One final point worth considering is that the optimal forecasts of the Mauna Loa data in the

previous case study are systematically much more accurate than the electricity demand fore-

casts, because of a much greater level of uncertainty in the latter case. This point may be

checked by comparing Table 4 with the appropriate rows in Table 5, bearing in mind that 12

and 24 hours ahead in Table 5 corresponds to 1 and 2 years in Table 4, respectively. The

sMAPE for electricity demand 24 steps ahead is about 30 times the sMAPE for the CO2 con-

centration data.

Global Horizontal Irradiation forecasting at a photovoltaic plant in Ciudad

Real, Spain

This case study evaluates the forecasting performance of the models implemented in ECO-

TOOL when applied to the Global Horizontal Irradiation (GHI) data provided by the Spanish

Meteorological Estate Agency (AEMET) weather station located at Ciudad Real, Spain. The

original dataset consisted of 18 years of GHI hourly observations. Fig 6 shows an overview of

the last year of data that shows clearly the annual cycle and the variability among different

days, sometimes weeks, depending mainly on the cloud cover.

One typical feature of the data is that GHI drops down to zero every night at different times

within the day depending on the sunrise and sunset times. Consequently, the time series con-

tains numerous zeros deterministically located along the year. In winter there are just 10 sun

hours, while in summer the Sun shines for up to 16 hours. An efficient way to deal with this

singularity of the data is removing such zeros before the modelling stage and inserting them

back to build the final forecast for full days. In this way, at each forecast origin the periodicity

of the data is different, depending on the time of the year.

Due to this peculiarity, the data is rather heteroscedastic along the year. This problem may

be alleviated by the Box-Cox transformation, that in ECOTOOL is implemented in the func-

tion vboxcox (that may be run directly or by a menu option within toolTEST), in which the

optimal lambda is estimated following the model-independent approach by [33]. Lambda

turned up to be close to 0 in most cases, meaning that the optimal transformation is the natural

logarithm. Fig 7 illustrates the convenience of these two transformations. Top panel shows two

months of the original data, while the bottom panel shows the data in logs and after zero-

removal. The sample length is drastically reduced (only 10 samples per day out of 24 remained

in the case shown) and the natural logarithm transformation renders a time series with proper

statistical properties, at least regarding homoskedasticity.

This case, unlike electricity demand, is not multi-seasonal, since only a diurnal period is

observed on top of an annual cycle. The annual cycle is ignored because models used are sensi-

ble strictly for short run forecasting (see discussion on this issue in the previous case study).

Then, the methods used in this case are the ones already used in the Mauna Loa case, but with

time varying periods due to the zero values removal. More specifically the models are ARIMA

Airline; ARIMA Auto identified by means of modelAUTO; automatic ARmodels; UCmodel;

ETS and seasonal Naïve of period 24 hours.

To illustrate ECOTOOL working on this data, the rolling experiment is conducted by

selecting samples of 2 months of data previous to each forecasting origin. One week ahead of
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data is forecast at each step and the forecast origin is moved 6 hours forward. The evaluation is

repeated along a full year of data, i.e., 1,460 total runs of each model.

sMAPE metrics cannot be computed in this case due to the presence of simultaneous zeros

in data and forecasts. Indeed, inspection of Eq (8) shows this is one of few particular cases

where sMAPE is not defined because both forecasts and actual values are zero. Cases like this

highlights the utility of other metrics, like MASE that may be still be computed.

Results are reported in Table 6, showing clearly that the GHI data is less forecastable than

the previous cases. The main reason for this is that all the MASE measurements are much big-

ger now. As an example, the Automodel renders MASE values that are about twice the elec-

tricity case and almost four times the Mauna Loa case for 12 steps ahead forecasts. But the

main reason is that the Naïvemodel, i.e., projecting as forecasts into the future just the last sea-

sonal cycle available, is rather good. Indeed, for horizons longer than 9 hours ahead, the Naïve
model is the absolute winner, and it is the best than most of them for horizons longer than 6

hours ahead.

But still, this confusing evidence should not distract from other type of evidence. Firstly, for

horizons shorter than 9 hours the best method is Auto. Secondly, the performance of ETS is

rather poor, since is better than Naïve only for 1 and 2 hours ahead. Thirdly, AR is more accu-

rate than UC and ETS for short horizons, but it deteriorates rather badly for longer horizons.

Finally, Airline and Auto outperforms AR for any forecast horizon.

Putting together all this evidence, several conclusions follow:

Fig 6. A full year of GHI data at a photovoltaic plant in Ciudad Real, Spain.

https://doi.org/10.1371/journal.pone.0221238.g006
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Fig 7. Two months of original GHI data (top panel) and the data after transformation with Box-Cox and removal of night zero

values.

https://doi.org/10.1371/journal.pone.0221238.g007

Table 6. MASE metrics for different models on a GHI data from a photovoltaic plan in Spain.

Steps Airline Auto AR UC ETS Naive

1 0.578 0.582 0.648 0.586 0.753 0.924

2 0.718 0.712 0.793 0.744 0.917 1.001

3 0.847 0.821 0.924 0.926 1.108 1.049

4 0.957 0.905 1.026 1.127 1.304 1.063

5 1.036 0.953 1.101 1.290 1.462 1.054

6 1.090 0.972 1.143 1.407 1.577 1.034

7 1.135 0.991 1.177 1.485 1.659 1.019

8 1.184 1.015 1.213 1.544 1.739 1.027

9 1.235 1.042 1.261 1.590 1.812 1.040

12 1.306 1.076 1.329 1.670 1.916 1.035

1 day 1.346 1.110 1.403 1.653 1.855 1.036

2 days 1.484 1.191 1.623 1.700 1.894 1.098

3 days 1.602 1.257 1.910 1.724 1.916 1.144

4 days 1.731 1.328 2.314 1.754 1.943 1.192

5 days 1.860 1.397 2.911 1.777 1.961 1.222

6 days 1.985 1.463 3.867 1.793 1.973 1.247

7 days 2.112 1.526 5.608 1.803 1.982 1.268

https://doi.org/10.1371/journal.pone.0221238.t006
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• Forecasting GHI data is rather difficult because of its inherent volatility. Improving simple

models for horizons longer than 9 hours ahead may require a lot of modelling effort. The

improvements may be more related to the use of inputs (like cloud cover) than to other

methods closer to Machine Learning that usually concentrate on very short forecast hori-

zons. However, predicting cloud cover to use them as an input to GHI may be more complex

than predicting GHI itself.

• Pure AR models are sub-optimal, especially bad in this case study. If ARIMA models want to

be used, there is no doubt that MA terms are very helpful in relation to forecasting accuracy,

in contrast to the view of [14].

• The automatic identification of ARIMA models implemented in ECOTOOL produces mod-

els that outperform the rest.

Conclusions

This paper has introduced ECOTOOL, a toolbox intended mainly for professional practition-

ers, academic researchers, students, and anyone involved in the analysis of time series, fore-

casting or signal processing. ECOTOOL is composed of a number of powerful functions to

estimate a wide range of models in a rather user friendly manner; with abundant tools for

identification, validation and graphical representation of results.

The main methods implemented are ARIMA, Exponential Smoothing, Unobserved Com-

ponents, ARX, ARMAX, Transfer Function, Distributed Lag models and VARX. Several

properties are the salient features of the toolbox, e.g. it is user-oriented; just a few MATLAB

functions are enough to carry out a complete analysis of time series; model specification is

rather simple and flexible; several estimation methods are implemented; automatic detection

and estimation of four types of outliers is implemented; the toolbox is very robust making it

useful in long automatic experiments in programming environments.

The toolbox also provides a wide range of descriptive information of the data, both graphi-

cally and in tabular format; standard and not so standard identification tools; formal and visual

tests for gaussianity, independence, causality, heteroscedasticity, non-linearity, unit root and

cointegration; spectral tools; tests on forecasting performance; etc.

Though many of the procedures implemented may be found in other software packages,

some of them are exclusive to ECOTOOL, to the author knowledge. It is the case of the auto-

matic identification of multi seasonal ARIMA models, automatic detection of outliers in

Unobserved Components and Exponential Smoothing models, and the possibility of estimat-

ing Unobserved Components and Exponential Smoothing models by Exact Maximum Likeli-

hood adding inputs specified as dynamic transfer functions.

The toolbox is shown working on three case studies, in which several methods are tested on

forecasting time series with different sampling interval and degrees of complexity, namely the

monthly CO2 concentration data at Mauna Loa, hourly electricity demand in Spain, and

hourly global horizontal irradiation at a photovoltaic plant in Ciudad Real, Spain.

Results show clearly that forecastability depends strongly on the case, being the global irra-

diation the worst case to forecast. In all cases, the automatic procedure of identification of

ARIMA models shows great potentiallity as a general tool in forecasting tasks and including

moving average terms in ARIMA models increases forecast accuracy.
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