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Abstract

SNP datasets are high-dimensional, often with thousands to millions of SNPs and hundreds

to thousands of samples or individuals. Accordingly, PCA graphs are frequently used to pro-

vide a low-dimensional visualization in order to display and discover patterns in SNP data

from humans, animals, plants, and microbes—especially to elucidate population structure.

PCA is not a single method that is always done the same way, but rather requires three

choices which we explore as a three-way factorial: two kinds of PCA graphs by three SNP

codings by six PCA variants. Our main three recommendations are simple and easily imple-

mented: Use PCA biplots, SNP coding 1 for the rare allele and 0 for the common allele, and

double-centered PCA (or AMMI1 if main effects are also of interest). We also document con-

temporary practices by a literature survey of 125 representative articles that apply PCA to

SNP data, find that virtually none implement our recommendations. The ultimate benefit

from informed and optimal choices of PCA graph, SNP coding, and PCA variant, is expected

to be discovery of more biology, and thereby acceleration of medical, agricultural, and other

vital applications.

Introduction

Single nucleotide polymorphism (SNP) data is common in the genetics and genomics litera-

ture, and principal components analysis (PCA) is one of the statistical analyses applied most

frequently to SNP data. These PCA analyses serve a multitude of research purposes, including

increasing biological understanding, accelerating crop breeding, and improving human medi-

cine. This article focuses on the one research purpose identified in its title, elucidating popula-

tion structure—although its discussion and citations make evident the broader relevance of

the results and principles presented here.

PCA is not a single method that is always done exactly the same way. Rather, three method-

ological choices are implicated necessarily in each and every PCA analysis and graph of SNP
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data. They are indicated in this article’s title: the kind of graph produced, the way that SNP

reads (A, C, G, or T) are coded numerically, and the transformation applied to the data prior

to PCA analysis. These three choices impact which kinds of structure and patterns in SNP data

can be displayed and discovered in PCA graphs.

Current practices—as documented by a literature survey of 125 representative articles that

apply PCA to SNP data—suffice to justify the well-deserved popularity and abundant success

of PCA for elucidating population structure (S1 Table). But details matter. Improvements are

possible. Greater understanding of the consequences of these three choices opens an opportu-

nity for researchers to make informed and optimal choices, and thereby to gain even more bio-

logical insight and practical value from their SNP data. Fortunately, this opportunity comes at

a small cost: Changing from one kind of graph to another, or from one SNP coding to another,

or from one data transformation to another, as needed in order to optimize PCA analysis, is a

simple matter requiring negligible change in procedure, effort, and computation. Effective

PCA of SNP data is worthwhile because of numerous vital applications that span microbes,

plants, animals, and humans. In order to understand contemporary practices and to identify

optimal practices, this article explores three topics: two kinds of PCA graphs, three SNP cod-

ings, and six PCA variants.

First, we consider two kinds of PCA graphs. PCA is applicable to a two-way factorial design,

that is, a data matrix, and it provides a dual analysis of both the rows and the columns of a

matrix. The standard term for a figure showing both is a “biplot.” The contrasting term used

here for showing only rows or only columns is a “monoplot.” And our generic term for either

a monoplot or a biplot is a “graph.” Biplots were first introduced by Gabriel [1] and have

become the norm in countless applications of PCA [2], including ecology and agriculture.

Also, biplots are used occasionally for another kind of genomics data, gene expression data,

whether or not the word “biplot” is mentioned [3–5]. In the present context, the data matrix

has a number of SNPs which have been observed for a number of Individuals, where “Individ-

uals” is our generic term applied to any organisms, such as individual humans, horses, culti-

vars of wheat, or races of a pathogen. Although our literature survey encountered only

monoplots of Individuals, we recommend biplots because both Individuals and SNPs can be of

biological interest.

Second, we compare three SNP codings. Consider a data matrix comprised of a number of

SNPs observed for a number of Individuals. The original reads of nucleotides (A, C, G, and T)

constitute categorical data, whereas PCA requires numerical data. But there is no natural and

unique method for translating from this categorical data to the required numerical data, so the

SNP literature exhibits multiple methods for coding SNP data numerically. Three options for

SNP coding are discussed: code the rare allele as 1 and the common allele as 0 for each SNP,

the reverse, and a mixture of rare coded 1 or 0 (and hence common 0 or 1). We name them

SNP coding rare = 1, common = 1, and mixed. We recommend SNP coding rare = 1 and docu-

ment its several advantages for elucidating population structure. However, to the best of our

knowledge, the consequences of different SNP codings for the appearance and interpretation

of PCA graphs have not yet been addressed. Most articles in our survey fail to report which

SNP coding was used, and none explicitly specify the recommended SNP coding, which

thereby compromises the interpretation and repeatability of published PCA graphs.

Third, we explore six PCA variants. A SNPs-by-Individuals data matrix comprises a two-

way factorial design. Although analysis of variance (ANOVA) has not been used in the present

context of PCA analysis of SNP data, it provides important insight by distinguishing three

sources of variation that have quite different biological meanings: the SNP main effects, Indi-

vidual main effects, and SNP-by-Individual (S×I) interaction effects [6]. The six PCA variants

discussed here emerge from the application of various data transformations prior to PCA
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analysis. The main three variants result from subtracting SNP or Individual or both effects

from the data matrix prior to PCA, and that subtraction is called centering. Hence, these vari-

ants are called SNP-Centered, Individual-Centered, and Double-Centered PCA (DC-PCA).

Three additional PCA variants are also mentioned briefly: SNP-Standardized, Individual-Stan-

dardized, and Grand-Mean-Centered PCA. We recommend DC-PCA for several reasons,

including that DC-PCA uniquely has a single and simple set of interpretive principles, and

that graphs from other PCA variants can look wildly different from DC-PCA. However, most

articles in our survey fail to report which PCA variant was used, although they often report

which software was used, so again that compromises the interpretation and repeatability of

published PCA results.

Our literature survey encountered no clear implementation of even one of our three recom-

mendations—biplots, SNP coding rare = 1, and PCA variant DC-PCA. Consequently, the like-

lihood that any published PCA analysis of SNP data has yet implemented all three
recommendations is quite small. Awareness of the consequences of these three choices—

which are made in every PCA analysis of SNP data necessarily—creates new opportunities to

elucidate population structure more effectively.

Results

Choices between two PCA graphs

The increase in biological information that is achieved upon upgrading from a monoplot to

the recommended biplot can be illustrated by discussing Fig 1 twice: first as a monoplot by

considering only its left half, and then as a biplot by considering the whole figure. In this first

subsection of the results, we merely state that we chose SNP coding rare = 1 and PCA variant

DC-PCA, but the following two subsections will explain the exact meanings of these choices

and the reasons why we prefer them. To distinguish DC-PCA from other variants of PCA, its

principal components are called interaction principal components (IPCs). By definition, after

row and column averages have been subtracted from a data matrix, what remains is the matrix

of interactions, as will be explained in greater detail in the third subsection and the appendix.

In its left half, Fig 1 shows a typical PCA graph seen in the literature on population struc-

ture, with different groups or subsets indicated by different colors. This example concerns oats

(Avena sativa L.), and Kathy Esvelt Klos kindly shared with us this dataset with 635 oat lines

by 1341 SNPs (personal correspondence, 4 June 2018). All SNPs are biallelic, and there are no

missing data. Experienced oat breeders had classified the 635 oats into three groups [7]. The

411 spring oats are shown here in green, 103 world diversity oats in blue, and 121 winter oats,

which are also called Southern US oats, in red. The spring (green) and winter (red) oats are

expected to cluster and to contrast, whereas the world diversity oats (blue) are heterogeneous

and are expected to be less clustered. Indeed, this figure visualizes that expected population

structure, with IPC1 concentrating spring oats at the left and winter oats at the right. Support-

ing information contains this dataset (S1 Text), and the version after reversing SNP polarity as

needed to code the rare allele as 1 (S2 Text).

In the entire figure, Fig 1 shows the biplot for this oat dataset, which includes results not

only for Individuals, but also for SNPs. This biplot presents Individuals and SNPs in two adja-

cent panels in order to reduce clutter (whereas biplots with fewer points typically distinguish

the two kinds of points with different colors or shapes, and combine both in a single graph, as

illustrated in the following subsection). In order for biplots to be useful in the present context

of elucidating population structure, methods must be found to color the points in both panels

with a coherent color scheme that has a unified biological meaning. Then the joint structure of

SNPs-and-Individuals, which is biologically highly relevant, becomes evident. Of course, since

Consequences of PCA graphs, SNP codings, and PCA variants for elucidating population structure
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biplots have not yet been used in the literature on PCA analyses of SNP data, this literature

does not present any methods to upgrade from a monoplot to a biplot with a coherent color

scheme in both panels. Fortunately, precedents in the ecological literature, which are directly

applicable to the genomics literature, show how to upgrade by two fundamentally different

methods that are deeply complementary and synergistic: One method utilizes expert knowl-

edge, and the other automated statistics.

Beginning with the approach using expert knowledge, we devised a method that transfers

expert knowledge of the oats to the SNPs in order to classify the 1341 SNPs into three corre-

sponding groups, again using the same color scheme that had been applied to the 635 oats. It is

trivially simple: The color assignment for each SNP is based on which of the three oat groups

has the highest percentage of the rare allele, and the outcomes were: 372 SNPs colored green

had the highest percentage for spring oats, 345 colored blue were highest for world diversity

oats, and 624 colored red were highest for winter oats. Thereby, this biplot shows what a

monoplot cannot possibly show, the joint structure of SNPs-and-oats with green mostly on the

left and red mostly on the right in both panels. Furthermore, when some SNPs have been asso-

ciated with traits of agricultural or medical importance, such as the 25 SNP associations with

agriculturally important traits found in this oat dataset [7], those SNPs can be identified to

make the biplot more biologically informative.

Progressing to the approach using automated statistics, we must begin by discussing the

PCA arch. When interpreting a PCA graph, such as the biplot for oats in Fig 1, the PCA arch

distortion, also called the horseshoe effect, complicates the interpretation of PCA graphs

because an underlying one-dimensional gradient (from spring to winter oats in this case) is

distorted into an arch in the PC1-PC2 plane. Consequently, awareness of this distortion is nec-

essary for proper interpretation of PCA biplots and graphs. The arch distortion has been well

known for decades by archaeologists (D. G. Kendall pages 215–252 in [8]) and ecologists [9,

Fig 1. DC-PCA biplot for the oat data, using SNP coding rare = 1 and expert knowledge of the oats. To reduce clutter the biplot uses two panels, with oat

lines on the left and SNPs on the right. The 635 oat lines are classified in three groups: 411 spring oats shown in green, 103 world diversity oats in blue, and 121

winter oats in red. Likewise, the 1341 SNPs are classified in three groups based on which oat group has the highest percentage of the rare allele: 372 highest in

spring oats shown in green, 345 highest in world diversity oats in blue, and 624 highest in winter oats in red.

https://doi.org/10.1371/journal.pone.0218306.g001
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10]. David Morrison discussed the arch in the context of genomics data [11]; also see [12].

However, his extensive search of the genomics literature found only two papers that discuss

the PCA arch distortion [13, 14]. Those papers and his blogposts have not yet succeeded in

making this distortion well known in genomics (personal correspondence, David Morrison,

18 February 2018).

Morrison’s initial example, which we use in the next subsection, is a simple matrix with 1s

along the diagonal and 0s elsewhere to represent a SNP dataset that is structured by a single

environmental or causal gradient. He showed that its PCA graph has the typical arch distor-

tion. Thereby, Morrison demonstrated a critical implication: A diagonal data structure implies
a PCA arch. Importantly, the reverse implication also holds frequently, as the ecological litera-

ture makes clear, and it merits greater attention in the genomics literature: A PCA arch often
implies a diagonal data structure. However, it is possible for a PCA arch to emerge from other

data structures, such as samples taken from a set of nine populations in a three-by-three lattice

with two of those populations sampled more than the others (Fig 3C in [15]; also see his Fig 6).

To understand this arch distortion, Morrison drew upon the ecological literature, which has a

long history of analysis of that arch, unlike the genomics literature. Accordingly, the following

one-paragraph review of the pertinent ecology is relevant and helpful in the present context of

SNP data.

Ecologists have repeatedly found along an environmental gradient—such as low to high

altitude, or dry to wet conditions—a turnover in species abundances, with each species having

its own particular environmental preference (Figs 1.3, 3.2 to 3.10, and 6.3 in [9]), and this data

structure causes PCA to have an arch distortion (Fig 4.7 in [9]). If the species are listed in an

ecologically irrelevant manner, such as alphabetically, and the samples are also listed arbi-

trarily, such as the order in which they happened to have been collected, the resulting species-

by-samples data matrix lacks any discernable structure (Table 1.2 in [9]). Ecologists have

developed two sorts of procedures for rearranging the order of matrix rows and columns in

order to make structure obvious, using either expert knowledge or automated statistics. First,

if the samples are arranged according to knowledge of their environmental conditions (say

from dry to wet), and likewise the species are arranged according to their known environmen-

tal preferences, then the resulting species-by-samples data matrix has a diagonal structure,

with its largest values concentrated along the matrix diagonal (Table 1.3 in [9]). Even if expert

knowledge is available for only one matrix dimension, such as the species environmental pref-

erences, simple methods can obtain a corresponding ordering of the samples (such as weighted

averages, Table 4.4 in [9]), and thereby obtain an arranged matrix with diagonal structure. Sec-

ond, provided that a dataset has been structured by a single dominant environmental or causal

factor—as suggested by the presence of a PCA arch—even if that factor is not known, the diag-

onal structure can still be discovered and displayed by automated statistics (Table 1.4 as con-

trasted with Table 1.2 in [9]). This analysis orders matrix rows and columns by their ranked

scores for the first component of correspondence analysis (CA, also called “reciprocal averag-

ing” among ecologists, [16, 17]), which is related to PCA and also involves singular value

decomposition (SVD) but uses chi-squared distances rather than Euclidean distances. A CA1

arranged data matrix does not create artefactual or spurious diagonal structure, but rather it

optimizes the display of diagonal structure that is inherent and real in the data (panel B com-

pared to panel A of Fig 4.9 in [9]). Incidentally, PCA cannot be substituted for CA to get an

arranged matrix because it concentrates small values in the middle of the matrix and thereby

fails to display diagonal structure (panel C of Fig 4.9 in [9]). Importantly, diagonal structure in

a data matrix can be discerned and displayed using either expert ecological knowledge or auto-

mated statistical analysis, and ordinarily these two approaches closely agree (Tables 1.3 and 1.4

in [9]). Consequently, three things often go together: a major causal factor or gradient that

Consequences of PCA graphs, SNP codings, and PCA variants for elucidating population structure
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imposes joint structure on the rows and columns of a data matrix, a data matrix that can be

arranged to concentrate large values along its diagonal, and a PCA arch. Although this unified

story has been familiar to ecologists for decades, its relevance for SNP research has not yet

been noticed.

The oat lines in Fig 1 show an arch, or actually an upside-down arch in this case. This arch

happens to be a filled arch, with many points inside the arch; but PCA arches can also be clear,

with few or no points inside (such as Fig 4 in [18]). Our literature survey found that about 80%

of PCA graphs of SNP data have an evident arch. For several reasons that emerge in the

remainder of this article, PCA arches are a potent source of both problems and opportunities.

The foremost opportunity is a novel method to give both panels of a biplot a coherent color

scheme by means of automated statistics, in marked contrast to the above method based on

expert knowledge. Because Fig 1 for the oat dataset has the PCA arch distortion, one may

rightly expect that this dataset probably has a diagonal structure that would become evident

after its matrix rows and columns are arranged in rank order of their CA1 scores. Fig 2 shows

that such is the case for this oat dataset. Data values of 1 for the rare allele are shown in dark

blue, and values of 0 for the common allele in light blue. Note that the upper left and lower

right corners of this matrix are decidedly darker than the other two corners: SNPs at the left

have a concentration of the rare allele (dark blue) for spring oats and a concentration of the

common allele (light blue) for winter oats; also the reverse holds for SNPs at the right. The bot-

tom fifth of this arranged matrix contains mostly the 121 oat lines classified as winter oats,

which clearly differ in their SNP data from the top four-fifths of this matrix that contains

mostly the 411 spring oats and 103 diversity oats. A simple proof that the joint structure of

SNPs-and-oats in Fig 2 reflects real structure in the data, rather than arises as an artifact of the

CA1 ordering, is that randomizing the order of the oat lines for each SNP individually and

then repeating the CA1 ordering makes the matrix structure completely disappear. Of course,

the data matrix as received, with SNPs and oats listed in an ecologically arbitrary order, shows

no diagonal structure. The diagonal structure in Fig 2 is modest because of the filled PCA arch

in Fig 1, whereas diagonal structure is more striking for other datasets with a clear PCA arch.

Our literature survey found that of the 80% of PCA graphs of SNP data that have an evident

Fig 2. CA1 arranged matrix for 635 oat lines in rows and 1341 SNPs in columns. Spring oats are concentrated at the top of

this matrix, and winter oats at the bottom. Correspondingly, SNPs at the left have high percentages of the rare allele in spring

oats, and SNPs at the right have high percentages of the rare allele in winter oats.

https://doi.org/10.1371/journal.pone.0218306.g002
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arch, about half are filled and half are clear. This oat example with a heavily filled arch demon-

strates that CA1 ordering works even for a rather challenging dataset.

Furthermore, the PCA arch in Fig 1 implies the diagonal matrix structure in Fig 2, which in

turn implies a guaranteed opportunity to discover and display the joint structure of SNPs-and-

Individuals by a biplot, even without any expert knowledge of either the SNPs or the Individu-

als. Indeed, this works. Fig 3 shows exactly the same biplot as Fig 1, except that the Individuals

and SNPs have been colored by automated statistics, rather than expert knowledge. This auto-

mated method is based on the same ranked CA1 scores for oat lines and for SNPs that were

also used to construct Fig 2. The 635 oat lines are subdivided into 5 equal groups of 127 lines

according to CA1 order from top to bottom (spring to winter oats) in Fig 2, and likewise the

1341 SNPs form 5 groups of 268 SNPs (plus 1 extra for the last group) from left to right. The

corresponding color scheme is: dark green, light green, black, pink, and red. For example, dark

green triangles in the left panel are oat lines 1–127, and dark green dots in the right panel are

SNPs 1–268. Of course, we could have chosen 3 or 7 equal groups instead of 5 for Fig 3, but we

found that 5 provided some extra resolution while still maintaining the color scheme of green

(light or dark) for spring oats and red (or pink) for winter oats that was used in Fig 1.

The gradient in Fig 3 from Individuals marked dark green at the left to those marked red at

the right clearly corresponds to the gradient in Fig 1 from Individuals marked green at the left

to those marked red at the right, and the same applies to the SNPs. Therefore, both expert

knowledge and automated statistics find the same joint structure of SNPs-and-oats in this

dataset. The cause of this joint structure is the climatic and agroecological contrast between

southern and northern US locations, which calls for plant breeders to provide winter oats (also

called Southern US oats) in the south and spring oats in the north, and that agroecological con-

trast also corresponds to genome-wide differences in SNPs, as Figs 2 and 3 demonstrate.

Occasional discrepancies may occur amidst an overall similarity when comparing the popu-

lation structure shown by expert knowledge and by automated statistics, as in Figs 1 and 3,

Fig 3. DC-PCA biplot for the oat data, using SNP coding rare = 1 and automated statistical analysis providing CA1 order. On the left, the 635 oat lines are

subdivided into 5 equal groups according to CA1 order from top to bottom (spring to winter oats) in Fig 2, and these groups are colored dark green, light

green, black, pink, and red. On the right, the same is done for the 1341 SNPs from left to right in Fig 2.

https://doi.org/10.1371/journal.pone.0218306.g003
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and such discrepancies may be of biological interest. For instance, in the left panel of Fig 1

based on oat breeders’ expert knowledge, consider the anomalous rightmost green point for

oat line 128 (CI8000-4) classified as a spring oat but surrounded by mostly red points, or the

anomalous leftmost red point for oat line 577 (UPFA_22_Temprana) classified as a winter oat

but surrounded by mostly green points—and for present purposes ignore the blue points for

world diversity oats that are not expected to cluster. For comparison, Fig 3 based on automated

statistics, completely apart from any expert knowledge, avoids these anomalies, with oat 128

colored red like its neighbors, and oat 577 colored green like its neighbors. Furthermore, Fig 2

shows that oat 128, which is near the bottom of this CA1 arranged matrix, has the genome-

wide SNP profile characteristic of winter oats, namely light blue at the left and dark blue at the

right, meaning the common allele coded 0 for SNPs at the left and the rare allele coded 1 for

SNPs at the right; whereas oat 577 near the top has the opposite genome-wide SNP profile

characteristic of spring oats. Consequently, the discrepancies between Figs 1 and 3 might

prompt oat breeders to review their background information on these anomalous oat lines,

and to consider whether oat 128 should be re-classified as a winter oat, and oat 577 as a spring

oat. Additional anomalous oats in Fig 1 might also merit reevaluation. The genome-wide

information on SNPs in Fig 2 and the right panel of Figs 1 and 3 is useful not only to appreciate

the big picture of SNP structure in the entire population, but also to detect anomalies and

focus on specific oat lines of particular interest. Thereby, an automated, data-driven approach

may help researchers to cross check and refine expert knowledge, thereby making the final

results more objective, reliable, and confident.

In review, it is axiomatic that a biplot shows more information than a monoplot. A biplot

can, but a monoplot cannot, display and discover joint structure in the SNPs-and-Individuals.

Either expert biological knowledge or automated statistical analysis can be used to reveal pat-

terns in PCA biplots—provided that the data are structured by a single dominant causal factor.

Expert knowledge and automated statistics are deeply complementary, so this combination

makes results more reliable and objective. The simple change of switching from monoplots of

Individuals only to biplots of both Individuals and SNPs offers new opportunities to display

joint structure, which can increase biological insight. The following section on Materials and

Methods provides additional information on the construction and interpretation of PCA

graphs.

Choices between three SNP codings

The biological information displayed in a biplot using the recommended SNP coding rare = 1

is clear because this coding uniquely orients the information in both panels of a biplot in the

same way, thereby facilitating straightforward and intuitive interpretation—especially of the

joint structure of SNPs-and-Individuals. Given the recommendation of biplots in the previous

subsection, this subsection evaluates SNP codings primarily in terms of their consequences for

the appearance, interpretation, and utility of biplots. However, to accommodate researchers

who may prefer monoplots, at least on some occasions, we also discuss the consequences of

SNP codings for monoplots. Also, given the recommendation of PCA variant DC-PCA in the

next subsection, this subsection explores the consequences of SNP codings for only DC-PCA,

leaving further exploration to the next subsection.

One option, here called SNP coding rare = 1, is to code the rare allele as 1 and the common

allele as 0. This coding is of special interest for reasons that emerge momentarily. Another

option, here called SNP coding common = 1, is the opposite: to code the common allele as 1

and the rare allele as 0. This coding is the default in TASSEL, which is widely used for crop

plants ([19]; Peter Bradbury personal correspondence, 23 April 2018). The third and final

Consequences of PCA graphs, SNP codings, and PCA variants for elucidating population structure
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possibility, here called SNP coding mixed, is to code the alleles in some other manner that

yields a mixture of rare and common alleles coded as 1 (and likewise as 0). For example, the

variant call format (VCF) distinguishes one Individual as the reference genome, and then for

each SNP it assigns 0 to the allele of the reference genome and 1 to the other non-reference

allele. For instance, the reference genome could be the ancestral genome. VCF is popular

because it was developed for the 1000 Genomes Project in human genetics [20], and subse-

quently has been adopted widely.

The SNP coding rare = 1 can be generalized for SNP datasets having more than the 2 codes

of biallelic data. One possibility is to create a variable for each allele, where each variable signi-

fies the presence/absence of that allele. For a diploid species with three codes—one for each of

the two homozygotes and another for the heterozygote—express the data as 0 and 2 for the

homozygotes and 1 for the heterozygote. Then recode each SNP to give the rarest homozygote

the value 2 and the most common homozygote the value 0. These ideas can be elaborated for

polyploids such as hexaploid (AABBDD) bread wheat, Triticum aestivum (L.). The other two

codings can also be generalized.

We begin our exploration of the consequences of SNP coding with the simple dataset that

Morrison used as the initial example in his first blogpost on the PCA arch distortion in geno-

mics data [11]. His toy dataset has 20 Individuals in its rows and 24 SNPs in its columns. Fig 4

shows three versions of that dataset, with zeroes denoted by dots in order to make the ones

readily visible. SNP coding rare = 1 is shown on the left, which is Morrison’s original example.

SNP coding common = 1 is shown in the middle, which is the reverse of the original version.

And SNP coding mixed is on the right, which alternates rare = 1 and common = 1. In all three

matrices, red is used for SNPs or columns using rare = 1, and green for common = 1. The con-

vention adopted here is to number matrix columns from left to right, and number matrix rows

from top to bottom, starting with 1 for the first column and the first row.

DC-PCA biplots for these three datasets are also shown in this figure. On the left, the PCA

arch for the 20 individuals shown with black triangles was included in Morrison’s first blog-

post. But this figure presents a biplot, so it also includes the PCA arch for the 24 SNPs shown

with red dots. The concentration of ones along the matrix diagonal constitutes a single gradi-

ent with evident joint structure that involves both Individuals and SNPs. However, DC-PCA

has distorted that single gradient into an arch with its ends involuted or bent toward the mid-

dle for Individuals 1 to 20, and likewise for SNPs 1 to 24. This arch is a problem that compli-

cates the interpretation of PCA graphs, but provided that one knows about this distortion, the

gradient is still apparent: Both arches move clockwise from Individual 1 to 20 and from SNP 1

to 24. Also, those Individuals and SNPs that are located at similar positions along the gradient

(in the obvious sense of having concentrations of 1s at the same position along the diagonal)

are placed in similar directions from the origin—related Individuals and SNPs track each

other in a clear and intuitive manner.

In the middle, the biplot shows the same gradient as at the left, but with the opposite option,

SNP coding common = 1. The arch for Individuals 1 to 20 is shown by black triangles, and the

arch for SNPs 1 to 24 by green dots. Compared to Morrison’s original dataset, the arch for

SNPs shown in green has been rotated by 180˚ relative to the Individuals shown in black. This

rotation happens because reversal of the polarity of a SNP sends its point to the opposite loca-

tion relative to the origin in a PCA graph—or more precisely, approximately to the opposite

location because a low-dimensional graph approximates its high-dimensional data. Therefore,

Individual 1 and SNP 1 are far apart with common = 1, although they are near each other with

rare = 1 as they should be; and the same applies to Individual 20 and SNP 24. On the other

hand, Individual 15 and SNP 8 nearly coincide with common = 1 (near the horizontal dashed

line, at the right), although they are far apart with rare = 1 as they should be; and the same
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applies to Individual 6 and SNP 17 (at the left). Consequently, the biplot in the middle, unlike

the original at the left, is counterintuitive and confusing because related Individuals and SNPs

can be widely separated, and distant Individuals and SNPs can be quite close.

On the right, the biplot illustrates SNP coding mixed. In this dataset, the coding rare = 1

and common = 1 alternates, with columns using rare = 1 shown in red, and those using com-

mon = 1 shown in green. Incidentally, other mixed coding schemes give qualitatively the same

results, such as selecting the coding at random for each SNP, or reversing the coding for every

fourth SNP instead of every other SNP. The DC-PCA biplot on the right combines features of

the left and middle biplots. Individuals 1 to 20 are shown with black triangles, odd-numbered

SNPs 1 to 23 with red dots, and even-numbered SNPs 2 to 24 with green dots. The orientation

of the green arch is rotated by 180˚ relative to the black and red arches. Taken together without

distinguishing red from green, the dots for the SNPs roughly approximate a circle around the

origin, rather than the typical arch, so awareness of the arch distortion would not be enough to

guide proper interpretation. The biplot on the right inherits the problems from the middle

biplot that related Individuals and SNPs can be widely separated, and distant Individuals and

SNPs can be quite close. Furthermore, it has the additional problems that SNPs near each

Fig 4. A simple matrix and its DC-PCA biplot, using three SNP codings. The matrix has 20 Individuals in its rows and 24 SNPs in its columns, with SNPs

(columns) colored either red for SNP coding rare = 1, or green for common = 1. The biplots show the 20 Individuals as black triangles, and the 24 SNPs as dots

colored either red for rare = 1, or green for common = 1. Selected points in the biplots are identified: Individuals are numbered 1 to 20 from top to bottom in

the data matrix, and SNPs 1 to 24 from left to right. (A) For SNP coding rare = 1, despite the arch distortion in the biplot, related Individuals and SNPs track

each other in a clear and intuitive manner. (B) For SNP coding common = 1, the arch for SNPs is rotated 180˚ relative to the arch for Individuals, which is

confusing. (C) For SNP coding mixed, those SNPs with coding rare = 1 (red dots) track the Individuals (black triangles), whereas those SNPs with coding

common = 1 (green dots) are rotated 180˚ relative to the other two arches. Taken together without distinguishing red from green, the dots for the SNPs

approximate a circle rather than an arch, so awareness of the arch distortion would not suffice to interpret this very confusing biplot properly.

https://doi.org/10.1371/journal.pone.0218306.g004
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other along the gradient can be far apart in this biplot (such as SNPs 1 and 2), whereas SNPs

far apart from each other along the gradient can be near each other (such as SNPs 4 and 15).

Consequently, SNP coding mixed produces biplots that are quite confusing.

From Fig 4, the verdict on SNP codings for producing biplots is that SNP coding rare = 1 is

decidedly superior—invariably superior for mathematical reasons, rather than circumstantially

superior for biological reasons. Furthermore, that verdict remains despite the arbitrary polarity

of PCA components that is explained in Materials and Methods because arbitrary polarity

applies to sign reversal of both row and column PCA scores, not just one or the other, so the

orientation of the row arch and column arch relative to each other is invariant, not arbitrary.

However, the verdict on SNP codings for monoplots is different. Although the DC-PCA

biplots in Fig 4 show markedly different results for the SNPs (red or green dots, or both), the

results look the same in all three panels for the Individuals (black triangles).

Similarly, Fig 5 uses the oat dataset to reinforce principles learned about SNP codings with

the toy dataset. The earlier Fig 1 used SNP coding rare = 1. This figure substitutes SNP coding

mixed, namely the original oat data as received from Kathy Esvelt Klos. As expected, the pat-

tern for oat lines looks virtually the same in Figs 1 and 5. By contrast, the pattern for the SNPs

in the right panel of Fig 5 is utterly obliterated, with no separation of green from red points.

The explanation is that with the mixed coding of the received data, about half of the SNPs (772

out of 1341) have the reverse polarity common = 1, which sends their points approximately to

the opposite location in the DC-PCA biplot, and thereby thoroughly mixes the three colors of

points for the SNPs. This outcome could be anticipated from the results for SNP coding mixed

in Fig 4C. This example with real data might reinforce the suspicion that SNP coding is incon-

sequential for monoplots of Individuals only, even though SNP coding rare = 1 is decidedly

superior for biplots.

Fig 5. DC-PCA biplot for the oat data, using SNP coding mixed, namely the received data. The color scheme is the same as in Fig 1, namely spring oats

show in green, world diversity oats in blue, and winter oats in red, with corresponding colors for the SNPs. The contrast between spring and winter oats is clear

for Individuals in the left panel, but the corresponding pattern for SNPs in the right panel has been obliterated by thorough intermixing of the three colors of

points.

https://doi.org/10.1371/journal.pone.0218306.g005
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Nevertheless, although Figs 4 and 5 might suggest that SNP coding is inconsequential for

the Individuals, actually it can matter. Fig 6 shows the biplot for the oat dataset using another

SNP coding mixed, namely VCF coding using oat line 189 (a spring oat) as the reference

genome. Of course, the pattern for the SNPs has been obliterated by coding mixed, but the pat-

tern for oat lines has also changed noticeably from that in Fig 1. Furthermore, even for the toy

dataset used in Fig 4, the term “look” the same was used to compare the patterns for Individu-

als in its three biplots, not “are” the same, because SNP coding mixed is very slightly different

from rare = 1 and common = 1, although not enough different to be visually perceptible (as

proven in the appendix). Likewise, the patterns for oat lines in Figs 1 and 5 look very similar,

but careful inspection shows them to be slightly different.

The previous subsection mentioned that SNP coding rare = 1 was used to construct the

CA1 arranged matrix in Fig 2, and thereby to obtain the five colors used in Fig 3, whereas this

subsection explains why SNP coding matters for CA. As ecologists have long known, although

both PCA and CA have the arch distortion, PCA does but CA does not involute the arch, and

therefore only CA can produce an arranged matrix that concentrates the larger values along

the matrix diagonal (Figs 3.15 and 4.9 in [9]). But given the sort of data collected by ecologists

to study plant and animal communities, naturally they have investigated only the sort of data

represented in the present context by SNP coding rare = 1. Actually, as illustrated for the same

toy data used in Fig 4, indeed the CA1 arranged matrix does work for SNP coding rare = 1

because its CA biplot is not involuted; but it does not work for SNP coding common = 1

because its CA biplot is involuted, and it does not work for SNP coding mixed because its CA

biplot is complicated (S1 Fig). Likewise, although SNP coding rare = 1 enables CA1 order to

display joint structure along the matrix diagonal for the oat data in Fig 2, both SNP coding

common = 1 and SNP coding mixed fail.

This subsection makes the important observation that SNP coding can affect PCA results

for Individuals, whereas the next subsection and appendix provide the explanation for why

Fig 6. DC-PCA biplot for the oat data, using VCF coding with oat line 189 as the reference genome. The color scheme is the same as in Fig 1, namely spring

oats show in green, world diversity oats in blue, and winter oats in red, with corresponding colors for the SNPs. Compared to Fig 1 with SNP coding rare = 1,

not only has the pattern for SNPs been totally obliterated, but also the pattern for oat lines has been changed noticeably.

https://doi.org/10.1371/journal.pone.0218306.g006
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SNP coding can matter, even for researchers who are interested only in results for Individuals.

Furthermore, although Fig 6 happens to illustrate a modest change in the pattern for Individu-

als, depending on circumstances, choices among SNP codings can also cause drastic changes.

In review, the three choices of SNP coding, namely rare = 1 or common = 1 or mixed, are

often inconsequential for DC-PCA monoplots of only the Individuals, but not always. How-

ever, choices of SNP coding are hugely consequential for DC-PCA biplots of both Individuals

and SNPs, for which rare = 1 is far superior for displaying structure or patterns in the SNPs in

a manner that is readily interpreted.

Choices between six PCA variants

The biological information displayed in the recommended DC-PCA biplot has exceptional

clarity and straightforward interpretation because DC-PCA uniquely avoids confounding of

main and interaction effects, and thereby it avoids multiple and complicated interpretive prin-

ciples that necessitate a special augmented ANOVA table in order to discern for each individ-

ual dataset what sort of information is presented in its biplot. Again, the six PCA variants

investigated here are SNP-Centered, Individual-Centered, Double-Centered, SNP-Standar-

dized, Individual-Standardized, and Grand-Mean-Centered PCA. The two choices of the first

subsection, monoplots or biplots, exhaust the possibilities; and the three choices of the second

subsection, SNP codings rare = 1 or common = 1 or mixed, also exhaust the possibilities. How-

ever, the six choices of this third subsection do not exhaust the possibilities, so this subsection

offers a useful but not comprehensive account of data transformations and hence PCA

variants.

The statistical meanings of the three sources of variation—SNP main effects, Individuals

main effects, and S×I interaction effects—are fundamentally different. Consider a data matrix

with p SNPs and n Individuals. The SNP main effects concern the means across Individuals for

each SNP, so they constitute a vector of length p. Likewise, the Individual main effects concern

the means across SNPs for each Individual, so they constitute a vector of length n. By contrast

the S×I interactions equal the data minus both main effects, so they constitute a matrix of

dimensions p and n. Main effects are relatively simple and can easily be tabulated or graphed

by a variety of familiar methods, whereas interaction effects are complex and require multivar-

iate statistical analyses such as PCA. These three sources are radically different statistically in

the strong sense that they are orthogonal and uncorrelated, so knowing any one of them pro-

vides no information whatsoever on the other two.

The biological meanings of these three sources are as follows in the present context of a

SNPs-by-Individuals data matrix. For a given SNP, its mean across Individuals is simply the

frequency of the allele coded 1 (presuming that the alternative allele is coded 0). Likewise, for a

given Individual, its mean across SNPs is simply the frequency of the allele coded 1. Ordinarily,

it makes sense to avoid burdening or distracting a PCA graph with such simple information,

so it is best to remove main effects. Also, these means often lack any straightforward or inter-

esting biological meaning. Indeed, it may be especially difficult to attach any biological mean-

ing to the Individual means, not least because of alternative choices for SNP coding. When

SNP or Individual means are biologically meaningless, they merely add noise to a PCA graph.

That said, occasionally there can be special circumstances, so it is the prerogative of researchers

to decide which of the three sources—SNP main effects, Individual main effects, and S×I inter-

action effects—they find of interest for a given SNP dataset and research purpose.

A geometrical interpretation of PCA can convey an intuitive grasp of the unique conceptual

appropriateness of DC-PCA for elucidating population structure. Consider a data matrix with

R rows and C columns. These data can be conceptualized as a high-dimensional cloud of R
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points in C-dimensional space, or conversely as C points in R-dimensional space (Table 4.1

and Fig 4.1 in [9]). DC-PCA amounts to translation of the coordinate system to the centroid of

the cloud of points, followed by rigid rotation of the coordinate axes such that perpendicular

projections of the points onto PC1 maximizes the variance captured by this axis, then PC2 cap-

tures the most remaining variance, and so on for higher PCs (Fig 4.6 in [9]). The origin for the

PCA rotation is located in high-dimensional space, and in all of our biplots, it is projected

onto the PC1-PC2 plane at the intersection of the dashed horizontal and vertical lines located

at (0, 0). Insofar as the centroid is the eminently sensible place to put the origin, DC-PCA

makes sense because it uniquely places the origin at the centroid of the cloud of points in both

panels of a biplot (as in Figs 1 and 3, or for both triangles and dots in Fig 4). By contrast, some

published PCA monoplots of Individuals, which show population structure with variants

other than DC-PCA, have a unipolar PC1 (all positive or all negative scores, rather than both

which includes 0) so extreme that rotation of the coordinate system to PCs occurs at an origin

located outside the graph. In such cases, one would expect special reasons to be given to justify

such a peculiar location of the origin, and one can only wonder what the population structure

would have looked like were the PCA rotation around the centroid, which ordinarily makes

much more sense. As explained later in this subsection, dislocating the origin of the PCA away

from the centroid of the data equates to confounding main and interaction effects, which com-

plicates interpretation of population structure in ways that the genomics community does not

yet realize whenever PCA graphs are made with variants other than the recommended

DC-PCA.

Table 1 shows the ANOVA table for DC-PCA of the oat data using three SNP codings:

rare = 1, VCF with oat line 189 as the reference genome (which is of particular interest because

it has larger Individual main effects than any of the other 634 possibilities), and the SNP cod-

ing for the data as received (and shifted to 0 and 1). ANOVA partitions the total degrees of

freedom (df) and sum of squares (SS) into three sources, and then PCA partitions the S×I

interactions into the first seven IPCs followed by the residual. The sources are indented to

indicate subtotals.

For SNP coding rare = 1, the total SS is composed of 88.0% for S×I interaction effects,

10.7% for SNP main effects, and 1.3% for Individual main effects. SNP coding common = 1 is

not shown in Table 1, but it necessarily has exactly the same ANOVA table as SNP coding

rare = 1, not only for DC-PCA shown here, but also for all six variants of PCA considered in

Table 1. ANOVA table for DC-PCA of SNP data on oats using three SNP codings: Rare = 1 (and common = 1 is identical), VCF with oat line 189 as the reference

genome, and the data as received. Both VCF189 and the received data are instances of SNP coding mixed.

Source df SS rare = 1 SS VCF189 SS received

Total 851534 157442.756 175776.962 210084.641

SNPs 1340 16872.731 35206.937 69514.616

Individuals 634 2077.808 6286.978 482.151

SxI 849560 138492.217 134283.047 140087.874

IPC1 1973 15566.723 12202.771 16158.469

IPC2 1971 9512.804 9172.430 9687.670

IPC3 1969 5836.915 6163.309 6246.232

IPC4 1967 4831.287 4140.115 4803.660

IPC5 1965 3507.237 3478.698 3488.106

IPC6 1963 2997.351 3100.062 3181.724

IPC7 1961 2887.575 2839.061 2881.938

Residual 835791 93352.327 93186.601 93640.076

https://doi.org/10.1371/journal.pone.0218306.t001
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this article. However, VCF for oat 189 has different percentages, namely 76.4%, 20.0%, and

3.6%, and the received data has 66.7%, 33.1%, and 0.2%. Hence, choices of SNP coding affect

the relative magnitudes of these three sources, as well as the relative magnitudes of the IPCs.

The application of PCA to a combination of two sources of variation, unlike the single

source of S×I interaction effects for DC-PCA in Table 1, requires a new approach in order to

understand what kind of information is in each PC, namely an augmented ANOVA table that

is introduced here for the first time. The SS of each PC is partitioned into the portions due to

main and interaction effects. The required calculations are simple: For each PC, multiply its

SNP scores and Individual scores, which are a row vector and a column vector, to obtain the

matrix of expected values, and then subject that matrix to ANOVA. Because augmented

ANOVA tables are not yet included in available software, we wrote our own R code (S3 Text).

Table 2 shows an augmented ANOVA table for SNP-Centered PCA of the same oat data,

using SNP coding rare = 1. This variant of PCA removes only SNP main effects, and then

applies PCA to the Individual main effects and S×I interaction effects combined, denoted by

I&S×I, which has a SS of 2077.808 + 138492.217 = 140570.025. Researchers who are familiar

with PCA and are accustomed to the automatic monotonic decrease in the SSs for successive

PCs should note that the SSs for the Individuals and S×I portions are not necessarily

monotonic.

All seven PCs and the residual of SNP-Centered PCA contain a mixture of Individual and

S×I effects. Such mixtures always occur for any dataset whenever PCA is applied to a combina-

tion of main and interaction effects [21]. For this particular dataset, the first seven PCs and the

residual are all dominated by S×I interaction effects because the Individual main effects hap-

pen to be small. That outcome could be expected from Table 1 since IPC1 through IPC7 are all

larger than the Individual main effects. Comparing the ANOVA for SNP coding rare = 1 in

Table 1 with the augmented ANOVA in Table 2, PC1 and PC2 from SNP-Centered PCA are

larger than IPC1 and IPC2 from DC-PCA because main effects for Individuals are confounded

with S×I interaction effects, but more importantly, IPC1 and IPC2 for DC-PCA capture more
S×I interactions than PC1 and PC2 from SNP-Centered PCA because DC-PCA is not dis-

tracted by any main effects. This comparison can be understood in geometrical terms by say-

ing that obviously without centering PCA is wasting effort to capture the non-central centroid

of the data, and that distraction compromizes PCA’s visualization of the data.

SNP-Centered PCA has four possible outcomes. The oat example in Table 2 illustrates one

possibility, that S×I information dominates both PC1 and PC2. Indeed, the Individual main

Table 2. Augmented ANOVA table for SNP-Centered PCA of SNP data on oats, using SNP coding rare = 1. PCA is applied to Individual main effects and S×I interac-

tion effects combined (I&S×I), and the portion of each is shown in the last two columns.

Source df SS Individuals SxI

Total 851534 157442.756

SNPs 1340 16872.731

I&SxI 850194 140570.025 2077.808 138492.217

PC1 1974 16325.612 857.676 15467.936

PC2 1972 9751.158 257.217 9493.941

PC3 1970 6250.504 423.134 5827.370

PC4 1968 4860.910 23.386 4837.524

PC5 1966 3510.312 4.521 3505.791

PC6 1964 3181.953 187.615 2994.338

PC7 1962 2891.656 1.654 2890.002

Residual 836418 93797.920 322.606 93475.314

https://doi.org/10.1371/journal.pone.0218306.t002
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effects account for only 4.3% of the SS captured in a PC1-PC2 graph. Another possible outcome,

caused by main effects having a larger SS than does PC1, is that PC1 contains mostly main-effect

information whereas PC2 contains mostly S×I information. Yet another possible outcome,

caused by main effects having a larger SS than PC2 but a smaller SS than PC1, is the reverse,

that PC1 contains mostly S×I information and PC2 contains mostly main-effect information.

Finally, it is also possible for a PC to contain substantial portions of both main and interaction

effects. For example, SNP-Centered PCA using VCF coding with oat line 189 as the reference

genome has a PC1 comprised of 31.1% Individual main effects and 68.9% S×I interaction effects

(Table 1 in S2 Table). It is crucial for researchers to know which of these four cases obtains for a

given dataset when they interpret a PC1-PC2 graph that uses SNP-Centered PCA.

Individual-Centered PCA also has four possible outcomes. Table 3 shows the augmented

ANOVA table for Individual-Centered PCA of the same oat data, using SNP coding rare = 1.

This variant of PCA removes Individual main effects and then applies PCA to the SNP main

effects and S×I interaction effects combined, denoted by S&S×I, which has a SS of 16872.732 +

138492.217 = 155364.949. The table shows that PC1 is dominated by SNP main effects (96.2%),

whereas PC2 is dominated by S×I interaction effects (99.9%). That outcome could be expected

from Table 1 since the SNP main effects are larger than IPC1. As already explained for

SNP-Centered PCA in Table 2, this example illustrates only one of the four possible outcomes.

Like their centered counterparts, PCs from SNP-Standardized and Individual-Standardized

PCA contain a mixture of main and interaction effects, so these PCA variants also have four

possible outcomes. Furthermore, SNP-Standardized PCA, unlike SNP-Centered PCA, cannot

be used with VCF coding because the reference genome has a standard deviation of zero.

Grand-Mean-Centered PCA produces a mixture of SNP main effects, Individual main

effects, and S×I interaction effects in each PC. Therefore, the situation for Grand-Mean-Cen-

tered PCA is quite complex and undesirable: It has seven possibilities, not counting additional

possibilities involving a PC with a substantial mixture of main and interaction effects. The sup-

porting information includes the augmented ANOVA tables for these additional variants,

using the oat data with SNP coding rare = 1 (Tables 2 to 4 in S2 Table). Between the main text

and the supporting information, ANOVA tables are shown for all six PCA variants.

When main effects are of interest, we recommend the Additive Main effects and Multiplica-

tive Interaction (AMMI) model, which combines ANOVA for the main effects with PCA for

the multiplicative effects [21]. AMMI and DC-PCA are similar and have an identical ANOVA

table. The salient difference is that whereas DC-PCA discards the main effects, AMMI retains

Table 3. Augmented ANOVA table for Individual-Centered PCA of SNP data on oats, using SNP coding rare = 1. PCA is applied to SNP main effects and S×I interac-

tion effects combined (S&S×I), and the portion of each is shown in the last two columns.

Source df SS SNPs SxI

Total 851534 157442.756

Individuals 634 2077.808

S&SxI 850900 155364.948 16872.731 138492.217

PC1 1974 17402.420 16734.514 667.906

PC2 1972 15564.018 21.919 15542.099

PC3 1970 9476.489 40.283 9436.206

PC4 1968 5781.809 23.612 5758.197

PC5 1966 4758.747 25.746 4733.001

PC6 1964 3482.969 5.452 3477.517

PC7 1962 2970.194 4.894 2965.270

Residual 837124 95928.303 16.312 95912.021

https://doi.org/10.1371/journal.pone.0218306.t003
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them. An AMMI1 biplot shows both of the main effects in its abscissa, and IPC1 in its ordi-

nate; it can show only one component (and hence the suffix 1 in AMMI1) because the main

effects use one of its two axes. Its abscissa captures 100% of both main effects. Also, its ordinate

captures as much of the S×I interaction effects as possible because IPC1 is the unique least-

squares solution that maximizes the variation along this axis and minimizes the residual varia-

tion off this axis. We have not yet encountered AMMI in genomics, but it is commonplace in

the literature on agricultural yield trials [21]. Incidentally, in statistical analyses of agricultural

yield trials, the so-called AMMI2 biplot shows IPC1 and IPC2, which is exactly what a

DC-PCA biplot (ordinarily) shows, so “AMMI2” and “DC-PCA” are two names used in differ-

ent literatures for the same analysis.

Fig 7 shows the AMMI1 biplot for the oat data, using SNP coding rare = 1 and the same

color scheme as Fig 1. The abscissa shows the mean frequency of the rare allele. The oat lines

have means that range from 0.15958 to 0.44893, and the SNPs range from 0.01732 to 0.49921.

The vertical line is located at the grand mean of 0.24484. The abscissa captures 100% of the

SNP main effects, 100% of the oat line main effects, and 0% of the S×I interaction effects. The

ordinate of Fig 7 shows IPC1, which captures 11.2% of S×I, and this ordinate is identical to the

abscissa in Fig 1; as before IPC1 separates green (spring oats) from red (winter oats) for both

oat lines and SNPs. In the right panel, the SNPs have a broad range of IPC1 scores at the right

but not at the left because SNPs at the right have large numbers of both rare and common

alleles and hence have large variances, whereas SNPs at the left have mostly the common allele

and hence have small variances.

The interpretive principles for an AMMI1 biplot are that displacements along the abscissa

reflect differences in main effects, whereas displacements along the ordinate reflect differences

in S×I interaction effects. An Individual and SNP with IPC1 scores of the same sign have a pos-

itive S×I interaction, whereas those with opposite signs have a negative S×I interaction, and an

Individual (or SNP) with a score near zero has small interactions with all SNPs (or Individu-

als)—at least for those interactions that are captured in the AMMI1 biplot. Like DC-PCA,

Fig 7. The AMMI1 biplot for the oat data, using SNP coding rare = 1. To reduce clutter the biplot uses two panels, with oat lines on the left and

SNPs on the right. The color scheme is the same as in Fig 1, namely spring oats show in green, world diversity oats in blue, and winter oats in red,

with corresponding colors for the SNPs. The abscissa shows main effects and the ordinate shows IPC1.

https://doi.org/10.1371/journal.pone.0218306.g007
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because AMMI1 has a single kind of information in its abscissa and in its ordinate, an AMMI1

biplot has a single set of interpretive principles that applies to all datasets.

A researcher may make a choice between not having, or else having, interest in main

effects—which equates to the difference between DC-PCA and the other five variants of PCA

considered here. However, the existence of AMMI provides a further choice between con-
founded main and interaction effects from PCA variants other than DC-PCA, including

SNP-Centered PCA, or else non-confounded main and interaction effects from AMMI. Given

this further choice between confounded or non-confounded effects, we are not aware of any

plausible arguments in favor of confounded effects. Accordingly, we recommend DC-PCA or

AMMI1 to accommodate researchers’ diverse interests, but disfavor all of the other five vari-

ants of PCA because of confounding and the consequent multiple outcomes for how their

biplots should be interpreted.

Five additional PCA biplots for the oat dataset are shown in the supporting information,

using SNP coding rare = 1 and the same color scheme as the main text (S2 Fig). SNP-Centered

and SNP-Standardized PCA approximate DC-PCA in Fig 1 because the Individual main

effects are small, whereas Individual-Centered, Individual-Standardized, and Grand-Mean-

Centered PCA approximate AMMI1 in Fig 7 because PC1 captures mostly the large SNP main

effects. The biplots for Individual-Centered and Grand-Mean-Centered PCA have a unipolar

PC1 in the panel for oat lines. However, although these other PCA variants can approximate

DC-PCA or AMMI1, they can only approximate because every component has a mixture of

main and interaction effects. Between Fig 1 in the main text and the supporting information,

biplots are shown for all six PCA variants, with all six biplots using SNP coding rare = 1 and

the same color scheme as in Fig 1.

The findings from ANOVA tables in this subsection reinforce the value of biplots that was

stressed in the first subsection. The joint structure of SNPs-and-Individuals just is the S×I

interactions, which only biplots can display, and S×I is commonly large. From Table 1, the oat

data contains 88.0% interaction information (138492.217 / 157442.756), using SNP coding

rare = 1. Four additional examples can be cited for other crop species, using whatever SNP

coding the original authors selected: rice (Oryza sativa L.) [22] has 91.5% interaction informa-

tion, soybean (Glycine max (L.) Merr.) [23] has 88.7%, maize (Zea mays L.) [24] has 65.2%,

and potato (Solanum tuberosum L.) [25] has 30.1%. Furthermore, the percentage of interaction

information captured in a PC1-PC2 graph is often higher than that in a dataset as a whole, as

quantified by an augmented ANOVA table. For instance, the percentages of interaction in a

PC1-PC2 biplot for SNP-Centered PCA for these five species in the same order are 95.72%,

98.34%, 94.49%, 73.73%, and 99.93%.

In review, both SNP coding and PCA variant can affect which kind of information—Indi-

vidual or SNP or S×I effects—dominates in each PC for all variants of PCA other than

DC-PCA. An augmented ANOVA table quantifies the outcome for any dataset, and thereby

facilitates proper interpretation of PCA results and graphs. Our default recommendation is

DC-PCA because it uniquely applies PCA to a single source of variation, namely the S×I inter-

actions that are often of primary biological interest, so its IPCs always contain this one kind of

information and hence there is no need for its ANOVA table to be augmented. When main

effects are of interest, we recommend an AMMI1 biplot because it uniquely displays main and

interaction effects without confounding them.

Discussion

Because PCA monoplots of only Individuals provide some insight into population structure,

they are deservedly popular in the literature. However, a monoplot cannot show interaction
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structure, which is often the dominant source of variation in a dataset and is usually the varia-

tion of principal interest. Production of a useful biplot is an unlikely prospect apart from

understanding the consequences of SNP codings and PCA variants.

Elucidating population structure helps to accomplish many other research purposes. For

example, population structure is important for genome-wide association studies (GWAS)

because the first few PCs can be used as covariates in a regression to address the problem of

spurious associations produced by population structure [13]. In turn, population structure and

GWAS are important for plant breeding and human medicine [26]. More generally, our results

for the present context of elucidating population structure may have broader relevance, per-

haps with modifications or adaptations, for other contexts. These include genealogical inter-

pretation of PCA [15], geographical interpretation of PCA [27, 28], identification of ancestry-

informative markers [29, 30], inferring genome-wide patterns of admixture [18], assessing

genetic diversity [22, 25, 31], understanding the genetic basis of adaptations [32], improving

crops with genomics-based methods [26], and many other research purposes.

This article addresses just one statistical analysis, PCA, applied to just one kind of genomics

data, SNPs. But this is just the tip of the iceberg: The genetics and genomics community uses

many statistical analyses for many kinds of data. Indeed, PCA graphs of SNP data commonly

occur in multi-panel figures that also show neighbor-joining trees and clustering by Bayesian

or other methods, as well as geographical or other relevant information [32–34], and a CA1

arranged matrix is yet another graphic that such figures could include. Given the opportunities

to improve upon contemporary practices for PCA analysis of SNP data found here, it would

not be too surprising if a wider exploration of statistical analyses of genomics data discovered

additional opportunities to increase research productivity.

Finally, perhaps the most significant and promising result from this investigation is the

opportunity for researchers to ask new questions that have not been asked before: What popu-

lation structure has been present in SNP datasets all along, which cannot be displayed by con-

temporary practices of PCA analysis, but can be elucidated by the recommended choices of

PCA graph, SNP coding, and PCA variant? And how vital is that additional biological insight

for achieving research objectives? Answers to these questions can emerge only from the accu-

mulated experiences of many researchers working with many SNP datasets and diverse

research objectives. What can be concluded already, however, is that necessarily and unavoid-

ably, every PCA graph of SNP data requires and implements some choices of PCA graph, SNP

coding, and PCA variant—whether or not these fateful choices are reported and justified. And

having already collected SNP data and produced a PCA graph with whatever choices, very little

additional effort would be required to repeat the PCA analysis with the three choices recom-

mended here, and then to discern what additional population structure is displayed and

discovered.

Conclusions

Three principal recommendations emerge from this investigation into PCA analysis of SNP

data. (1) Use biplots, not monoplots, since only they can display S×I interaction information,

that is, the joint structure of SNPs-and-Individuals. (2) Use the SNP coding 1 for the rare allele

and 0 for the common allele. (3) Use the PCA variant DC-PCA if only S×I interactions are of

interest, as is often the case; otherwise, use AMMI1 if main effects are also of interest. Addi-

tionally, report which SNP coding and PCA variant were selected, and ideally also provide rea-

sons for those particular choices, so that readers can interpret PCA results properly and

reproduce PCA analyses reliably. Finally, if the recommended DC-PCA (or AMMI1) is not

used, then provide an augmented ANOVA table in order to quantify the amount of main and
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interaction effects in each PC. These conclusions should be understood as useful default rec-

ommendations because some dataset properties or research purposes may constitute excep-

tions, such as a focused research interest in only the Individuals that calls for publication of a

monoplot—although it may still be worthwhile to produce the biplot and inspect it carefully

before making a final decision about which graph to publish. An understanding of the conse-

quences of choices between two PCA graphs, three SNP codings, and six PCA variants is an

asset for elucidating population structure.

Materials and methods

Construction and interpretation of PCA graphs

A convenient form of the equation for DC-PCA is:

Drc ¼ mr þ mc � mþ
P

nlngrndcn þ rrc

where Drc is the datum for row r and column c, μr is the mean for row r, μc is the mean for col-

umn c, μ is the grand mean, is λn the singular value for component n and l
2

n is its eigenvalue,

γrn is the eigenvector value for row r and component n, δcn is the eigenvector value for column

c and component n, with both eigenvectors scaled as unit vectors, and ρrc is the residual for

row r and column c when the number of components used is fewer than the full model

(namely, one less than the minimum of the number of rows and number of columns). The sin-

gular values and eigenvectors are obtained by SVD, as explained in the appendix.

The convention adopted here is to multiply eigenvector values by the square root of the sin-

gular value to obtain l
0:5

n grn and l
0:5

n dcn so that their products estimate row-by-column interac-

tions directly without need for another multiplication by λ, and to call these values “PCA

scores.” The PCA literature does not have consistent terminology since sometimes the results

for rows (or individuals in the present context) are called “PCA scores” whereas results for col-

umns (or SNPs) are called “PCA loadings.” Because PCA is symmetric regarding matrix rows

and columns, as the above equation makes evident, we prefer to use the single and consistent

terminology of PCA scores. However, other contexts may call for a different approach, such as

a PCA monoplot of Individuals, for which multiplication by the singular value is preferable

because this optimizes the two-dimensional approximation of distances between Individuals.

For a comprehensive explanation of ways to handle the singular value, see Malik and Piepho

[35].

The axes in PCA graphs are often scaled to obtain a convenient shape, but actually the axes

should have the same scale for many reasons [35]. However, our literature survey found a cor-

rect ratio of 1 in only 10% of the articles, a slightly faulty ratio of the larger scale over the

shorter scale within 1.1 in 12%, and a substantially faulty ratio above 2 in 16%, with the worst

cases being ratios of 31 and 44. Also, 7% of the articles failed to show the scale on one or both

PCA axes. However, the two axes of an AMMI1 biplot contain different kinds of information

(main or interaction effects), so they do not need to use the same scale.

The solution to SVD is unique, up to simultaneous sign change of both eigenvectors for a

given component. This is evident from the above PCA equation because the terms in the equa-

tion λnγrnδcn are products of the two scores l
0:5

n grn and l
0:5

n dcn, so reversing the signs of both
scores leaves their products unchanged. Because of arbitrary polarity, different software may

produce PCA analyses for a given dataset with opposite polarity for some or all components.

This has two implications for producing and interpreting PCA graphs, including biplots. First

and most important, polarity reversal leaves all distances between points unchanged, so mathe-

matically and geometrically, it is absolutely inconsequential. Indeed, reversing the polarity of
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an ordinate amounts to flipping a graph over from left to right, or reversing the polarity of an

abscissa amounts to flipping a graph over from top to bottom, and reversing both axes

amounts to rotating a graph by 180˚—nothing changes. Second, especially when several PCA

graphs of the same or related data are being compared with each other, adopting a consistent

orientation constitutes good pedagogy, making it easier for readers to perceive the salient dif-

ferences between graphs without distraction from arbitrary orientations.

The PCA arch or horseshoe distortion is important because it generates both problems and

opportunities as explained in the Results section, and also because it occurs in the PC1-PC2

plane, which is what researchers show most often in PCA graphs. But this distortion, which

amounts to a quadratic representation of PC1 in PC2, is only the first of a polynomial

sequence. Using simulated genomics data, graphs of PC1 through PC4 on the abscissa and a

one-dimensional habitat or environmental gradient on the ordinate show a sequence of linear,

quadratic, cubic, and quartic polynomials [13]. The same was shown three decades earlier in

the context of ecology using a related statistical analysis, CA (Fig 4 in [36]). These additional

polynomials must be recognized when interpreting graphs other than the basic PC1-PC2

graphs, such as the three dimensional PC1-PC2-PC3 graphs and PC1-PC3 or PC2-PC3 graphs

that appear in the genomics literature occasionally. Special graphics can show population

structure for many components, such as PC1-PC12 (Fig 3 in [31]). The PCA arch in the first

two components, and the polynomial sequence in higher components, is a feature of not only

PCA and CA, but also NMS [37].

The following principles for interpreting biplots pertain specifically to DC-PCA. For two

points of the same kind (two Individuals or else two SNPs), nearby points have similar interac-

tions, whereas distant points have dissimilar interactions. For two points of different kinds (an

Individual and a SNP), Individuals in a given direction from the origin have positive interac-

tions for SNPs in that same direction, Individuals in a given direction have negative interac-

tions for SNPs in the opposite direction, and Individuals in a given direction have small

interactions for SNPs at right angles. Accordingly, interactions are large when an Individual

and SNP are both far from the origin (but not at right angles), whereas an Individual near the

origin has small interactions with all SNPs, and likewise a SNP near the origin has small inter-

actions with all Individuals. More exactly, these interpretive principles address the interaction

structure captured in the IPC1-IPC2 plane of a biplot.

The percentage of variation captured by each PC is often included in the axis labels of PCA

graphs. In general this information is worth including, but there are two qualifications. First,

these percentages need to be interpreted relative to the size of the data matrix because large

datasets can capture a small percentage and yet still be effective. For example, for a large dataset

with over 107,000 SNPs and over 6,000 persons, the first two components capture only

0.3693% and 0.117% of the variation, and yet the PCA graph shows clear structure (Fig 1A in

[38]). Contrariwise, a PCA graph could capture a large percentage of the total variation, even

50% or more, but that would not guarantee that it will show evident structure in the data. Sec-

ond, the interpretation of these percentages depends on the choice of a PCA variant, as aug-

mented ANOVA tables make clear. Readers cannot meaningfully interpret the percentages of

variation captured by PCA axes when authors fail to communicate which variant of PCA was

used.

The objection may be raised that PCA biplots would be impractical for datasets with many

thousands of SNPs, making graphs unworkably cluttered. In fact, high-density PCA graphs

appear in the literature routinely, such as Fig 4 in [39] showing results for 54734 humans. Pro-

ducing biplots in two adjacent panels helps to reduce clutter by separating Individuals from

SNPs. Fortunately, the literature offers several strategies for simplifying PCA graphs. One pos-

sibility is to reduce the number of SNPs prior to PCA, using tools such as PLINK [40] and
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bigstatsr or bigsnpr [41]. Another is to select SNPs of particular interest. For example, only 23

SNPs out of over 1,000,000 produce PCA graphs with clear clusters for several major US popu-

lations [30, 42]. Obviously, it is impossible to label thousands of points without causing severe

overprinting, but when only a moderate number of Individuals or SNPs are of special interest,

they can be labeled.

Enormous SNP datasets are becoming increasingly common, and fast PCA algorithms can

readily handle large-scale genome-wide data. The remarkably efficient software FastPCA com-

putes the top several PCs with time and memory costs that are linear in the number of matrix

entries [39]. The software flashpca is also very fast [43]. The power method is the simplest algo-

rithm for PCA and is efficient when only the first few PCs are needed [44]. Incidentally, the

power method is simple and fast for obtaining just the first component of CA (Appendix 2 in

[16]), with time and memory costs that are linear in the number of matrix entries.

Literature survey

The 125 articles applying PCA analysis to SNP data were taken from the literature more or less

at random, with some emphasis on agricultural crop species and on researchers at Cornell

University. They span many species and many journals. This survey is included in the support-

ing information (S1 Table).

Oat datasets

The oat dataset supplied by Kathy Esvelt Klos is included in two formats: SNP coding mixed is the

data as received, except that the original coding of 1 and 2 was shifted to 0 and 1; and SNP coding

rare = 1, which required polarity reversal for 772 of the 1341 SNPs (S1 Text and S2 Text).

PCA and CA analyses

Our R code for comparing six PCA variants and correspondence analysis (CA) is included in

the supporting information (S3 Text). From the R library, our code uses ca for CA and ggplot2

for graphs.

Appendix: Consequences of SNP coding for six variants of PCA

This appendix concerns which variants of PCA are, or else are not, immune to changes in SNP

coding as regards PCA monoplots of Individuals, where “Individuals” is a generic term for samples

such as persons or cultivars. The main text already showed in Table 1 that SNP coding affects the

sums of squares (SS) for SNP main effects and S×I interaction effects. Therefore, Individual-Cen-

tered PCA is not immune because different proportions of main and interaction effects can change

which PC is dominated by the SNP main effects, thereby dramatically altering a PCA monoplot of

Individuals. This same verdict of not being immune also applies to Individual-Standardized PCA

for the same sort of reason. Likewise, Grand-Mean-Centered PCA is not immune because it also

retains SNP main effects (and Individual main effects), and again SNP coding affects the SSs for

main and interaction effects. The remainder of this appendix addresses the remaining three vari-

ants in the order SNP-Centered, SNP-Standardized, and Double-Centered PCA.

First, consider SNP-Centered PCA. Let Y be the p × n SNP data matrix with SNPs in p rows

and Individuals in n columns. Without loss of generality, assume that p�n. The matrix Y may

be SNP-Centered as follows: YC ¼ YðIn � n� 11n1
T
n Þ, where In is the n-dimensional identity

matrix and 1n is an n-vector of ones. Let YC = USVT be a singular value decomposition of YC,

where U is a p × n orthonormal matrix of left singular vectors holding the row scores, V is an n
× n orthogonal matrix right singular vector holding the column scores, and S is a diagonal

Consequences of PCA graphs, SNP codings, and PCA variants for elucidating population structure

PLOS ONE | https://doi.org/10.1371/journal.pone.0218306 June 18, 2019 22 / 26

https://doi.org/10.1371/journal.pone.0218306


matrix of order n holding the ordered singular values. From the orthonormality of U we have

UTU = In and from the orthogonality of V we have VTV = VVT = In.
If the polarity of the r-th SNP is changed by swapping 0s and 1s in this r-th row of Y, this

operation can be written as ~YC ¼ PYC, where P is a diagonal matrix of order p with P{r,r} = 1 if

the polarity of the r-th SNP is unchanged and P{r,r} = −1 if the polarity is changed. It is impor-

tant to note that PPT = PTP = IP. Now ~YC can be written as ~YC ¼ PYC ¼ PUSVT ¼ ~USVT ,

where ~U ¼ PU. The right-hand side of this equation can be seen to represent an SVD of ~YC

because ~UT ~U ¼ UTPTPU ¼ UTU ¼ In. Thus, V is the matrix of right singular vectors of both

YC and ~YC. For SNP-Centered PCA, this explains why (up to a possible sign change of whole

columns) the column or Individual scores remain unaltered after changing the polarity of cod-

ing (that is, swapping 0s and 1s) for any or all SNPs.

Second, consider SNP-Standardized PCA. For standardized data, YS = D−1/2YC where D =

diag (W) with W ¼ ðn � 1Þ
� 1YCYT

C ¼ ðn � 1Þ
� 1YðIn � n� 11n1

T
n ÞY

T . Changing the polarity of

some SNPs does not change the SNP variances in D. Therefore, the above results for SNP-Cen-

tered data carry over fully to SNP-Standardized data.

Third and finally, consider Double-Centered PCA. DC-PCA is not immune to changes in

SNP polarity as regards PCA monoplots for Individuals. Double-Centering pertains to the

matrix YDC ¼ ðIp � p� 11p1
T
p ÞYC. If the polarity of some SNPs are changed, then PYC needs

to be computed before the centering for Individuals. Thus, we need to compute ~YDC ¼

ðIp � p� 11p1
T
p ÞPYC. The matrices P and ðIp � p� 11p1

T
p Þ do not commute; that is, ðIp � p� 11p1

T
p Þ

P 6¼ PðIp � p� 11p1
T
p Þ so ~YDC ¼ ðIp � p� 11p1

T
p ÞPYC 6¼ PðIp � p� 11p1

T
p ÞYC ¼ PYDC. Therefore,

the SVD of ~YDC cannot be obtained from that of YDC in the same way as the SVD of ~YC can be

obtained from that of YC. This explains why Individual scores before and after changing the

polarity of some SNPs are not perfectly correlated.

However, when the SS for Individual main effects is small relative to that for SNP-by-Indi-

vidual interaction effects, centering by Individual has little effect on the Individual scores

based on SVD. The verdicts on immunity to SNP coding will be nearly the same for DC-PCA

and SNP-Centered PCA when Individual main effects are small, and SNP-Centered PCA was

already proven earlier in this appendix to be immune. Therefore, correlations for Individual

scores between different SNP codings are expected to be very close to 1 or -1 for DC-PCA, but

not exactly 1. A small SS for Individual main effects compared to that for SNP-by-Individual

interaction effects is a necessary and sufficient condition for DC-PCA monoplots of Individu-

als to be virtually immune to changes in SNP coding.
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(XLSX)

S2 Table. Augmented ANOVA table for SNP-Centered PCA of data on oats using SNP
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tables for SNP-Standardized, Individual-Standardized, and Grand-Mean-Centered PCA

using SNP coding rare = 1.
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S2 Fig. Five biplots for the oat data: SNP-Centered, SNP-Standardized, Individual-Cen-

tered, Individual-Standardized, and Grand-Mean-Centered PCA using SNP coding

rare = 1. As in the main text, to reduce clutter, all of these biplots use two panels, with oat lines

on the left and SNPs on the right. The color scheme is the same as in Fig 1 in the main text,

namely spring oats show in green, world diversity oats shown in blue, and winter oats shown

in red, with corresponding colors for the SNPs.

(DOCX)

S1 Text. The oat dataset with SNP coding mixed as received from Kathy Esvelt Klos, except

that the original coding of 1 and 2 was shifted to 0 and 1. It has 635 oat lines and 1341 SNPs.

The format of this dataset is that used by our R code.

(TXT)

S2 Text. The oat dataset with SNP coding rare = 1, which required polarity reversal for 772

of the 1341 SNPs. The format of this dataset is that used by our R code.

(TXT)

S3 Text. R code used to perform PCA and CA analyses. This R code was produced for our

own in-house research purposes, not as polished and public software, but it is made available

here for the sake of transparency in research. It makes basic PCA biplots and ANOVA tables,

but not the final figures and tables and the CA1 arranged matrix that appear in this publica-

tion.

(TXT)
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