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Abstract

Background

Mesothelioma is a lung cancer that kills thousands of people worldwide annually, especially

those with exposure to asbestos. Diagnosis of mesothelioma in patients often requires

time-consuming imaging techniques and biopsies. Machine learning can provide for a more

effective, cheaper, and faster patient diagnosis and feature selection from clinical data in

patient records.

Methods and findings

We analyzed a dataset of health records of 324 patients having mesothelioma symptoms

from Turkey. The patients had prior asbestos exposure and displayed symptoms consistent

with mesothelioma. We compared probabilistic neural network, perceptron-based neural

network, random forest, one rule, and decision tree classifiers to predict diagnosis of the

patient records. We measured classifiers’ performance through standard confusion matrix

scores such as Matthews correlation coefficient (MCC). Random forest outperformed all

models tried, obtaining MCC = +0.37 on the complete imbalanced dataset and MCC =

+0.64 on the under-sampled balanced dataset. We then employed random forest feature

selection to identify the two most relevant dataset traits associated with mesothelioma:

lung side and platelet count. These two risk factors resulted so predictive, that decision tree

focusing on them achieved the second top accuracy on the complete dataset diagnosis pre-

diction (MCC = +0.28), outperforming all other methods and even decision tree itself applied

to all features.

Conclusions

Our results show that machine learning can predict diagnoses of patients having mesotheli-

oma symptoms with high accuracy, sensitivity, and specificity, in few minutes. Additionally,

random forest can efficiently select the most important features of this clinical dataset (lung

side and platelet count) in few seconds. The importance of pleural plaques in lung sides and

blood platelets in mesothelioma diagnosis indicates that physicians should focus on these
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two features when reading records of patients with mesothelioma symptoms. Moreover,

doctors can exploit our machinery to predict patient diagnosis when only lung side and plate-

let data are available.

1 Introduction

Mesothelioma is a major type of lung cancer. Incidence varies markedly by country [1, 2].

Between 2004 and 2008, 23,869 people in the Americas, 49,779 people in Europe, and 12,012

people in Asia died of mesothelioma [3].

Pleural mesothelioma makes up approximately 75% of all mesotheliomas, and affects the

two membranes of the lung: the visceral pleura and parietal pleura. Other subtypes include

pericardial mesothelioma, which develops in the membrane around the heart, the pericar-

dium. In many cases, pericardial mesothelioma goes undiagnosed until autopsy [4]. Mesotheli-

omas are always malignant, but some patients with mesothelioma symptoms might have

pleural plaques instead [5], without mesothelioma.

The most important symptoms for diagnosis include pain, dyspnoea (shortness of breath),

cough, pain and dry cough, pleural effusion, chest pain, and shoulder pain. In more advanced

stages, other symptoms can show up: weakness, fever, hoarseness, hypoxemia (low level of oxy-

gen in the blood), dysphagia (difficulty swallowing), fever, night sweats, and weight loss [6, 7].

In contrast with symptoms, clinical features provide quantitative information to aid diagno-

sis. Existing models that forecast patient survival use clinical features such as histologic sub-

type, time since diagnosis, platelet count, hemoglobin, and disease stage [6]. In mesothelioma,

occupational history generally can serve as a particularly informative feature, as it shows previ-

ous exposure to asbestos. Long workplace exposure to asbestos makes development of pleural

mesothelioma extremely likely [8].

Mesothelioma diagnosis generally requires expensive imaging and laboratory medicine

resources [9], such as X-rays, magnetic resonance imaging (MRI) and positron emission

tomography (PET) scans, biopsies, and blood tests. Even if precise and efficient, the medical

imaging machines are expensive and uncommon in remote regions. Medical tests like biopsies,

in addition, are quite invasive and painful for patients.

To speed diagnosis and minimize the use of these tests, researchers have used machine

learning methods to solve health informatics classification tasks [10]. Machine learning meth-

ods provide useful tools to classify, process, and analyze health records in minutes or seconds.

We analyzed a dataset of mesothelioma health records of 324 mesothelioma patients from

the Diyarbakır region of southeast Turkey [11]. This area has endemic, natural asbestos fibers

in the soil, mostly tremolite fibers, but also chrysotile fibers. This provides a unique dataset

with a high incidence of mesothelioma within a population of highly asbestos-exposed individ-

uals. From this dataset, we ascertained risk factors for mesothelioma. Each patient record in

this dataset contains multiple clinical features and a diagnosis label. The diagnosis label has

two categories: mesothelioma or non-mesothelioma. The “non-mesothelioma” patients have

similar clinical features as those with mesothelioma, such as pleural plaques. Nonetheless, phy-

sicians did not diagnose these patients with mesothelioma.

It is often difficult to distinguish clinically between patients with mesothelioma with

asbestos-exposed individuals who have pleural plaques and clinical features suggestive of

mesothelioma, but who lack the disease. Asbestos exposure itself can lead to pleural plaque

development, pleural effusions, and other radiologic changes that mimic mesothelioma.

Diagnosis prediction and feature selection on mesothelioma records

PLOS ONE | https://doi.org/10.1371/journal.pone.0208737 January 10, 2019 2 / 28

Funding: This project was supported by the Peter

Munk Cardiac Centre. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0208737


Machine learning methods are well-established in scientific research for cancer predictive

diagnosis [12–15]. The mesothelioma dataset used here comes from a previous effort to diag-

nose mesothelioma using a probabilistic neural network (PNN) [10]. Probabilistic neural net-

works have also been used to diagnose potential cancer patients [16–18], and to predict anti-

HIV drugs [19]. To replicate the approach used by the original dataset authors [10], we started

this study by reimplementing a probabilistic neural network [20], and then compared this

algorithm with other machine learning models such as artificial neural networks [21, 22], ran-

dom forests [23, 24], decision trees [25], and one rule [26].

We chose these methods because they are particularly appropriate for the dataset we ana-

lyze, and because they have proven successful and suitable in solving similar health informat-

ics problems in the past [27, 28]. Artificial neural networks, for example, have been used to

predict the sequence specificity of DNA-binding and RNA-binding proteins [29], and clas-

sify micrographs of breast cancer [30]. Random forests, also, have seen extensive use in bio-

informatics and biomedical informatics contexts [31–33], such as for the classification of

gene expression microarray data [34]. Additionally, researchers have used random forests to

classify other cancer types, including renal cell carcinoma data [35], and lung cancer data

[36]. Even if machine learning experts often suggest to start with a simple machine learning

algorithm [37], such as logistic regression, we decided to avoid this method because it can be

imprecise when applied to data having highly correlated features [38]. The mesothelioma

dataset, in fact, contains highly correlated data features, generated from the same clinical

tests. In addition to random forest’s use for classification, we also employed it for feature

selection [31, 35, 39], to understand which patient traits and clinical features best predict

mesothelioma.

Our findings and our methods can be useful for physicians and medical doctors, in several

contexts. Our discoveries about the importance of lung side and platelet count in the dataset

suggest physicians should focus on these two features, when reading the electronic health

record of a patient. Additionally, physicians can take advantage of our method to predict if

a patient is going to have mesothelioma or not, by inputing his/her clinical profile to our

software.

2 Dataset

The dataset consists in real electronic health records of 324 patients collected at the Dicle Uni-

versity Faculty of Medicine Hospital (Diyarbakir, southeastern Turkey), before October 2011

[10]. Of these 324 patients, 96 have mesothelioma, and 228 have do not have mesothelioma.

Regarding dataset imbalance, the data contains 29.63% positive data instances (patients with

mesothelioma), and 70.37% negative instances (patients without mesothelioma).

We represent the dataset as a table of 324 rows, each row corresponding to one patient with

potential mesothelioma symptoms. Each row has 35 columns, representing the observed fea-

tures for that patient (Table 1). One of the features is the diagnosis label, “class of diagnosis”.

This feature states whether the patient actually has mesothelioma (1, “mesothelioma” label), or

or not (0, “non-mesothelioma” label).

The dataset curators published the first analysis of this dataset in October 2011 [10], and

subsequently released the dataset publically on the University of California Irvine Machine

Learning Repository in January 2016 [40]. Beyond the data origin, feature names, and their val-

ues, Er et al. [10] provided no other details about the dataset. We describe the features in more

details here (Tables 1 and 2; S1, S2, S3, S4 and S5 Figs). The “diagnosis method” feature has

identical values to “class of diagnosis” and we therefore removed it for classification and fea-

ture selection purposes. Of the 33 remaining features, 10 features are boolean, 14 are real
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values, 3 are time values, and 6 are categorical. We describe the features in depth (Tables 1 and

2, Supplementary Information) and confirmed our interpretation with the dataset curators

(Orhan Er, personal communication).

It is also worth noticing that the dataset is well structured and complete, and contains no

missing or ambiguous values. The dataset contains only real patients’ data, and no simulations.

The completeness of the dataset is a rare quality in electronic health record (EHR) collections,

and allows us to make a more precise and accurate analysis than other cases where some data

values are missing (for example, [41]).

Table 1. Dataset features with ranges and measurement units. We removed “diagnosis method” from the classifica-

tion and feature selection phases, because it has the same values of “class of diagnosis” target we predict. We changed

some feature names to add clarity: “blood lactic dehydrogenise (LDH)” into “lactate dehydrogenase test”, “cell count

(WBC)” into “white blood cells (WBC)”, “cytology” into “cytology exam of pleural fluid”, “hemoglobin (HGB)” into

“hemoglobin normality test”, “keep side” into “lung side”, “pleural glucose” into “pleural fluid glucose”, and “white

blood” into “pleural fluid WBC count”.

feature name value range measurement unit

ache on chest 0, 1 boolean

asbestos exposure 0, 1 boolean

cytology exam of pleural fluid 0, 1 boolean

dead or not 0, 1 boolean

diagnosis method 0, 1 boolean

dyspnoea 0, 1 boolean

hemoglobin normality test 0, 1 boolean

pleural effusion 0, 1 boolean

pleural level of acidity (pH) 0, 1 boolean

pleural thickness on tomography 0, 1 boolean

weakness 0, 1 boolean

city [0, 8] category

gender 0, 1 category

habit of cigarette 0, 1, 2, 3 category

lung side 0, 1, 2 category

performance status 0, 1 category

type of malignant mesothelioma 0, 1, 2 category

age [19, 85] years

duration of asbestos exposure [0, 70] years

duration of symptoms [0.5, 52] years

albumin [1.5, 6.9] g/dL (grams per deciliter)

alkaline phosphatise (ALP) [41, 489] IU/L (international units per liter)

C-reactive protein (CRP) [11, 103] mg/L (milligrams per liter)

lactate dehydrogenase test (LDH) [55, 1128] IU/L (international units per liter)

glucose [60, 421] mg/dL (milligrams per deciliter)

platelet count (PLT) [111, 3335] kilo platelets per mcL (microliter)

pleural albumin [0, 4.4] g/dL (grams per deciliter)

pleural fluid WBC count [742, 21500] cells per microliter (mcL)

pleural fluid glucose [2, 151] mg/dL (milligrams per deciliter)

pleural lactic dehydrogenase [110, 7541] IU/L (international units per liter)

pleural protein [0, 6.7] g/L (grams per liter)

sedimentation rate [7, 129] mm/hr (millimeters per hour)

total protein [3.1, 8.5] g/dL (grams per deciliter)

white blood cells (WBC) [4, 22] cells per mcL (microliter)

https://doi.org/10.1371/journal.pone.0208737.t001
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3 Methods

In the first part of the project, we used machine learning to perform a supervised binary pre-

diction of the two possible patient diagnoses (mesothelioma or non-mesothelioma).

To this end, we took advantage of several models. We started with PNN, since it was the

method applied by the original dataset authors [10], and we wanted to replicate their approach.

Table 2. Meaning of each feature of the dataset. We reported a detailed description of each feature in the Supplemen-

tary Information.

feature name meaning

ache on chest presence or absence of pain in the chest area

asbestos exposure if a patient has been exposed to asbestos during life

cytology exam of pleural

fluid

test to detect cancer cells and certain other cells in the area that surrounds the lung

dead or not if a patient is still alive

diagnosis method if the patient has had a mesothelioma diagnosed by a common diagnosis method

dyspnoea shortness of breath

hemoglobin normality test test that measures how much hemoglobin is in blood

pleural effusion presence of effusion, common symptom that can inhibit the normal function of the

organ

pleural level of acidity (pH) if the pleural fluid pH is lower than the normal pleural fluid pH, that it’s neutral

pleural thickness of

thickness

any form of thickening involving either the parietal or visceral pleura

weakness lack of strength

city place of provenance of the patients

gender female or male

habit of cigarette four categories for the habit of smoking

lung side the side of the lungs which is experiencing pleural plaques or mesothelioma traces

performance status patient’s ability to perform normal tasks

type of malignant

mesothelioma

mesothelioma stage to which the symptoms seem to belong, according to the TNM

Classification of Malignant Tumors

age the age of the patients

duration of asbestos

exposure

how long has been the environmental exposure to asbestos

duration of symptoms the time period, in years, in which the patients show symptoms

albumin level of blood albumin

alkaline phosphatase (ALP) test used to help detect liver disease or bone disorders

C-reactive protein (CRP) acute phase reactant, significantly elevated in patients with pleural mesothelioma

(MPM)

glucose test which measures the amount of glucose in a sample of blood

lactate dehydrogenase test

(LDH)

protein that helps produce energy in the body

platelet count (PLT) test to measure how many platelets patients have in the blood

pleural albumin level of albumin in the pleural fluid

pleural fluid WBC count the count of leukocytes in the pleural fluid

pleural fluid glucose low level can be linked to infection or malignancy

pleural lactic dehydrogenase its levels indicates if the fluid is exudate or transudate

pleural protein pleural effusions are classified as transudates or exudates on the basis of the fluid

protein level

sedimentation rate test to measure how quickly erythrocytes settle in a test tube in one hour

total protein biochemical test for measuring the total amount of protein in serum

white blood cells (WBC) test measures the number and quality of white blood cells

https://doi.org/10.1371/journal.pone.0208737.t002
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To further investigate the effectiveness of artificial neural networks, we then used a percep-

tron-based neural network.

Afterwards, we decided to move to tree-like graph models (decision trees, random forest,

and one rule), because these methods are unmoved by statistical correlations between features,

which are very common in electronic health record datasets. Clinical data, in fact, contain fea-

tures that have strong relationships between each other, since each aspect of the health of a

patient is deeply related to her/his other health aspects, at any level. Tree-like graph models

usually are minimally affected by feature correlations, and therefore they can be efficient and

robust when applied to patient clinical datasets, as in this case.

In the second part of the project, we investigated the most relevant features associated with

mesothelioma. For this purpose, we decided to use random forest feature selection because

this method achieved the best results in predicting the diagnosis (Results). We also wanted to

take advantage of its ensemble learning approach and importance rates (accuracy decrease and

Gini impurity decrease), which let us understand the importance of each feature both statisti-

cally and informatively. We decided to avoid employing the other methods for this feature

selection phase because they do not provide an informative content such as the Gini impurity

decrease [39]. Additionally, even if our feature selection results might be biased towards ran-

dom forest, we preferred this technique because bootstrap aggregating [42] makes ensemble

learning methods more robust than neural networks, decision trees, and association rule learn-

ing algorithms, regarding feature selection [36, 43, 44].

3.1 Probabilistic neural network

The probabilistic neural network is an artificial neural network algorithm based upon a Bayes-

ian statistical network and a Fisher kernel discriminant analysis model [20] (Fig 1).

A typical artificial neural network contains one input layer, several hidden layers, and an

output layer. Each neuron of the input layer contains a value that propagates to the first hid-

den layer neurons. In feed-forward neural networks (such as probabilistic neural networks

and perceptrons), each hidden layer neuron reads the input layer values, multiply them by its

weights, sums the temporary results up, applies an activation function, and propagates its

result to the next layer of neurons. A multi-layer feed-forward perceptron is a typical artifi-

cial neural network, made of one input layer, several hidden layers, and an output layer

(Fig 2).

Unlike the classical multi-layer perceptron [45], which has a back-propagation method that

updates the weights of the neurons at each iteration, the probabilistic neural network computes

as output values as probability of class membership. A probabilistic neural network consists of

an input layer, a pattern layer, a summation layer, and an output layer. The input layer reads

the input values, while the pattern layer computes the radial distance between the values of

each pair of input neurons, through a Gaussian function. In the summation layer, the neural

network sums all the values output by the previous layer, generating probability values that

estimate the likelihood of class membership in the output layer. For a supervised binary classi-

fication, the method assigns each value to the most likely boolean category it can belong, true

or false (Fig 1).

This particular artificial neural network is a lazy learning model, meaning that it does

include an iterative training procedure. When using a probabilistic neural network, we do not

train the neurons’ weights, but rather assign values to them (Methods).

Following the strategy initially adopted by the dataset curators [10], we implemented and

tested a probabilistic neural network. We set the model Gaussian function to have a standard

deviation value of 0.1.
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We read the 33 feature values of each patient in the input layer, and we processed their val-

ues in the hidden layer. Then, in the output layer, we estimated whether the patient belongs in

the mesothelioma or non-mesothelioma diagnosis class. We used 5-fold cross-validation. In

each cross-validation fold, we trained on a randomly chosen 80% of the patients, and test on

the remaining 20% of the patients. The algorithm finally states if each patient profile is more

likely to to belong to the mesothelioma class, or to the non-mesothelioma class.

For our tests, we split the dataset into training set and test set, as made by the dataset cura-

tors [10]. We trained our model on the training set, and then applied the trained model to the

test set. Best practices in machine learning suggest to split the original dataset into three inde-

pendent subsets (training set, validation set, and test set) [37], but we decided to use only two-

subset split to reproduce the probabilistic neural network used [10]. We then split the dataset

Fig 1. Architecture of the probabilistic neural network. In our model, there are 33 neurons in the input layer, 33 neurons in the pattern layer, and 2

neurons in the summation layer.

https://doi.org/10.1371/journal.pone.0208737.g001
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into training set, validation set, and test set for the perceptron; we then trained each perceptron

model on the training set, evaluated it with different hyper-parameters on the validation set,

and finally applied the top performing model to the test set.

3.2 Perceptron-based neural network

The main difference between a perceptron and a probabilistic neural network comes from

back-propagation. In the perceptron, once the values propagate the neural network and reach

the output layer, the neural network computes the mean square error between the predicted

values and the gold-standard values. Afterwards, the algorithm sends this error measure back

to neurons of each hidden layer, through a technique called back-propagation [46], and they

update their weights accordingly.

Fig 2. Architecture of a multi-layer perceptron-based neural network. In our model, the input layer neurons are 33. We found different optimized

numbers of hidden layers and hidden units, for each program execution. The top architecture among the ten executions had 20 hidden units and 1

hidden layer.

https://doi.org/10.1371/journal.pone.0208737.g002
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We read the 33 input values of each patient profile in the input layer, then learned a hidden

representation of the profile, and finally translated it into a single real-valued score in the out-

put layer.

We set a confusion matrix threshold τ to 0.5. During testing, we scaled all the values output-

ted by the neural network through the z = (x + 1)/2 formula, where x is the output of the per-

ceptron, and z is the actual value used in the confusion matrix. If the prediction generated a

score greater than the likelihood threshold τ, we assigned the patient to the non-mesothelioma

class. Otherwise, we assign the patient to the mesothelioma class.

Our multi-layer perceptron used a learning rate of 0.01, and 200 iterations in training.

We computed the confusion matrix with the likelihood threshold τ = 0.5. We normalized the

input data by column, by scaling every value into the [0; 1] interval, before the application of

the perceptron.

We optimized the hyper-parameters (number of hidden layers and number of hidden

units) through a grid search, by testing several possible values (hidden layers = [1, 2, 3] and

hidden units = [5, 10, 20, 25, 75, 100]). We randomly separated the original dataset into three

independent subsets: training set (60% patients, randomly selected), validation set (other 20%

patients, randomly selected), and a test set (the remaining 20% patients).

During optimization, for each hyper-parameter configuration, we trained the perceptron

on the training set and tested in on the validation set, by computing the Matthews correlation

coefficient (MCC) [37, 47]. At the end of the optimization phase, we selected the model which

led to the highest MCC score, and applied it to the test set.

Our optimization tests led to different optimized number of hidden units and hidden layers

each time, and obtained the top prediction results (MCC = +0.27) with 1 hidden layer and 20

hidden units. In our neural network, we used the sigmoid as activation function.

3.3 Random forest and decision trees

Random forest build upon decision tree learning, in which a set of predictive decision trees

maps each input item into an output category, by processing it through its tree leaves [23, 24].

A decision tree is a classification model in which every node is a decision function, and the

node child represents every potential choice from that decision. The tree applies the decision

function of each node repeatedly to the input, and then associates the data sample to the corre-

sponding child. Afterwards, the child also applies its decision function to the input, and associ-

ates it to one of its child nodes, and so on. The algorithm repeats this procedure until it reaches

the end of the tree.

Random forest is an ensemble learning method: it generates multiple classifiers and then

aggregates their results. During training, random forest applies a bootstrap aggregating (bag-

ging) method to its trees. It selects random subsets from the input dataset, and applies a deci-

sion tree to each of them. To select the final classification outcome, it selects the outcome

produced by the majority of the trees, much like a voting system.

The algorithm creates several random decision trees, in which every node corresponds to a

feature, randomly selected (Fig 3). The algorithm applies a decision function to each patient

profile. For example, for each boolean feature, the node function is “Is the value true?”. By

applying decision functions repeatedly at each node, the algorithm finally classifies a whole

data sample as true or false (mesothelioma or non-mesothelioma in our case). In the end, the

random forest outputs the outcome class corresponding to the majority of the outcome classes

of the random decision trees (Fig 3), and classifies it as true or false. We trained our random

forest classifier on randomly selected 80% data instances and tested on the remaining 20%. In

our random forest implementation, we generated 500 trees and tried 11 variables at each node
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split. Differently from the numbers of hidden units and hidden layers of the previously

described perceptron-based neural network, we did not run an optimization procedure for the

number of generated trees. Increasing the number of trees, in fact, does not improve the per-

formance of random forest, if the the number of trees is sufficiently larger than the number of

features [48, 49].

After the diagnosis classification phase, we decided to investigate the most important fea-

tures of the dataset. We again chose to use random forest for this scope, because this method

provides both a statistical outcome (accuracy decrease) and a content-informative outcome of

the importance of each feature (Gini node impurity). All the other methods previously used

for classification in this project (PNN, perceptron, and one rule) do not produce this twofold

outcome.

To rank the importance of each feature, we applied the random forest algorithm to the data-

set 33 times. Each time, we removed one feature of the 33 and then computed the accuracy (Eq

1) and the Gini node impurity [39] of the prediction during the decision tree training.

In a confusion matrix, where FP: false positives; FN: false negatives; TP: true positives; TN:

true negatives, the accuracy formula is the following:

accuracy ¼
TPþ TN

TPþ FNþ TNþ FP
ðaccuracy : worst value ¼ 0; best value ¼ 1Þ

ð1Þ

Then, we measured the accuracy and the Gini node impurity decrease between the random

forest with all features and the random forest with one feature removed. The top importance

Fig 3. Decision tree. An example of decision tree, which can classify each patient as healthy (non-mesothelioma) or unhealthy (mesothelioma).

Random forest generates a set of predictive decision trees.

https://doi.org/10.1371/journal.pone.0208737.g003
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features are the ones whose difference in the accuracy and in the Gini node purity is higher,

because its absence shows the largest change in the prediction of the diagnosis.

Even if accuracy is less informative than MCC on imbalanced dataset [37], we decided to

stick with this score in the feature selection phase to be consistent with the original random

forest model introduced by Breiman [23].

We applied the random forest algorithm to rank the features based upon their importance.

We measured feature importance with two statistical rates: the proportion of the decrease of

the mean square error (MSE, Eq 2) when each feature is missing from the dataset, measured

against the 0 or 1 target value (Results), and the tree node Gini impurity (Results).

MSEðx; yÞ ¼ jjx � yjj2

ðwhere x is predicted score; and y is the corresponding ground truth targetÞ
ð2Þ

We computed the percentage of the decrease of the mean square error in the following way.

The random forest algorithm computed the accuracy αall of the prediction of the targets by

using a decision tree which takes advantage of all the features. Then, the random forest algo-

rithm calculated the accuracy αi of the prediction of the targets by using a decision tree which

takes advantage of all the features, except the ith feature.

Afterwards, for each feature i, it computed the percentage mean square error between αall

and αi, and assigned it to the ith feature as its percentage of the decrease of the mean square

error (Results).

The random forest algorithm computes the impurity of each tree node measured by the

Gini index in the following way. For each decision tree split, the method calculated the

decrease of Gini index impurity between the node before the split and the node after the split

[39].

The larger the impurity decrease after a specific split, the more informative is the feature

related to that split [50]. The algorithm summed over all the splits for that feature, over all the

trees, and generates its final value (Results).

Feature selection measures the importance of each dataset feature through the accuracy

decrease and the Gini impurity decrease. We can consider the accuracy decrease percentage of

the mean square error as an importance measure in a statistical sense, and the tree node impu-

rity as an importance measure in an informative content sense.

We applied the random forest feature selection algorithm on all the dataset, and computed

the accuracy decrease and the Gini purity decrease for each feature (Results). Here there is no

need to split the dataset into training set and test set, because random forest feature selection

uses a technique called bagging (or bootstrap aggregation), which generates multiple data sub-

sets by sampling with replacement from the full dataset [42].

We took the accuracy decrease ranking and the Gini impurity ranking, and created a

merged ranking by using Borda’s method [51]. For each feature f, we sum its position in the

first list p1(f) to its position in the second list p2(f), and save this value in the ranking score vari-

able scoref.
We then sorted all the features from the one having the lowest scoref value to the one having

the highest score value (Results).

3.4 One rule

For a baseline comparison, we also implemented and applied the one rule algorithm [26]. Con-

sidered one of the simplest machine learning methods existing, one rule is based upon associa-

tion rules, which involve just one data feature value in each rule condition. In the one rule
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application, we used randomly selected 80% of the data instances for training, and the remain-

ing 20% for testing (Results).

3.5 Prediction using only two selected features

Since the random forest feature selection highlighted “lung side” and “platelet count (PLT)”

as the most relevant features in the dataset (Results), we used a decision tree to predict meso-

thelioma diagnoses based solely upon these two features (Fig 3). We applied classification and

regression tree (CART) [25] to the dataset made only of lung side and platelet count. In the

dataset table, we kept only the “lung side” and “platelet count (PLT)” columns, we removed all

the other columns (features), and then we applied the CART method. We avoided using ran-

dom forest in this case because there are only two features: as we described earlier, random for-

est creates decisions trees based on random combinations of feature subsets, and there would

be no possible subset combinations on a dataset containing only two features.

We decided to employ decision tree in this phase because lung side and platelet count were

identified as the two most important features by random forest, and random forest is based

upon decision trees [23]. If we used another method such as perceptron-based neural network

at this stage, it could potentially disagree with random forest on which features are the most

important, and therefore generate inconsistent diagnosis prediction results.

Moreover, a methodological advantage of decision tree is that its operating principles and

results are easy to understand and interpret [52, 53]. In a scenario where a biomedical doctor

has to figure out if a patient had mesothelioma by just looking at the values for lung side and

platelet count in the medical record, he/she could diagram all the decision tree steps and

understand the reasons beyond the outcome generated. This information would be pivotal for

the doctor’s decision making, and would help him/her better interpret the patient’s situation

[54, 55]. On the contrary, understanding the operating principles beyond more complex

machine learning methods (such as the neural networks used in this study) would be difficult,

or even impossible, in a health decision making context [56]. Therefore, to make a critical deci-

sion about the therapy for a patient, a biomedical doctor would trust an explainable decision

tree more than a black box neural network.

To verify that the predictive power of the lung side and platelet count was valid not only for

decision trees, we also applied one rule to this dataset made by only the two selected features

(S4 Table).

We used the 80% randomly selected patient profiles for training and the remaining 20%

profiles for testing (Results).

3.6 Prediction measurement and dataset split

To state the effectiveness of our prediction methods, we used Matthews correlation coefficient

(MCC, Eq 3), accuracy (Eq 1), F1 score (Eq 4), sensitivity (true positive rate, Eq 5), and speci-

ficity (true negative rate, Eq 6) rates.

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTPþ FNÞ � ðTNþ FPÞ � ðTNþ FNÞ

p

ðMCC : worst value ¼ � 1; best value ¼ þ1Þ

ð3Þ

F1 score ¼
2 � TP

2 � TPþ FNþ FP
ðF1 score : worst value ¼ 0; best value ¼ 1Þ

ð4Þ
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sensitivity ¼
TP

TPþ FN
ðsensitivity : worst value ¼ 0; best value ¼ 1Þ

ð5Þ

specificity ¼
TN

TNþ FP
ðspecificity : worst value ¼ 0; best value ¼ 1Þ

ð6Þ

We optimize and evaluate our methods by using the MCC because it weights each class of

the confusion matrix, in proportion to the number of positive elements and negative elements

in both the gold standard and the prediction [47]. Sensitivity (Eq 5) generates the rate of the

correctly predicted true positives on the total positive data instances, while specificity (Eq 6)

produces the rate of the correctly classified true negatives on the total tally of false data

instances. Accuracy (Eq 1) measures the proportion of the correct predictions (true positives

plus true negatives) on the total data instances, while the F1 score (Eq 4) reports the is the har-

monic mean of precision and sensitivity.

As described earlier, we used different strategies for the dataset split, in accordance to the

need of optimizing hyper-parameters or not, for each method. Since our probabilistic neural

networks, one rule, random forest, and decision trees have no hyper-parameter to optimize,

we split the dataset into training set (80% of the data instances, randomly selected) and test test

(the remaining 20% data instances) for all the analyses [37].

For the perceptron-based neural network, instead, we ran an optimization procedure to

find the best number of hidden units and number of hidden layers. To do so, we split the data-

set into training set (60% data instances, randomly selected), validation set (20% of the remain-

ing data instances, randomly selected), and test set (the remaining 20% data instances). We

trained each architecture model on the training set, and evaluated it on the validation set. At

the end of the optimization phase, we selected the model which obtained the highest prediction

score (MCC) on the validation set, and finally applied to the test set.

We later report the results related to the test sets (Results). Each test set used by each

method in this project was completely independent from training set and validation set, and

has no element in common with them. Each test set employed for each method execution con-

tains 20% of the dataset: 65 randomly selected patients for the complete imbalance dataset

tests, and 39 randomly selected patients for the under-sampled balanced dataset tests.

To make an even more precise comparison of the classifiers we employed, we recognize

that it would have been ideal to initially put aside a held-out data subset as an additional final

test set [57], then apply all the optimized trained methods on this held-out subset, and finally

compare the results obtained by each method (similarly to what happens in the DREAM Chal-

lenges [58, 59]). Unfortunately, because of the small size of the dataset analyzed in this study

(324 patients), we could not take advantage of this strategy, otherwise we would have not had

enough data instances to properly train the models. Our results attained by randomly selecting

and shuffling the data instances for each test set, however, confirmed the generalisability of

our methods.

3.7 Regression analysis

In addition to the neural network, random forest, one rule, and decision tree prediction

and random forest feature selection approaches, we also applied a traditional regression

analysis to the dataset. We compared of clinical, radiographic, demographic, and laboratory
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characteristics between the mesothelioma patients and those who do not have cancer (non-

mesothelioma) but who are asbestos exposed by Wilcoxon rank sum tests for continuous vari-

ables [60], and Fisher exact tests for categorical variables [61]. We applied univariate logistic

regression models to assess the effect of each individual factor or characteristics on diagnosis,

reporting estimated odds ratios (OR) and 95% confidence intervals (CI) after applying two-

sided statistical tests. A multivariate logistic regression model included all variables with a

threshold alpha set at 0.10 or lower, followed by backwards selection of variables with a thresh-

old set at alpha of 0.05 or lower.

3.8 Execution details

On a Dell Latitude 3540 computer with a Intel Core i3-4030U CPU 1.90 GHz processor, with

3.7 GB of random-access memory (RAM), and running a Linux CentOS 7 operating system,

the execution of the probabilistic neural network on Python 3.5 with NeuPy [62] execution

takes around 1 second, while the execution of the perceptron-based neural network on Torch

7 with the nn and optim packages [63] execution takes around 2 minutes and 30 seconds.

The perceptron prediction takes longer because of the optimization phase, which lacks for the

other algorithms. We applied random forest through the R randomForest package, and its exe-

cution lasted around 1 second, both for classification and feature selection. We applied one

rule through the R OneR package [64] and the CART decision tree through the R rpart pack-

age [65], and their execution lasted around 1 second, too.

4 Results

4.1 Predictions of patients diagnosis on the complete imbalanced dataset

Er et al. [10] reported top prediction accuracy of 0.98, but, upon investigation, we noticed that

one of their input feature (“diagnosis method”) duplicated the target diagnosis class. This

input feature makes it trivially easy to obtain perfect and almost perfect prediction accuracy,

but it is unlikely to exist in a real-world setting. Therefore, we excluded this feature from our

analysis.

We generated prediction results through probabilistic neural network, perceptron-based

neural network, one rule, decision tree, and random forest classifier applied to the all the fea-

tures and to all the data instances, and through decision tree applied to the two top selected

features and to all the data instances (Table 3).

Our probabilistic neural network achieved the lowest prediction score among the methods

we tried, obtaining a result similar to a random prediction (MCC = +0.03, Table 3). This

Table 3. Results of the computational predictions of patient diagnosis on the complete dataset. Matthews correlation coefficient (MCC): Eq 3. Accuracy: Eq 1. F1

score: Eq 4. Sensitivity (true positive rate): Eq 5. Specificity (true negative rate): Eq 6. The scores are the medians of the results’ ten separate program executions. We report

the results of the application of the methods on all the dataset features, plus the results of the decision tree only to the two selected features: the row entitled “Decision tree

(applied only to lung side & platelet count)”. Dataset imbalance: 29.63% positive data instances (all the 96 mesothelioma patients), and 70.37% negative data instances (all

the 228 non-mesothelioma patients).

method MCC accuracy F1 score sensitivity specificity

Random forest classifier +0.37 0.75 0.39 0.28 0.97

Decision tree (applied only to

lung side & platelet count)

+0.28 0.76 0.37 0.28 0.95

One rule +0.27 0.74 0.29 0.17 0.97

Decision tree +0.19 0.69 0.39 0.39 0.80

Perceptron +0.11 0.52 0.47 0.66 0.42

Probabilistic neural network +0.03 0.57 0.32 0.32 0.71

https://doi.org/10.1371/journal.pone.0208737.t003
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method showed flaws in predicting true positives (sensitivity = 0.32) but did sufficiently well

on predicting true negatives (specificity = 0.71).

The other artificial neural network we used, the multi-layer perceptron, and decision tree

attained a low general scores: MCC = +0.11 and MCC = +0.19, respectively (Table 3). This

deep learning model obtained a low prediction score on the true negatives (specificity = 0.42)

but very good prediction score on the true positives (sensitivity = 0.66, (Table 3). The CART

decision tree achieved specificity (0.80) but low sensitivity (0.39).

Regarding tree like graph models, one rule (MCC = +0.27) achieved very low results on the

sensitivity (0.17) but almost perfect predictions on the specificity (0.97). Random forest out-

performed all the other methods, achieving MCC = +0.37, with a low true positive rate (sensi-

tivity = 0.28) and an almost perfect true negative rate (specificity = 0.97).

We also took advantage of the feature selection discoveries, and applied a CART decision

tree [25] only to the “lung side” and “platelet count (PLT)” patients values. The prediction

results showed an MCC of +0.28, higher than the results obtained with one rule (MCC =

+0.27), of multi-layer perceptron (MCC = +0.11), of the probabilistic neural network (MCC =

+0.03), and even of decision tree itself (MCC = +0.19) applied to the complete dataset

(Table 3). These results confirmed that “lung side” and “platelet count (PLT)” are the most rel-

evant features of the dataset in our analysis, and are alone sufficient to run a reliable computa-

tional prediction of the patients’ true negative outcomes. To prove these results on the selected

two features are unbiased towards the CART decision tree, we applied one rule to the same

dataset and obtained similar results, even if slightly lower (MCC = +0.27, S4 Table).

Generally, random forest outperformed all the other methods on the MCC and true nega-

tive rate (specificity), but was outperformed by perceptron and probabilistic neural network

on the true positive rate (sensitivity). The decision tree applied to the two features obtained the

top accuracy, while the multi-layer perceptron was the only algorithm which achieved high

prediction results for true positive patients (sensitivity = 0.66), while all the other methods

obtain sensitivity scores lower than 0.5, so cannot be considered reliable in detecting true

positive patients (Table 3). The multi-layer perceptron attained a true negative rate (specific-

ity = 0.42) lower than all the other methods (Table 3).

Sensitivity and specificity results show that all the methods except the multi-layer percep-

tron had better capability in predicting true negatives than true positives (Table 3). We believe

these results are caused by an imbalanced ratio (29.63% positive data instances, and 70.37%

negative instances) of the dataset. Since the models see more negative elements during train-

ing, they are better at predicting negative data instances during testing. We therefore tacked

the dataset imbalance problem with the under-sampling technique [66], and we show the

results in the next section.

However, this inability to predict true positives does not regard the multi-layer neural net-

work, which achieved a high true positive rate (sensitivity = 0.66) without any data imbalance

handling strategy.

Even if correctly classifying patients with mesothelioma (sensitivity) and patients without

mesothelioma (specificity) are both relevant tasks, we give more importance to the former,

because it can identify the patients that need to be cured through a therapy, and possibly have

their life saved by an early detection of mesothelioma. To this end, it is relevant to notice that

the decision tree applied only to the lung side and platelet count features gained a higher sensi-

tivity (0.28) than the random forest classifier and one rule (Table 3). Regarding true negatives,

it is worth mentioning that random forest classifier and one rule obtained an almost perfect

specificity score (0.97) that outperformed all the other models (Table 3).

It is relevant to notice that each of the five confusion matrix scores we listed (MCC, accu-

racy, F1 score, sensitivity, specificity, Table 3) generate different rankings of our methods,
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confirming the importance of comparing different rates and not focusing on a single one. As

mentioned earlier, we optimized our methods based upon the Matthews correlation coeffi-

cient, because it is the only rate that considers all the four categories of the confusion matrix

and the balance of the dataset.

For a complete comparison to the reported results of Er et al. [10], we also computed the

predictions on the original dataset including the problematic “diagnosis method” feature (S3

Table). As expected, random forest achieved perfect MCC of +1.00, but such classifier would

have limited utility in clinical settings.

4.2 Predictions of patients diagnosis on the under-sampled balanced

dataset

As already mentioned, our methods applied to the complete dataset obtained generally good

results on the true negative rate, and low results on the true positive rate (Table 3). The dataset

imbalance is the cause of this inability to predict true positives. The dataset, in fact, contains

228 negative data instances, and just 96 positive data instances. During training, then, each

model learns well how to recognize negative elements, but does not learn well how to identify

positive elements.

There are many techniques to tackle this dataset imbalance problem: data class weighting

[67], over-sampling [68], and under-sampling [66], for example. Here we decided to use

under-sampling because this approach does not involve any manipulation or weight assign-

ment to the data instances, making its application more realistically usable in clinical environ-

ments than other techniques.

We implemented under-sampling in the following way. The minority class in our dataset

contains 96 elements (positive data instances), while majority class contains 228 elements

(negative data instances). We created a balanced subset containing all the 96 positive data

instances, and 96 negative data instances randomly selected from the majority class. The bal-

anced subset created now contained 192 data instances, with 50% perfect balance. We then

applied all the methods to this balanced subset (with the same dataset split and execution con-

figurations of the previous tests) and recorded their results (Table 4).

Compared to the results obtained on all the dataset (Table 3), here all the methods achieved

lower specificity and higher sensitivity (Table 4) correctly reflecting the change of ratio positive

and negative data instances. After under-sampling, in fact, the percentage of negative data

instances moved from 70.37% to 50%, while the percentage of positive data instances increased

from 29.64% to 50%. These changes made all the methods able to learn a larger ratio of positive

Table 4. Results of the computational predictions of patient diagnosis, after under-sampling. Matthews correlation coefficient (MCC): Eq 3. Accuracy: Eq 1. F1 score:

Eq 4. Sensitivity (true positive rate): Eq 5. Specificity (true negative rate): Eq 6. The scores are the medians of the results’ ten separate program executions, run with different

subset content selected randomly for training set, validation set, and test set every time. We report the results of the application of the methods on all the dataset features,

plus the results of the decision tree only to the two selected features: the row entitled “Decision tree (applied only to lung side & platelet count)”. Dataset balance: 50% posi-

tive data instances (all the 96 mesothelioma patients), and 50% negative data instances (96 non-mesothelioma patients, randomly selected). Perceptron: learning rate = 0.1.

method MCC accuracy F1 score sensitivity specificity

Random forest classifier +0.64 0.82 0.80 0.75 0.86

Decision tree +0.59 0.79 0.77 0.72 0.82

Decision tree (applied only to

lung side & platelet count)

+0.41 0.68 0.63 0.58 0.80

Perceptron +0.23 0.62 0.71 0.95 0.20

One rule +0.15 0.57 0.55 0.47 0.67

Probabilistic neural network +0.10 0.53 0.50 0.50 0.58

https://doi.org/10.1371/journal.pone.0208737.t004
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elements, and a smaller ratio of negative elements during training, and their consequences

clearly influenced the results (Table 4).

Random forest outperformed again all the other methods (MCC = +0.64), by obtaining a

high true positive rate (sensitivity = 0.75) and a very high true negative rate (specificity = 0.86).

Among all the methods tried, random forest attained the best MCC, accuracy, F1 score, and

true negative rate. Random forest, however, did not attain the top true positive rate, which was

achieved again by the multi-layer perceptron neural network (sensitivity = 0.95). Perceptron-

based neural network obtained the highest true positive rate both on the complete imbalanced

dataset (Table 3) and on the under-sampled balanced dataset (Table 4).

Conversely from the results obtained on all the data instances (Table 3), decision tree

applied on all the features of the under-sampled dataset achieved the second top performance

among all the methods (MCC = +0.59) and outperformed decision tree itself applied just to

the lung side and platelet count (MCC = +0.41). These results show that decision tree applied

only to the two selected features works well if there are enough data instances to train and test

the model; otherwise, more features lead to better prediction scores. On the complete imbal-

anced dataset, in fact, there are 324 patients for which the lung side and platelet count features

are available. Here, instead, decision tree applied to the two-feature dataset made of just 192

patients did not have enough data instances to outperform decision tree applied on all the

features.

On the complete imbalanced dataset, less features, more data instances, and data imbalance

led to better predictions for decision tree. On the under-sampled balanced dataset, more fea-

tures, less data instances, and data balance led better predictions for decision tree.

Perceptron-based neural network obtained an almost perfect score for sensitivity (0.95),

confirming again its predictive power in classifying true positive patients. This neural network,

however, obtained the worst results on specificity (0.20) among all the methods tried. Com-

pared to the complete imbalanced dataset tests, one rule dropped its general performances

score from MCC = +0.27 to MCC = +0.15. Probabilistic neural network obtained again the

worst general prediction scores (MCC, accuracy, and F1 score) among all the models.

4.3 Feature selection

On the feature selection content, the features “lung side” and “platelet count (PLT)” resulted as

the most predictive ones among the 33 dataset features (Figs 4 and 5). We measured the impor-

tance of each feature with the mean square error decrease (Fig 4) and the Gini node impurity

decrease (Fig 5), and these measures highlight “lung side” and “platelet count (PLT)” as the

most relevant features for the dataset. In other words, the removal of these two features from

the dataset would influence the prediction of the diagnosis more than the removal of the other

ones. We selected only “lung side” and “platelet count (PLT)” as top features because they both

occupy the first and second positions in both the random forest rankings (Figs 4 and 5).

The merged ranking confirmed the importance of “lung side” and “platelet count (PLT)”,

followed by four non-clinical features: “duration of symptoms”, “age”, “city”, “duration of

asbestos exposure” (Table 5).

The ranking indicated that the less influential features of the predictions are “dead or not”,

“weakness”, “pleural effusion” and “ache on chest” (Table 5). Some of these features even have

a negative effect on the prediction. “pleural fluid WBC count”, “total protein”, “alkaline phos-

phatise (ALP)”, “dyspnoea”, “pleural level of acidity (pH)”, “ache on chest”, “pleural effusion”,

“weakness”, “dead or not” have negative values in the tree node impurity value list (Fig 4 and

MSE accuracy column of Table 5). These features appear not to add useful information, and

might even cause overfitting.
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The random forest percentage decrease in the Gini node impurity error does not fully con-

firm this negative effect of the aforementioned features, by for example selecting “pleural fluid

WBC count” as the thirteenth most important feature (Fig 5). The difference on the feature

selection of these two indexes is caused by their different meaning. The mean square error

decrease, in fact, is based upon prediction statistics, while the Gini impurity node decrease is

based upon the dataset content information. This meaning difference might lead to such

Fig 4. Mean square error (MSE) decrease in accuracy for each feature removal. Random forest feature selection rely on bootstrap aggregation

(bagging), and therefore does not have training set, validation set, and test set [69]. The bars represent the drop in the accuracy of the prediction made

on the patients’ dataset each time a feature is removed. For each feature, the higher is its accuracy drop when removed, the more important the feature

is (Methods).

https://doi.org/10.1371/journal.pone.0208737.g004
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ambiguous cases. Since we want to find the most relevant features of the dataset, and not the

least important, we focus on the top features found by both this measures (“lung side” and

“platelet count (PLT)”) (Table 5).

4.4 Biostatistics analysis

As regression methods are more commonly used to identify variables associated with an out-

come (which in this case was presence of mesothelioma among asbestos-exposed individuals),

Fig 5. Gini impurity decreases of each random forest tree node. Random forest feature selection rely on bootstrap aggregation (bagging), and

therefore does not have training set, validation set, and test set [69]. The bars represent the importance of each feature, measured through the sum of all

the Gini impurity index decreases for each specific feature [39] (Methods).

https://doi.org/10.1371/journal.pone.0208737.g005
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we also performed this traditional statistical modeling technique to allow comparison with our

machine learning approaches.

Before regression takes place, it is usual to explore the nature of the relationships between

clinical, demographic, radiographic, and laboratory characteristics and the outcome of inter-

est. For this dataset at a significance level of 0.05, patients with mesothelioma were slightly

younger (Wilcoxon rank-sum test, p = 0.03), more likely to be male (Fisher exact test,

p = 0.01), were more likely to have mesothelioma in its initial phase (T1 phase in the TNM

Classification of Malignant Tumors [70]) (Fisher exact test, p = 0.01), and pleural plaques on

both lung side (Fisher exact test, p = 0.001)(Supplementary section 5). Univariate logistic

regression methods (Supplementary section 5) identified age, gender, and lung side as statis-

tically different between cases and controls, when alpha was set at 0.05. CRP levels, duration

of symptoms, and duration of asbestos exposure resulted in non-significant trends at an

Table 5. Merged rank of features. We sorted the features by combining ranking of the node impurity and the ranking of the percentage of MSE decrease in accuracy

(Methods).

merged ranking position feature name MSE decrease in accuracy % tree node purity decrease

1 lung side 2.56 × 10−2 4.32

2 platelet count (PLT) 1.52 × 10−2 4.97

3 duration of symptoms 6.92 × 10−3 4.22

4 age 3.60 × 10−3 3.78

5 city 1.03 × 10−2 2.80

6 duration of asbestos exposure 4.40 × 10−3 3.60

7 C-reactive protein (CRP) 3.28 × 10−3 3.11

8 pleural protein 4.42 × 10−3 2.66

9 sedimentation 1.30 × 10−3 3.13

10 glucose 1.12 × 10−3 2.63

11 gender 4.45 × 10−3 0.87

12 pleural albumin 2.27 × 10−3 2.31

13 pleural fluid glucose 2.55 × 10−4 3.20

14 albumin 1.01 × 10−3 2.46

15 pleural lactic dehydrogenise 9.18 × 10−4 1.85

16 lactate dehydrogenase test 3.84 × 10−6 2.74

17 white blood cells (WBC) 4.30 × 10−4 2.11

18 habit of cigarette 5.92 × 10−4 0.86

19 type of malignant mesothelioma 7.23 × 10−4 0.50

20 cytology exam of pleural fluid 3.00 × 10−4 0.42

21 pleural thickness on tomography 2.49 × 10−4 0.44

22 pleural fluid WBC count −2.96 × 10−3 2.63

23 total protein −8.30 × 10−4 2.38

24 alkaline phosphatise (ALP) −4.54 × 10−4 1.70

25 asbestos exposure 4.49 × 10−4 0.23

26 hemoglobin normality test 1.54 × 10−4 0.41

27 performance status 3.63 × 10−5 0.26

28 dyspnoea −4.23 × 10−4 0.33

29 pleural level of acidity (pH) −2.25 × 10−4 0.27

30 ache on chest −9.76 × 10−4 0.41

31 pleural effusion −6.28 × 10−5 0.15

32 weakness −4.58 × 10−4 0.40

33 dead or not −1.41 × 10−4 0.11

https://doi.org/10.1371/journal.pone.0208737.t005

Diagnosis prediction and feature selection on mesothelioma records

PLOS ONE | https://doi.org/10.1371/journal.pone.0208737 January 10, 2019 20 / 28

https://doi.org/10.1371/journal.pone.0208737.t005
https://doi.org/10.1371/journal.pone.0208737


alpha between 0.05 and 0.10. In subsequent multivariate regression analyses, only lung side

remained significant.

5 Discussion

Our results highlighted several interesting aspects, both regarding the diagnosis prediction and

the feature selection. Random forest classifier predicted mesothelioma patients’ diagnosis with

high accuracy, both on the complete imbalanced dataset and on the under-sampled balanced

dataset. The random forest classifier, in fact, outperformed the probabilistic neural network

model previously used to predict the diagnosis of the patients, and all the methods employed

in this study. The multi-layer perceptron and one rule outperformed the probabilistic neural

network too, but were outperformed by the random forest classifier (Results). These results

suggest further usage of random forest and ensemble learning in health informatics.

Our perceptron-based neural network can precisely identify true positive patients having

mesothelioma, while our random forest classifier and one rule models can detect true negative

patients without mesothelioma with almost perfect specificity. Random forest, in fact, obtained

the top prediction results measured with the Matthews correlation coefficient and specificity

but, regarding sensitivity, the perceptron resulted in the top performing method with the only

sensitivity rate able to predict the majority of true negative elements (both on the complete

imbalanced dataset and on the under-sampled balanced dataset). In this scenario, we would

suggest biomedical doctors to take advantage of our multi-layer perceptron to predict true pos-

itive patients, and to employ our random forest and one rule methods to identify true negative

patients.

The presence of pleural plaques on both the lung sides is highly predictive for malignancy.

According to our feature selection analysis, “lung side” feature is the most important sign of

mesothelioma. If a patient is found to have pleural plaques on both sides of the lung, that

patient has a high probability of having a mesothelioma. In fact, the presence of pleural plaques

in both sides of the lung as proof of mesothelioma is well known fact in the biomedical com-

munity [71]. Doctors consider cancer appearing on both lung sides as a sign of progress in

mesothelioma staging, precisely in the advance from stage IIIA to stage IIIB [72]. Also, the

association of the “lung side” feature value with the mesothelioma patients’ status confirms

the importance of this feature. In this dataset, 22 patients have pleural plaques on both sides

(”lung side” value: 2). Among these patients, 16 have mesothelioma in the dataset, meaning the

72.72%. We therefore can see this inference as a correct positive control test for our method.

Low platelet count is strongly related to mesothelioma. According to what our feature selec-

tion found, the “platelet count” feature is another influential sign of mesothelioma. Following

this indication, we studied the values of this feature and observed that, if patients have a low

level of platelet count, they have a high probability of having a mesothelioma.

The “platelet count” feature turned out to be the second most relevant predictive feature of

the dataset, ranking second in the list of the features sorted by the mean square error accuracy

decrease (Fig 4), first in the list of the features sorted by node impurity (Fig 5) generated by the

random forest algorithm, and second in the merged list (Results).

The association of the “platelet count” feature value with the mesothelioma patients’ status

confirms the importance of this feature. As mentioned before, the normal range of platelet

count for a patient is between 150k and 400k platelets per microliter. The patients having plate-

let count lower than 150k per microliter in the original dataset are 42. Among these, the meso-

thelioma ones are 23, that is 54.76% of the total.

We then can state that if a patient has a platelet count value smaller than the lower normal-

ity limit (150k platelet per microliter), he/she probably experiences mesothelioma.
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In Fig 6, in fact, the majority of dots on the “both sides” horizontal line in the plot are red,

meaning that most of these patients have mesothelioma. And also the majority of dots on the

left of the green dotted vertical separator (set at the lowest normality limit, 150k platelet per

microliter) are red, confirming that the most of patients having platelet count lower than the

normality range limit have mesothelioma.

Several research studies (for example, [73]) confirm that low platelet count strongly relates

to mesothelioma and it can also happen as a consequence of chemotherapy [74].

The duration of asbestos exposure is an important risk factor, but not among the most

important features, according to our random forest feature selection. As we mentioned previ-

ously (Introduction), physicians commonly consider the duration of asbestos exposure and

the occupational history of the patient as the most relevant risk factors for mesothelioma

diagnosis. No information about the occupational history of the dataset patients is available.

Regarding “duration of asbestos exposure”, our feature selection model ranked this feature as

the sixth most important feature among 33 (Results).

A decision tree applied the two main features selected by random forest (“lung side” and

“platelet count”) alone predicted diagnosis of mesothelioma patients with higher accuracy

than all the other methods (including decision tree itself) applied to the complete imbalanced

dataset.

After having identified the two main features, we trained and tested a classification and

regression tree on dataset made only by those two features and by all the 324 patients. Results

showed high MCC prediction scores, confirming the importance of “lung side” and “platelet

count” in the dataset. These results suggest that physicians could focus on these two features,

when analyzing the health record of a patient with signs of mesothelioma, if other feature val-

ues were unavailable in his/her medical charts.

Our results about the “lung side” and “platelet count” features can be useful for medical

doctors and physicians dealing with patients having mesothelioma symptoms. Our results

state that, when analyzing health records of patients having mesothelioma symptoms, physi-

cians should pay more attention to these two highly informative features than to the other

Fig 6. Strip plot of platelet count (PLT) by lung side. We exclude one outlier on the X axis with 3,335 platelet/microliter. Vertical

blue dotted line: lower boundary of the platelet count normality test.

https://doi.org/10.1371/journal.pone.0208737.g006
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features available. Therefore, extra analysis and tests on lung sides and platelet count can be

pivotal to diagnose mesothelioma. Additionally, in case only data related to “lung side” and

“platelet count” were available for some patients, doctors and biomedical researchers can take

advantage of our trained machine learning system to predict their diagnosis. To the best of our

knowledge, physicians have not used lung side and platelet count of patients’ health records

for mesothelioma diagnosis. The results achieved after applying under-sampling, however,

showed that decision tree applied to all the features obtained better prediction scores than

decision tree applied only to platelet count and lung side, on the under-sampled balanced data-

set. This outcome shows that decision tree applied to the two selected features needs more data

instances to outperform decision tree applied to all the features. Decision tree applied to all the

features, instead, beats decision tree applied to the two top features, on a perfectly balanced

dataset containing the same number of positive data instances and negative data instances.

Additionally, we showed that random forest feature selection provides more insight than

standard biostatistics analysis. Random forest, in fact, identified a substantially larger set of

important factors that affected mesothelioma risk, when compared to traditional regression

methods. Both identified the overwhelming covariate of lung side, but regression methods did

not identify platelet count, city, or pleural protein that random forest highlighted.

Regarding the limitations of this study, we have to report that our approach might not gen-

eralize well in the mesothelioma context, because of the specificity of the features (for example,

the “city” feature, which is the distance from downtown). Our approach, however, can be

applied to any patients dataset of any disease available, generate reliable models for diagnosis

prediction, and identify the most relevant clinical feature in any of these cases. About feature

selection, we have to reaffirm that we built this phase only on random forest, and therefore its

results might be biased towards this algorithm (Methods). This limitation might be addressed

in the future by employing multiple feature selection methods, and then by comparing and

aggregating their results afterwards through advanced correlation rates (such as Spearman’s ρ
and Kendall τ rank correlation coefficients [75], for example).

Under-sampling confirmed its utility to improve the classification results on the minor

class (true positives, in our case), even if it brought the limitation of discarding some useful

data instances. The under-sampling prediction results, in fact, relate only to 192 patients, and

not to the complete dataset made of 324 patients.

Feature work will also include the enhancement of the presented machinery by applying

alternative techniques to handle the data class-imbalance [37, 67, 68], the application of our

algorithm combination to other disease health record datasets (for example, [41]), the applica-

tion of alternative machine learning algorithms (for example, latent Dirichlet allocation [76] or

probabilistic latent semantic analysis [77]) for the diagnosis prediction, and the possible usage

of semantic similarity measures to incorporate similarity information between features (for

example, through latent semantic indexing [78]). We also plan to explore the feature depen-

dence in the dataset, to see what feature influence which other features and how.
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