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Abstract

Commiphora gileadensis and C. foliacea (family Burseraceae) are pantropical in nature and
known for producing fragrant resin (myrrh). Both the tree species are economically and
medicinally important however, least genomic understanding is available for this genus.
Herein, we report the complete chloroplast genome sequences of C. gileadensis and C.
foliacea and comparative analysis with related species (C. wightii and Boswellia sacra). A
modified chloroplast DNA extraction method was adopted, followed with next generation
sequencing, detailed bioinformatics and PCR analyses. The results revealed that the cp
genome sizes of C. gileadensis and C. foliacea, are 160,268 and 160,249 bp, respectively,
with classic quadripartite structures that comprises of inverted repeat’s pair. Overall, the
organization of these cp genomes, GC contents, gene order, and codon usage were compa-
rable to other cp genomes in angiosperm. Approximately, 198 and 175 perfect simple
sequence repeats were detected in C. gileadensis and C. foliacea genomes, respectively.
Similarly, 30 and 25 palindromic, 15 and 25 forward, and 20 and 25 tandem repeats were
determined in both the cp genomes, respectively. Comparison of these complete cp
genomes with C. wightii and B. sacra revealed significant sequence resemblance and com-
paratively highest deviation in intergenic spacers. The phylo-genomic comparison showed
that C. gileadensis and C. foliacea form a single clade with previously reported C. wightii
and B. sacra from family Burseraceae. Current study reports for the first time the cp geno-
mics of species from Commiphora, which could be helpful in understanding genetic diversity
and phylogeny of this myrrh producing species.
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Introduction

The family Burseraceae comprises 18 genera and about 700 species [1]. The family has pan-
tropical nature and is known for its fragrant resin, such as myrrh and frankincense. The family
comprises of timber trees, small trees and shrubs [2,3]. The genus Commiphora comprises 190
plant species and distributed in southern Arabia (Yemen, Oman), northeastern Africa (Soma-
lia, Ethiopia, Sudan) and subcontinent (India, Pakistan) [4-6]. The resin obtained from the
tree by tapping is widely used in perfume, fragrance and medicinal products [3]. In indigenous
medicine, resin based recipes are used for gastrointestinal, arthritis, wounding, obesity, pain
and parasitic infections [7]. In the Sultanate of Oman, several Commiphora species are
reported such as C. gileadensis, C. foliacea, and C. habessinica, [3].

C. gileadensis is widely known in the Mediterranean basin, especially on border of Oman,
Saudi Arabia, Yemen and Somalia [1]. It is also known as balsam and commonly used for produc-
tion of expensive perfumes [8,9]. Its sap, wood bark and seeds are used for medicinal purposes.
Similarly, C. gileadensis yields in the production of very fragrant gum type resin, when the bark of
the tree is damaged [10]. C. gileadensis was recognized in ancient times as a perfume and incense
plant [11]. C. gileadensis also possess antibacterial properties and the people use it for treatment of
infections [12]. Commiphora is used for the treatment of an opportunistic fungal infection in
many countries of Africa [12]. C. foliacea was initially considered as endemic to Oman [1], but
this specie was also reported in southern coast line of Yemen and Somalia [13,14].

Studying the genomics of ecologically and medicinally important wild trees can help in
understanding the tree life, evolution, taxonomy and genetic diversity. In this regard, chloroplast
(an important player of photosynthesis) genomics have been widely used in phylogenetic studies
due to its maternal inheritance and recombination free nature [15]. The high conserved struc-
ture of chloroplast facilitates; primer designing, sequencing and used as a barcode for the identi-
fication of plants [16,17]. It contains its own independent genome, which encodes for specific
proteins[18]. The genome is circular in structure that varies from 120 kb to 170kb and quadri-
partite configurations [19]. The chloroplast genome is composed of small single copy (SSC)
region and large single copy (LSC) regions, separated by two copies of inverted repeats (IRa and
IRD) [19]. They also provide important information in taxonomic and phylogenetic context on
basis of differences in the sequences among plant species [20,21]. Chloroplast is haploid, mater-
nally inherited and possess high conservation in gene content, which make it a good choice for
studying evolutionary relationship in plants at any taxonomic levels [20]. The first complete
chloroplast genome of the angiosperms were reported in tobacco [22]. Advances and rapid evo-
lution in NGS (next-generation sequencing) technologies have made it possible the rapid
sequencing of complete chloroplast genome sequences at much cheaper price. Up till now over
2700 cp genome sequences are submitted to National Center for Biotechnology Information
(NCBI) including all of major groups of the plant kingdoms. However, still there are numerous
economically and medicinally important plants species, which needs to be explored and under-
stood in term of their chloroplast genome structure, organization and genetic evolution. Current
study is our first effort to understand the two unexplored species C. gileadensis and C. foliacea.
We sequenced the cp genomes and performed a detailed comparison with C. wightii and B.
sacra to understand the genome structure, variation and phylogenetic placements.

Material and method
Ethic statement

The leaf samples were collected with care and trees were treated ethically. During sample col-
lection, the local environment was not harmed. Permission was granted by Ministry of
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Environment, Muscat, Sultanate of Oman to collect leaf samples for research purpose. The
current study did not involve endangered or protected species.

Sample collection

Leaf samples were collected from Wadi Darbaat, Dhofar-Oman (17 31.237°N 55’ 12.923’E).
The samples include fresh and young photosynthetic leaves of C. gileadensis and C. foliacea.
The collected samples were kept immediately in liquid nitrogen and then stored at -80°C until
chloroplast DNA extraction.

Chloroplast DNA extraction and sequencing

Leaf samples of C. gileadensis and C. foliacea were cleaned and washed with sterilized water,
air dried and kept in dark for 48 hrs in order to reduce the starch content in leaf tissues. Chlo-
roplast DNA was extracted by the protocol of Shi et al, [23] with modifications to remove the
traces of resinous content from tissues. The workflow of Ion Torrent S5 Sequencer (Life Tech-
nologies, USA) was used for extracted cp DNA sequencing. Chloroplast DNA were enzymati-
cally sheared for 400 bp using the Ion Shear Plus Reagents and library were prepared following
the protocol of Ion S5 with Ion Xpress Plus DNA Fragment Library kit. Prepared libraries
were checked on Qubit fluorimeter and bioanalyzer (Agilent 2100, CA, USA) for quality check
and standardization. Ion One Touch 2 instrument was used for template amplification, post
template amplification, whereas the enrichment process was carried out with Ion One Touch
ES enrichment system. The sample was loaded onto the Ion S5 Chip and sequencing were per-
formed according to the protocol of Ion Torrent S5.

Genome assembly

The quality of raw reads were evaluated by using the FastQC [24]. Adapters were removed
from both end of the contigs and Platanus_trim (v.1.0.7) [25] with phred score >30 was used
to trim high quality reads. The chloroplast genomes of both Commiphora species were first de
novo assembled. In order to get contamination free read of chloroplast genome from mito-
chondrial and nuclear genomes, the Commiphora species genomes paired end reads were
obtained by mapping the high quality reads to a selected reference genome of C. wightii
(NC036978) with Bowtie2 (v.2.2.3) [26]. The selected resultant reads were assembled using
Spades (v.3.7.1) software [27] and the parameters were set to default. The regions which was
uncertain in these genomes such as IR junctions region were picked out from the already pub-
lished genome of C. wightii and B. sacra (NC036978 and NC029420, respectively), to adjust
the sequence length, iteration method was used with software MITObim (v.1.8) [28]. The com-
plete genome sequences were deposited in Gene Bank of NCBI, where C. gileadensis and C.
foliacea were given MH042752 and MH041484 accession numbers, respectively.

Genome annotation

Chloroplast genomes were annotated by using Dual Organellar Genome Annotator (DOGMA)
[29] and BLASTX and BLASTN were used to identify the positions of ribosomal RNAs, transfer
RNAs and coding genes, tRNAscan-SE77 software was used to annotate tRNA genes. Further-
more, for manual adjustment, Geneious Pro (v.10.2.3) [30]and tRNAscan-SE [31] were used to
compare it with previously reported C. wightii genome. Similarly, the start and stop codon and
intron boundaries were also manually adjusted compared with pre sequenced C. wightii and B.
sacra. Furthermore, the structural features of both Commiphora species cp genome were illustrated
using OGDRAW [32]. Similarly, MEGAG6 software [33] was used to determine the relative
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synonymous codon usage and divergence in usage of identical codons. The divergence of these
two Commiphora species cp genome with other related species were determined by using mVISTA
[34] in Shuffle—LAGAN mode and using C. wightii as a reference genome.

Repeat identification

REPuter software [35] was used for the identification of palindromic, tandem and forward
repeats present in genome. The criterion was minimum >15 base pairs with sequence identity
of 90%. SSRs dataset was determined through PHOBOS ver3.3.12 [36] inclusive of attributed
sets with (i) mononucleotide repeats >10 repeat units (ii) dinucleotide repeats >8 repeat units
(iii) tri nucleotide and tetra nucleotide repeats >4 repeat units, and (iv) penta nucleotide and
hexa nucleotide repeats >3 repeat units. Tandem Repeats Finder version 4.07 b [37] with
default settings was used to determined tandem repeats.

Sequence-divergence and Phylo-genomic analysis

In this analysis, average-pairwise sequence divergence of complete plastomes and shared genes
of Commiphora species with related species were determined. Missing and ambiguous gene
annotations were confirmed by comparative sequence analysis after a multiple sequence align-
ment and gene order comparisons using Geneious Pro (v.10.2.3) [30] as reported previously
[38,39]. These regions were aligned using MAFFT version 7.222 [40] with default parameters.
Pairwise sequence divergence was calculated by selected Kimura’s two-parameter (K2P) model
[41]. Similarly, a custom Python script (https://www.biostars.org/p/119214/) and DnaSP 5.10.01
[42], were employed to determine single-nucleotide polymorphisms and Indel polymorphisms
among the complete genomes respectively. To infer the phylogenetic position of both C. gilea-
densis and C. foliacea within the order Sapindales, 24 cp genomes were downloaded from the
NCBI database for analysis. Multiple alignments were performed using complete cp genomes
based on conserved structures and gene order [41] and 4 different methods were used to make
the trees: Bayesian-inference (MrBayes v3.1.2 [43]), maximum parsimony (PAUP-4.0[44]), max-
imum-likelihood and neighbour joining (MEGA7.01[33]) according to the methods of Asaf et al
[39,45]. For Bayesian posterior probabilities (PP) in the BI analyses, the best substitution model
GTR + G model was tested according to the Akaike information criterion (AIC) by jModelTest
verion 2102. The Markov Chain Monto Carlo (MCMC) was run for 1,000,000 generations with
4 incrementally heated chains, starting from random trees and sampling 1 out of every 100 gen-
erations. The first 30% of trees were discarded as burn-in to estimate the value of posterior prob-
abilities. Furthermore, parameters for the ML analysis were optimized with a BION] tree as the
starting tree with 1000 bootstrap replicates using the Kimura 2-parameter model with gamma-
distributed rate heterogeneity and invariant sites. MP was run using a heuristic search with 1000
random addition sequence replicates with the tree-bisection-reconnection (TBR) branch-swap-
ping tree search criterion. In the second phylogenetic analysis, 72 shared genes from the cp
genomes of the twenty-six members of order Sapindales, were aligned using ClustalX with
default settings, followed by manual adjustment to preserve reading frames. Similarly, the
above4 mentioned phylogenetic inference models were utilized to build trees using 72
concatenated genes, using the same setting as described above and suggested by Asaf et al [45].

Result and discussion
Genome features, content and organization

The chloroplast genomes of C. gileadensis (MH042752) and C. foliacea (MH041484) were
identical to typical angiosperms genomes of 160,268 bp and 160,249 bp, respectively (Fig 1).

PLOS ONE | https://doi.org/10.1371/journal.pone.0208511 January 10, 2019 4/21


https://www.biostars.org/p/119214/
https://doi.org/10.1371/journal.pone.0208511

o @
@ : PLOS | ONE Complete chloroplast genomics of two Commiphora species

D
2% oy
5% S
Z e
oy
zC

4
—

Ps1.
-C,

trnfpg.

Commiphora gileadensis
160268 bp

Commiphora foliacea
160249 bp

PsbA

W photosystem |

[l photosystem I
cytochrome b/f complex
[ ATP synthase

1 NADH dehydrogenase
[l RubisCO large subunit
[l RNA polymerase

[ ribosomal proteins (SSU)
[l ribosomal proteins (LSU)
[ clpP, matkK

[l other genes

[1 hypothetical chloroplast reading frames (ycf)
[ ORFs

[l transfer RNAs

[l ribosomal RNAs

Fig 1. Genome map of the C. gileadensis and C. foliacea cp genomes. Thick lines indicate the extent of the inverted repeat regions (IRa and IRb),
which separate the genome into small (SSC) and large (LSC) single copy regions. Genes drawn inside the circle are transcribed clockwise, and those
outside are transcribed counter clockwise. Genes belonging to different functional groups are color-coded. The dark grey in the inner circle corresponds
to the GC content and the light grey corresponds to the AT content.

https://doi.org/10.1371/journal.pone.0208511.g001

The size of these cp genomes were almost similar with previously reported chloroplast genome
of B. sacra (160,543 bp) [46], Azadirachta indica (160,737 bp) [47], Citrus sinensis (160,129 bp)
[48] and Ailanthus altissima [49], which belong to order Sapindales. Both of these genomes
possess the quadripartite structures comprises a pair of inverted repeats (IRa and IRb) sepa-
rated by small single copy region (SSC) and large single copy region (LSC). The LSC regions in
these genomes varies from 87,885 bp to 88,054 bp, SSC varies from 18,746bp to 18,962bp, and
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Table 1. Summary of complete Commiphora gileadensis and C. foliacea chloroplast genomes.

Parameters

Size (bp)

Overall GC contents (%)

LSC size in bp

SSC size in bp

IR size in bp

Protein coding regions size in bp
tRNA size in bp

rRNA size in bp

Number of genes

Number of protein coding genes
Number of rRNA

Number of tRNA

https://doi.org/10.1371/journal.pone.0208511.t001

C. gileadensis C. foliacea C. wightii B. sacra
160268 160249 156064 160543
37.9 37.8 38 37.6
87885 87923 - 88054
18769 18746 - 18962
26807 26790 - 26763
78238 78119 60006 80361
2934 2934 2919 2195
9050 9050 9394 9050
142 140 123 142

95 93 86 93

8 8 8 8

39 39 29 39

the inverted repeat region varies from 26,763bp to 26,807bp (Fig 1). Similarly, the length of
LSC, SSC and IR regions was also similar with previously reported genomes for order Sapin-
dales [48,49].

Furthermore, the average GC content of C. gileadensis and C. foliacea genomes were found
37.8% which is almost similar to B. sacra (37.8%) and C. wightii (38%). The GC content of
these cp genomes were also found similar with previously reported Sesamum indicum L. which
is approximately 38% [50]. The AT content of both the cp genomes were 62.2%. This is in cor-
relation to the other species from order Sapindales, for example A. miaotaiense (62.12%) [51],
A. davidii (62.10%) [52], C. sinensis (61.52%)[48] and P. amurense (61.60%) [53]. Overall, the
A+T content of 62.14% in both the cp genomes are closely related to order Sapindales
(Table 1).

The GC content was unevenly present in the C. gileadensis and C. foliacea cp genomes
where it was low (32.3 and 32.4%, respectively) in the SSC regions, high (42.9%) in IR regions
and moderate (35.8%) in the LSC regions. In synergy to the previously published reports on cp
genomes, the presence of ribosomal RNA (rRNA) sequences enhance the GC contents in the
IR regions [54-56]. In addition, about 43.72% of C. gileadensis and 46.91% of C. foliacea cp
genomes were found noncoding. In case of coding regions, the protein coding genes were
48.81 and 45.62%, tRNA genes were 1.83 and 1.83%, and rRNA genes were 5.64 and 5.64%
found in the C. gileadensis and C. foliacea cp genomes, respectively.

The total coding DNA sequences (CDSs) of C. gileadensis and C. foliacea were 78,238 bp
and 73,119bp in size which encodes 94 and 93 genes respectively (S1 Table). This also includes
26,078 and 24,273bp codons respectively (S2 Table). Similarly, the codon-usage frequency of
the both C. gileadensis and C. foliacea cp genomes were determined on the basis of protein—
coding and tRNA- related gene sequence (53 Table, S4 Table). Like previously reported cp
genomes, the cysteine (1.2%) and leucine (10.3%) were the least and most commonly encoded
amino acids [39,54]. Furthermore, The AT contents of both C. gileadensis and C. foliacea cp
genomes at the 1%, 2", and > codon position of CDS were 54.6 and 55.1%, 61.4 and 58.4%,
and 65.99 and 67.3%, respectively (S2 Tablehttp://journals.plos.org/plosone/article?id =
10.1371/journal.pone.0182281 - pone-0182281-t003). This is in correlation with previous
reports showing that the terrestrial plant’s cp genome with highest AT-content at the 3™
codon-position [54,57]

The total number of genes in the C. gileadensis and C. foliacea were 140 and 141 respec-
tively, in which 94 and 93 genes were protein coding genes, while 39 were tRNAs and 8 were
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rRNAs genes. Similar results were reported in previous reported cp genomes of B. sacra has
142 genes [46], A. miaotaiense has 137 [51], A. wangii has 135 [58], A. buergerianum has 134
[59], and in Meliaceae species has 112 genes [60], which is from the same order Sapindales
[51]. Camellia species contains 146 genes [60]. The protein-coding genes present in C. gilea-
densis and C. foliacea cp genomes include twelve genes-encoding small-ribosomal proteins
(rps2, rps3, rps4, rps7, rps8, rpsll, rps12, rpsl4, rps16, rps18, rps19), 9 genes-encoding large
ribosomal proteins (rpl2, rpll4, rpll6, rpl20, rpl22, rpl23, rpl32, rpl33, rpl36), 10 genes of photo-
system-II, five genes-encoding photosystem-I components, and 6 genes (atpA, atpB, atpE,
atpF, atpH, atpl) ATP-synthase and electron-transport chain components (S1 Table). Simi-
larly, the chloroplast genomes of C. gileadensis and C. foliacea contains introns containing
genes. There were 11 genes containing intron inclusive of nine which have single-intron and 3
(cIpP, ycf3 and rps12) which have two introns (Table 2). These results are similar with previ-
ously reported cp genome of angiosperms. The smallest intron in both C. gileadensis and C.
foliacea cp genoemes were 518bp and 526 bp respectively, whereas the longest intron was
determined in truK-UUU (2507 bp) in both cp genomes that included the entire matK gene.
Introns can be a useful tool for successful transformational effectiveness and play a vital role in
the regulation of gene expression [61]. Like other angiosperms cp genomes, rps12 gene was
unequally distributed, with single copy of its 3’ exon/intron, located at the IR regions and 5'-
exon, located in the LSC region. A similar correlation in the results were observed in previ-
ously reported cp genomes of C. platymamma [62], C. aurantiifolia [63] and Dipteronia species
[62]. Moreover, there are 4 ribosomal RNA genes and 30 transfer RNA genes. The infA gene,
which code for transcription factor of initiation was present in both Commiphora species,
while it is absent in Citrus sinensis (L.) cp genome [64].

Expansion and contraction of IRs

Expansion and contraction of the IR (a&b) repeats were compared among different species
belonging to order Sapindales. The chloroplast genomes of angiosperm are highly conserved,

Table 2. The genes with introns in the C. gileadensis (C. g) and C. foliacea (C. f) chloroplast genome and the length of exons and introns.

Gene Location Exon I (bp) Intron 1 (bp) Exon II (bp) Intron II (bp) Exon III (bp)
C.g C.f C.g C.f C.g C.f C.g C.f C.g C.f
atpF LSC 159 159 719 718 438 438
petB LSC 6 6 753 749 648 645
rpl2* 393 393 662 662 432 435
rpll6 LSC 9 9 1088 1086 411 411
rpsl6 LSC 48 48 871 864 225 225
rpoCl LSC 432 435 791 791 1620 1620
rps12* 114 114 - - 243 243
clpP LSC 69 69 873 862 267 267 663 656 218 228
ndhA 553 553 1109 1104 539 534
ndhB* 777 777 681 681 753 756
yef3 LSC 129 129 719 716 228 228 768 768 150 150
trnA-UGC* IR 38 38 805 803 35 35
trnl-GAU* IR 42 42 956 957 35 35
trnL-UAA LSC 37 37 518 526 50 50
trnK -UUU LSC 37 37 2507 2507 35 35

C. g = C. gileadensis, C. f = C. foliacea

https://doi.org/10.1371/journal.pone.0208511.t002
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https://doi.org/10.1371/journal.pone.0208511.9002

but there is still some variation due to contraction or expansion of SSC and IR boundary
region [64]. Due to these contraction and expansion, the size variation and rearrangement
occurs in the LSC/SSC/IRA/IRB [64]. In this study we carried out a detail comparison of
4-junctions (JLA, JLB, JSA, and JSB) between LSC and SSC regions and both the IRa and IRb
regions of the C. gileadensis and C. foliacea species and five other species from order Sapindales
were performed (Fig 2). Despite the similar IR regions lengths of C. gileadensis and C. foliacea
with other related species, some contraction and expansion were determined with the IR
regions ranging from 26,763 bp in B. sacra to 27,156 bp in Spondias bahiensis. The genes pres-
ent at starts and end of IR-regions were partly repeated, including 195 bp of rpl22 in both C.
gileadensis and C. foliacea, 196 bp in B. sacra, 4bp and 213 bp in S. bahiensis and A. indica
respectively. However, in Citrus lemon and Citrus sinensis the duplicated gene was rps3 which
is located 223 and 222 bp in inverted repeat region from JLB (Fig 2). Correspondingly, the ycf1
gene which is considered as a hypothetical is duplicated partially, 916 bp and 936 bp in C. gilea-
densis and C. foliacea, 941bp, 1402 bp, 1082bp, 1090 bp and 1091 bp in B. sacra, S. bahiensis, A.
indica, C. lemon and C. sinesis respectively. ] 1 4 is positioned between trnH and rps19, whereas
the deviation in gaps between J; 5 and rpsI9 range from 240 to 293 bp throughout compared
species. Similarly, the detachment in C. gileadensis and C. foliacea was 240 bp and 243 bp cor-
respondingly. The distance between trnH and J; 4 was 51 bp and 54 bp in C. gileadensis and C.
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foliacea, which is 1 bp in B. sacra and A. indica. Furthermore, variation was observed in the
location of ndhF genes which is present at 268 bp, 193 bp and 84 bp away from Jsg in SSC
regions in C. gileadensis, C. foliacea and B. sacra cp genomes. However, in other four species
cp genomes ndhF was located at the junction of IRb-SCC. Furthermore, there is 76 bp varia-
tion was observed in location of ycfI gene at Js border in both C. gileadensis and C. foliacea.
However, in B. sacra cp genome this distance was calculated 1 bp away from Jsg border [46].
Similar to previously reported cp genome from Sapindales these cp genomes having well-
maintained genomic structure in term of cp genome length, IR regions, gene order and gene
numbers [49]. However, some of the deviation in sequence might be due to the result of
boundary contraction and expansion between the boundaries of IR and single copy regions
among different plant species as reported by Wang et al. [64].

Structural variation in genomic regions

In order to determine the sequence divergence among the four chloroplast genomes viz. C.
gileadensis, C. foliacea, C. wightii and B. sacra, the annotation of C. gileadensis cp genome was
used as a reference for determination of the sequence similarity in the cp genomes of the three
species through mVISTA program (Fig 3). The results showed that high degree of synteny and
comparatively lower sequence similarity were noted among these cp genome of these four spe-
cies especially in rpoC2, rpoB, petB, psaB, ndhB, ndhF, ccsA, ycfl, ycf2, rpl22 and atpF genes
(Fig 3). Furthermore, like previous reported genomes the LSC and SSC regions were more
divergent as compared to IR regions in the compared species and less similarity in the coding
region were observed. Similarly, various deviating regions included matK, ycf3-psaA, clpP,
accD, atpF, rpoCl, petA-psb], ycf1-rps15, rps19 and ndhF were reported previously in various
cp genomes [54,56]. Differences in the coding regions were similar in this study to the previ-
ously analyzed cp genome by Kumar et al. [33]. Similarly, for the shared genes the average
pairwise sequence differentiation was calculated among these four species (Fig 3 and S9
Table). The results revealed that the 13 most divergent genes among these genomes were infA,
rps8, rpl32, rpl22, rpli6, psal, ndhH, ndhG, matK, ccsA, atpH, accD and psbN. The rpl22 gene
showed the greatest average sequence divergence (0.029), after that rps3 (0.028), ndhH (0.027),
and ccsA (0.020), majority of these were located in the LSC region. Similar results were
observed in previously reported angiosperm cp genomes [56,65]. Furthermore, comparison of
the cp genome of C. gileadensis with C. foliacea, C. wightii and B. sacra revealed 3,032, 8,787
and 5,120 SNPs as well as 3,580, 10,460 and 17,122 Indels respectively (Fig 4). Similarly, the C.
foliacea cp genome also showed 8,194 and 5,182 SNPs while 7,632 and 17,970 Indel with C.
wightii and B. sacra respectively. These Results shows that even the most conserved genome
possesses some interspecific mutations which provides an important information in analyzing
the phylogenetic and genetic diversity among the species [56].

SSR Polymorphism in the cp Plastomes

Diversity exist in the copies of SSRs present in the chloroplast genome and these SSRs are vital
molecular markers in the plant evolutionary, population genetics and studying the ecology of
the plants [66]. In the present study, we detected complete SSRs in C. gileadensis, C. foliacea cp
genomes together with C. wightii and B. sacra (Fig 5) and detail SSR analysis of C. gileadensis,
C. foliacea, C. wightii and B. sacra were also performed (S5 Table, S6 Table, S7 Table, S8
Table). Specific parameters were set for the SSRs present in genome because SSR of more than
10bp are liable to slip strand mispairing, which is considered to be the basic reason for SSR
polymorphism. [67-69]. The results reveled a total of 196, 175, 153 and 191 SSRs in the C.
gileadensis, C. foliacea, C. wightii and B. sacra cp genomes, respectively. The majority of SSRs
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Fig 3. Visual alignment of plastid genomes from C. gileadensis and C. foliacea with previously reported C. wightii and B. sacra. VISTA-based identity plot showing
sequence identity among seven species, using C. gileadensis as a reference.

https://doi.org/10.1371/journal.pone.0208511.9003

75 (38.2%) in C. gileadensis cp genome was mono-nucleotide repeat motifs. However, in other
three cp genome the majority of SSRs were tri nucleotides motif, varying from quantity from
71 (40.57%) in C. foliacea to 75 (39.26%) in B. sacra. Tri-nucleotide repeat motif was found the
second most common 69 (35.2%) in C. gileadensis. Using our search criterion, 3, 2 and 2 penta
nucleotide were detected in C. gileadensis, C. foliacea and C. wightii cp genome respectively.
However, in hexa nucleotide was only detected in B. sacra cp genome. Furthermore, in C.
gileadensis and C. foliacea, most common mononucleotide SSRs are A (93.33% and 94.1%)
motif, respectively. Approximately, 52% and 67.3% of SSRs are sited in non-coding regions,
2.04% and 5.71% are located in rRNA sequences in both C. gileadensis and C. foliacea respec-
tively. These results suggest that SSRs are irregularly disseminated in the chloroplast genome
and provides valuable information to select the effective molecular markers for spotting inter
and intra specific polymorphisms [70-72]. The abundance of ‘A’ and ‘T" nucleotide in the cp
genomes as compared to ‘G’ and ‘C’ is due to the fact that mono and dinucleotide is only con-
sist of ‘A’ and “T" nucleotide which contributes to the bias in the cp genome base composition
[68]. The finding from these Commiphora genomes reveals that SSRs in the cp genomes are
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Fig 4. Single nucleotide polymorphism (SNP) and insertion and deletion in Commiphora species with related species Commiphora
wightii and Boswellia Sacra.

https://doi.org/10.1371/journal.pone.0208511.9004

normally composed of polyadenine (polyA) or polythymine (polyT) repeats and irregularly
contains the tandems guanine (G) or cytosine (C) repeats [73], which is similar to the previous
results thus a possible reason for AT richness [46,55,56]. The presence of SSRs in cp genomes
will give useful information for primer designing used for phylogeography and population
structure at specie level or SSRs can also be used for obtaining useful and important informa-
tion used for phylogenetic relationship and population genetics [74]. Previously reported D.
viscoa contains 249 SSRs, having the mononucleotide SSRs in highest number followed by tri
nucleotide repeats [74,75]. The cp genome of globe Artichoke contains 127 repeats is lesser
than our findings [76].

Repeats analysis of Commiphora plastomes

Repetitive sequences in the plastomes plays role in the rearrangement of genomes which pro-
vide an important information about phylogenetic studies [50,77] From the previously ana-
lyzed cp genomes it is evident that for the induction of indels and substitutions these repeat
sequence is essential. Additionally, analysis of different cp-genomes exposed that repeat
sequence is important to produce indels/substitutions [78]. Similarly, in our study repeat anal-
ysis of the C. gileadensis and C. foliacea identified 30 and 25 palindromic repeat, 15 and 25 for-
ward, 20 and 25 tandem repeat respectively. Similarly, 21 and 20 palindromic repeats, 27 and
20 tandem repeats were spotted in C. wightii and B. sacra respectively. However, in C. wightii
only 6 forward repeats were detected while in B. sacra it was 29 in number. Overall 65 and 75
repeats of different length were found in both C. gileadensis and C. foliacea, respectively. In C.
gileadensis four palindromic repeats were 75-89bp and 21 repeats were > 90 length. However,
in C. foliacea the number of >90 repeats were less and only 2 palindromic repeats were found.
On the other hand, among the forward repeats 10 repeats of >90 bp were detected in both C.
gileadensis and C. foliacea cp genome (Fig 6). Earlier reports recommend that deviation in
sequences and genome arrangement occur due to the slipped-strand mispairing and inappro-
priate recombination of repetitive sequences [77,79]. Moreover, the occurrence of the repeats
shows that this locus is a key hots-pot for re-configuration of the genome [50,80]. Also, the
Information from these repeats are a source of valuable information for constructing genetic
markers for population studies and phylogenetic analysis [50].

Phylogenomic analysis

Several aspects of Commiphora natural history have impeded efforts to resolve its species-level
taxonomy and investigate its systematic biology [81]. Previously, the two species have exam-
ined species-level phylogenetic relationships in Commiphora and tested the monophyly of
some of these infrageneric taxonomic groups [5,82]. Gostel et al. [83] reconstruct phylogenetic
relationship in Commiphora species using genes from nuclear as well as from chloroplast
genome. However, hypothesis regarding higher level relationship among Commiphora specie
are similarly unresolved [83]. To resolve the phylogenetic relationship among different species,
the complete chloroplast genome sequencing provides more detailed information about the
phylogenetics [84,85]. Therefore, in this study the phylogenetic position of both C. gileadensis
and C. foliacea within order Sapindales was established by analyzing the complete cp genomes
(Fig 7 and S1) and 72 shared genes (form all twenty-six species). Phylogenetic analysis using
MP, BI, NJ and ML methods were performed. The results revealed that both complete cp
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genomes and 72 shared genes of C. gileadensis and C. foliacea contain the same phylogenetic
signals and generated phylogenetic trees with identical topologies (Fig 6, S1 Fig). The results
show that both C. gileadensis and C. foliacea form a single clade with previously reported C.
wightii and B. sacra from family Burseraceae with high BI and bootstrap support values (Fig 7,
S1 Fig). The tree topology showed that these four species from family Burseraceae are more
closely related to Spondias species from Family Anacardiaceae and Azadirachta indica from
Meliaceae (Fig 7, S1 Fig). Furthermore, the phylogenetic analysis validated the relationship
inferred from the phylogenetic work reported by Saina et al. [86] that the families Burseraceae
and Anacardiaceae formed a sister group/clade, which further branched forming sister clade
with Meliaceae, Rutaceae, Simaroubaceae and Sapindaceae families. Therefore, for future phy-
logenetic studies must incorporate additional species for better understanding of Commiphora
species evolution and phylogeny. This study offers a basis for future phylogenetic of family
Burseraceae.
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S1 Fig. Phylogenetic trees of C. gileadensis and C. foliacea within order Sapindales. The 72
shared gene dataset was analyzed using four different methods: Bayesian inference (BI), maxi-
mum parsimony (MP), maximum likelihood (ML), and neighbor-joining (NJ). Numbers
above the branches represent bootstrap values in the MP, ML, and NJ trees and posterior prob-
abilities in the BI trees, whereas the number below the branches represents branch length. The
red dot represents the position of C. gileadensis and C. foliacea.
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