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Abstract

We developed an unsupervised machine learning algorithm and applied it to big corneal

parameters to identify and monitor keratoconus stages. A big dataset of corneal swept

source optical coherence tomography (OCT) images of 12,242 eyes acquired from SS-

1000 CASIA OCT Imaging Systems in multiple centers across Japan was assembled. A

total of 3,156 eyes with valid Ectasia Status Index (ESI) between zero and 100% were

selected for the downstream analysis. Four hundred and twenty corneal topography, eleva-

tion, and pachymetry parameters (excluding ESI Keratoconus indices) were selected. The

algorithm included three major steps. 1) Principal component analysis (PCA) was used to

linearly reduce the dimensionality of the input data from 420 to eight significant principal

components. 2) Manifold learning was used to further reducing the selected principal com-

ponents nonlinearly to two eigen-parameters. 3) Finally, a density-based clustering was

applied to the eigen-parameters to identify eyes with keratoconus. Visualization of clusters

in 2-D space was used to validate the quality of learning subjectively and ESI was used to

assess the accuracy of the identified clusters objectively. The proposed method identified

four clusters; I: a cluster composed of mostly normal eyes (224 eyes with ESI equal to zero,

23 eyes with ESI between five and 29, and nine eyes with ESI greater than 29), II: a cluster

composed of mostly healthy eyes and eyes with forme fruste keratoconus (1772 eyes with

ESI equal to zero, 698 eyes with ESI between five and 29, and 117 eyes with ESI greater

than 29), III: a cluster composed of mostly eyes with mild keratoconus stage (184 eyes with

ESI greater than 29, 74 eyes with ESI between five and 29, and 6 eyes with ESI equal to

zero), and IV: a cluster composed of eyes with mostly advanced keratoconus stage (80

eyes had ESI greater than 29 and 1 eye had ESI between five and 29). We found that kera-

toconus status and severity can be well identified using unsupervised machine learning

algorithms along with linear and non-linear corneal data transformation. The proposed

method can better identify and visualize the keratoconus stages.
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Introduction

Keratoconus is a noninflammatory ectatic corneal disorder characterized by progressive thin-

ning resulting in corneal protrusion and decreased vision [1]. Moderate to advanced keratoco-

nus cases are easily diagnosed due to the presence of classic retinoscopic and biomicroscopic

signs. However, detecting subclinical keratoconus is challenging because initial manifestations

of keratoconus may be unclear, requireing a more comprehensive analysis of corneal charac-

teristics including topography, elevation, thickness, and biomechanical properties [2, 3]. Many

methods have been suggested for identifying keratoconic eyes using corneal topography infor-

mation. However, most of the methods rely on subjective analysis of topographical maps

which can be biased by the observer [4].

Among objective approaches for keratoconus identification, machine learning analysis has

gained a lot of attension. Smolek and Klyce proposed a neural network for keratoconus screen-

ing based on corneal topography indices [5]. Chastang et al. introduced a binary decision trees

method based on corneal topography indices to identify clinically apparent keratoconus from

normal cornea [6]. A similar aproach was used a few years later to identify keratoconus from

normal corneas using corneal surface modeled with a seventh-order Zernike polynomial [7].

All these methods used only anterior topography characteristics of cornea. However, with the

advancement of technology, posterior corneal curvature and pachymetric data were acquired

and used to evaluate corneal characteristics [8]. Pinero et al. documented the corneal volume,

pachymetry, and correlation of anterior and posterior corneal shape in subclinical and clinical

keratoconus [9]. Perez et al. show that corneal instruments including videokeratography,

Orbscan, and Pentacam together with the indices can lead to early keratoconus detection,

however, with an increase in false positive detection [10].

Current methods for automatic detection of keratoconus are mainly supervised, in the

sense that labels and diagnoses are required as input for subsequent machine learning. We

propose an approach that is non-biased by either clinician or patient. This approach may lead

to better identification of form fruste keratoconus which can be hard to do clinically in some

cases. Moreover, it provides a non- biased method to determine progression and need for

other treatment, such as cross-linking [11]. From big data perspecitve, the propsoed approach

is objective without the need to pre-label the eyes. Our results suggest that unsupervised

machine learning can be applied to corneal topography, elevation, and pachymetry parameters

to generate highly specific and sensitive models.

Material and methods

Patients and instrument-guided screening index

In this multi-center retrospective study, we collected corneal optical coherence tomography

(OCT) images from 12,242 eyes of 3162 subjects using SS-1000 CASIA OCT Imaging Systems

(Tomey, Japan) and other parameters from the electronic health record (EHR) system. All

data available at each instrument was collected without any pre-condition. We then selected a

single visit from each eye and excluded eyes with missing Ectasia Status Index (ESI). A total of

3,156 eyes met the criterion. About 57% of the participants were female and the mean age was

69.7 (standard deviation; SD = 16.2) years. Three screening labels were derived from the ESI

index of Casia; normal if ESI is between 0 and 4, forme fruste keratoconus (or keratoconus-

suspect) if ESI is between 5 and 29, and keratoconus if ESI is 30 or greater. Using Casia labels,

our dataset included 1970 healthy eyes, 796 eyes with forme fruste keratoconus, and 390 eyes

with keratoconus. ESI is basically an instrument-guided screening index which has been

shown to have a good agreement with Belin-Ambrósio (BA) index in diagnosing keratoconus
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[12]. This study was performed in accordance with the ethical standards in the Declaration

of Helsinki and institutional review board (IRB) was submitted and approved by the “Jichi

Medical University IRB Office”. Data use agreement was signed between centers in Japan and

our institute to conduct the analysis. The data was de-identified in Japan before any further

processing.

Machine learning analysis

Four hundred and twenty parameters including axial, refractive, elevation, and pachymetry

of both anterior and posterior surfaces of cornea were selected for the unsupervised machine

learning analysis. All ESI-related parameters were excluded from the dataset. We first applied

a principal component analysis (PCA) using prcomp function in the R package to the 420

selected corneal parameters. PCA uses a linear and orthogonal transformation to convert the

observations of highly correlated corneal parameters into a set of new parameters which are

linearly uncorrelated to each other. In another word, each new principal component parame-

ter is a weighted combination of all initial corneal parameters while the components do not

carry correlation anymore. This transformation allowed us to linearly reduce the number of

dimensions of the original dataset. To investigate how many principal components are sig-

nificant compared to a generated null distribution, we generated 100 independent artificial

datasets such that within each dataset, the values along every corneal parameter were ran-

domly permuted [13]. This operation removes the pairwise correlations between corneal

parameters while keeping the distribution of every parameter unchanged. We then applied

PCA to each of these 100 artificial VF datasets and sorted the combined eigenvalues of differ-

ent datasets. We identified the principal components in our dataset in which their eigenval-

ues were significantly greater than the top eigenvalues from the artificial datasets (p < 0.01,

Bonferroni corrected).

We then applied manifold learning using t-distributed stochastic neighbor embedding

(tSNE) [14] to group eyes with similar corneal characteristics together and to separate eyes

with dissimilar characteristics as far away as possible. We used Rtsne function in the R package

for this purpose. This process maps eyes with similar local distance metrics in the tSNE space

and nonlinearly reduce the dimension of input data. Moreover, tSNE is well-suited for visuali-

zation and monitoring the progress of the disease by clinicians since it provides a user-friendly

visualization. Moreover, it allows subjective validation of the follow-up unsupervised cluster-

ing because one can see how the clusters are distributed and overlapped in 2-dimensional

space. More importantly, tSNE generates more distinct and non-overlapping clusters com-

pared to the best two principal components.

While there are several unsupervised clustering algorithms for identifying hidden structures

in datasets [15–20], we employed an unsupervised density-based clustering [21] in the tSNE

space to identify eyes with similar corneal characteristics in tSNE space and to group the eyes

into non-overlapping clusters objectively. Density-based clustering groups eyes in the tSNE

space that that are closely packed together and have many neighbors around them while eyes

that lie alone (in low-density areas) and are too far away will be marked as outlies and not

members of groups. We then assessed the accuracy of the approach both qualitatively (visuali-

zation) and quantitatively (using screening index of the Casia instrument).

Results

Fig 1 (left) shows the top 40 principal components and the amount of variance in data

explained by those components. We identified 32 principal components as significant based

on our quantitative analysis. The top 32 principal components explained over 80% of the total
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variability in the data while the top eight principal components carried approximately 60% of

the total variability in the data. However, after investigating tSNE maps, we selected 8 principal

components which showed a more discriminative clusters on the tSNE map (qualitative vali-

dation). We generated two corneal eigen-parameters which is essentially a nonlinear combina-

tion of original corneal parameters. Fig 2 shows the evolution of tSNE over time starting from

the initial state in which the corneal parameters are collapsed in 2-D space without considering

the local characteristics among points. We selected 2-D because it provides a user-friendly,

importantly, a clinician-friendly visualization. The algorithm then identifies eyes with similar

characteristics based on their distances in the tSNE space and gradually groups them together.

The perplexity which reflects the assumed number for the neighbors for each point was set

to 34 and we allowed the maximum number of iterations to 1000. To subjectively assess the

accuracy of learning, we applied unsupervised density-based clustering on the two identified

Fig 1. Applying principal component analysis on corneal features. Left: explained variance of the first 40 significant principal components.

Right: corneal features in the space of the first six principal components.

https://doi.org/10.1371/journal.pone.0205998.g001

Fig 2. Evolution of corneal parameters in 2-D tSNE space. Zigzag, left to right, shows the evolution of tSNE over

time starting from initial state which the corneal parameters are simply collapsed onto a 2-D space and then grouping

eyes with similar corneal characteristics together over time.

https://doi.org/10.1371/journal.pone.0205998.g002
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corneal eigen-parameters. Clusters with fewer than seven eyes were excluded. Unsupervised

density-based clustering identified four non-overlapping clusters. For a better visualization,

we color-coded the clusters as shown in Fig 3.

We then assigned clinical labels to the four identified clusters based on the ESI index (rang-

ing from 0 to 100) provided by Casia instrument, where zero indicates normal and 100 reflects

the most advanced stage of keratoconus. Casia instrument also provides diagnostic labels

based on the ESI index: normal if ESI equals to zero, forme fruste keratoconus (or keratoco-

nus-suspect) if ESI is between 5 and 29, and keratoconus if ESI is greater than 29. However, it

is unclear how this index is generated from all corneal parameters and, more importantly, how

the threshold for identifying eyes with forme fruste keratoconus is identified. Moreover, the

currently used forme fruste keratoconus threshold index is confusing by its nature since kera-

toconus represents a spectrum of corneal deformations particularly in the early stages of the

disease and it is challenging to assign a binary label to segregate a normal eye from an eye with

forme fruste keratoconus. Nevertheless, using the Casia ESI index and diagnostic labeling con-

vention, we determined that cluster I (color-coded blue) was mainly composed of healthy eyes:

224 healthy eyes, 23 eyes with forme fruste keratoconus, and nine eyes with keratoconus. Clus-

ter II (color-coded green—big cluster on the left) was mainly composed of healthy eyes and

eyes with forme fruste keratoconus: 1772 healthy eyes, 698 eyes with forme fruste keratoconus,

and 117 eyes with keratoconus. Cluster III (color-coded light green) was mostly composed

of eyes with mild keratoconus: 184 eyes with mild keratoconus, 74 eyes with forme fruste

Fig 3. Unsupervised machine learning identified four clusters of eyes with similar corneal characteristics.

https://doi.org/10.1371/journal.pone.0205998.g003
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keratoconus, and six healthy eyes. The small cluster IV (color-coded purple) was mainly com-

posed of eyes with advanced keratoconus: 80 eyes with advanced keratoconus and one eye

with forme-fruste keratoconus.

To subjectively evaluate the correlation between the severity of keratoconus of eyes in the

identified clusters and the ESI index of the Casia instrument, we color-coded each eye on the

clustering plot with anterior, posterior, and total ESI indices reflecting the severity of keratoco-

nus. Fig 4 shows the mapping of anterior, posterior, and total ESI indices onto the clusters we

identified.

To objectively assess the accuracy of unsupervised clustering, we computed the specificity

and sensitivity based on Casia diagnostic labeling. The specificity of identifying healthy eyes

from eyes with keratoconus was 94.1% and the sensitivity of identifying eyes with keratoconus

from healthy eyes was 97.7%.

To compare the DBSCAN clustering algorithm to other approaches, we investigated the

OPTICS [19] and the Clustering Toolkit (CLUTO) algorithm [20]. CLUTO is a software

package for unsupervised clustering of low- and high-dimensional datasets. We first applied

CLUTO on the tSNE and visualized the outcome. We then asked whether CLUTO generates

more discriminant clusters using principal components or the original data with 420 parame-

ters. Fig 5 shows how CLUTO clustered the eyes using tSNE eigen-parameters, principal com-

ponents, and original data. As can be seen, none of the outcomes generated a well-separated

clusters. To assess the outcome of clustering objectively, we further investigated the specificity

and sensitivity of the clusters using the same approach that we performed for DBSCAN. We

determined that DNCLUE generates four clusters that are typically normal and one cluster

that is abnormal. We used optics and skmeans functions in R to implement OPTICS and

CLUTO, respectively.

To investigate the clusters generated by CLUTO algorithm objectively, we calculated the

specificity and sensitivity of CLUTO applied to the original data with 420 parameters. The

specificity of identifying healthy eyes from eyes with keratoconus was 97.4% and the sensitivity

of identifying eyes with keratoconus from healthy eyes was 96.3%. However, we selected

DBSCAN applied on tSNE since this combination provided an acceptable accuracy and well-

separated clusters matched with different stages of keratoconus.

Discussion

The major finding of our study is that automated, unsupervised clustering algorithms using

topographic, tomographic, and thickness profiles of cornea provides a specific and sensitive

Fig 4. Mapping ESI index on clustering. Left: ESI index corresponding to anterior segment of cornea, Middle: ESI index corresponding to posterior

segment of cornea, and Right: overall ESI index of Casia instrument.

https://doi.org/10.1371/journal.pone.0205998.g004
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means for determining keratoconus status and severity. The proposed unsupervised machine

learning analysis for keratoconus diagnosis and staging provides a promising tool for improv-

ing the early detection of initial stages of keratoconus and for potential monitoring of treat-

ment for the disease.

Marc Amsler first described how keratoconus manifests in altered corneal topography in

1938; however, the introduction of computer-aided videokeratoscopy in the early 1980’s revo-

lutionized the diagnosis of keratoconus. Most of the early methods and severity indexes for

identifying keratoconus have subsequently been based on corneal topography [2, 4, 9, 22–25].

More recently it was determined that pachymetric indices were better able to differentiate

healthy eyes from eyes with keratoconus, based on a cohort of 44 eyes with keratoconus and

113 healthy eyes.[26] However, in the current study we used topography, elevation, and thick-

ness profiles of corneal extracted from optical coherence tomography (OCT) images from sub-

jects using the SS-1000 Casia to identify and stage keratoconus.

Historically, classification of the stages of keratoconus has been based on qualitative analysis

of overall corneal morphology. However, we used machine learning because it addresses

Fig 5. Investigating CLUTO, another density-based clustering algorithm. Top left: CLUTO was applied on the

tSNE eigen-parameters and visualized on the tSNE map, Top right: CLUTO was applied on the PCA components and

visualized on the tSNE map, Bottom left: CLUTO was applied on the original data with 420 parameters and visualized

on the tSNE map, Bottom right: CLUTO was applied on the original data and visualized using two significant principal

components.

https://doi.org/10.1371/journal.pone.0205998.g005
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limitations of currently used diagnosis methods, including qualitative rather than quantitative

parameter assessments and observer bias. While machine learning algorithms for keratoconus

have been previously proposed, most are based on either a single type of corneal parameter

(e.g., topography alone)[23–25] or require pre-labeled data [4, 7, 27]. For instance, some

researchers have used supervised neural network or tree-based classification to discriminate

between normal eyes and eyes with keratoconus [4, 27–29]. However, pre-labeling an eye as

keratoconus or forme fruste keratoconus subjectively itself is prone to subjective evaluation

and bias.

We used approximately 420 corneal parameters generated by Casia instrument through

swept source OCT images of the cornea. All these corneal parameters were transformed to

a 2-D space using linear PCA and non-linear tSNE followed by an unsupervised machine

learning algorithm. Therefore, we first extract the information that is highly predictable of the

corneal status instead of feeding all parameters to the machine learning and confuse its predic-

tion. However, most of the machine learning algorithms in the literature simply input different

corneal parameters to a machine learning algorithm to identify keratoconus without leverag-

ing the power of data transformation and extracting most informative knowledge for identify-

ing disease.

To investigate whether PCA alone is able to generate well-separated clusters comparable to

those identified by the combination of the PCA and tSNE, we applied PCA alone and per-

formed clustering. We found that PCA alone generated clusters with significant overlap. We

also applied CLUTO on the selected principal component to compare the outcome with tSNE

and observed similar overlapping clusters (Fig 5, top right). Subjective assessment of the qual-

ity of learning using visualization of the clusters and overlaying the ESI keratoconus index of

the Casia (as shown in Fig 4) revealed that the ESI index of anterior corneal surface is highly

correlated to the keratoconus severity of the eyes we identified in clusters. Specifically, the

eyes in the Cluster IV (color coded purple) and classified as having advanced keratoconus by

machine learning, have high agreement with anterior, posterior, and overall ESI indices since

almost all eyes in this cluster have dark red color.

The same analogy holds for eyes in Cluster I (color coded blue) classified as normal, based

on machine learning. However, for Cluster III (small cluster, color coded light green), which

represents mild keratoconus based on machine learning, eyes generally have a worse posterior

ESI index compared to their anterior ESI index (Fig 4, left and middle panels). This finding

may suggest that posterior corneal parameters better identify keratoconus; however, this find-

ing needs further investigation. We also hypothesize that eyes, labeled as normal by Casia ESI

labeling system, falling in this cluster are likely “forme fruste” keratoconus candidates which

need more attention from clinicians. Finally, Cluster II (color coded dark green) that repre-

sents healthy eyes and eyes suspect of keratoconus based on machine learning, is in strong

agreement with all ESI indices except at the far right tail. The eyes in this region are not in a

good agreement with anterior and overall ESI indices. We hypothesize that this region could

be a either a separate cluster or part of cluster III that we were unable to identify based on cur-

rent data and algorithms used. It is also possible that the eyes in this small region have other

eye conditions along with mild keratoconus for which we did not have enough information to

characterize. However, Fig 4 (middle panel) indicates that the posterior ESI index was more

effective than anterior ESI index (Fig 4, left panel). In fact, a study conducted by the Ambrosio

group shows that posterior features are superior to anterior features in identifying keratoconus

[30].

To objectively assess the clinical labels we assigned to clusters with the severity of eyes in

those clusters, we assessed the number of eyes with either large or small ESI. All eyes in Cluster

IV (advanced keratoconus by machine learning) had ESI index greater than 38. In this group
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71 (out of 81) eyes had ESI greater than 60, which indicates advanced stages of keratoconus.

For Cluster I (normal by machine learning), only seven eyes (out of 256) had an ESI index

greater than 30, indicating that the overwhelming majority of eyes in this cluster were normal.

Therefore, our clustering is in good agreement with ESI at the two sides of spectrum. Based on

Casia ESI diagnosis labels, the specificity of our machine learning method in identifying nor-

mal from keratoconus eyes was 94.1% and the sensitivity of identifying keratoconus from nor-

mal eyes was 97.7%, considering only normal and advanced keratoconus clusters.

There are a number of limitations to our study which could be addressed in follow-up stud-

ies. We compared the clustering outcome with Casia ESI index and showed that there is a

good agreement between our finding and ESI index spectrum (Figs 3 and 4). However, to

assess the generalizability of this unsupervised clustering approach method, it needs to be

validated by other keratoconus indices such as Bellin-Ambrosio (BA) index. Therefore, it is

required to conduct another study to confirm how this approach is generalizable to corneal

parameters generated by Pentacam instrument by accessing such datasets. Also, the accuracy

of this approach can be validated if the clinical diagnosis labels of all eyes were available. How-

ever, accessing clinical diagnosis labels for all eyes in such big datasets is a challenging and

tedious task. Nevertheless, it is beneficial to assess the proposed approach in a follow-up study

with a dataset that includes clinical diagnosis labels.

We performed a qualitative and quantitate assessment to determine whether PCA alone or

other clustering approaches generate well-separated clusters. We found that the OPTICS den-

sity-based clustering approach was able to segregate eyes at different stages of keratoconus while

the CLUTO unsupervised clustering approach generated overlapping clusters. However, the

most important aspect of our proposed approach lies in the visualization property and the tSNE

2-D map. This is critical in practical clinical settings in which it is more appropriate to monitor

the progression of the diseases on a 2-D map rather than proposing a black-box without 2-D

visualization.

In summary, we proposed a possible solution to address shortcomings of current approaches

in keratoconus diagnosis and monitoring, including observer bias in pre-defining diagnosis

and limitations in the providing only a binary outcome that the eye belongs to either normal

or disease group. The introduced unsupervised machine learning algorithm requires no pre-

labeled data for training and can automatically identify the keratoconus status of a given eye

based on comprehensive corneal parameters, including topography, elevation, and thickness

profiles. More importantly, it provides visualization of the status of the eye compared to other

eyes at different stages of keratoconus which was lack in supervised machine learning methods.

To the best of our knowledge, this is the first attempt to develop a fully unsupervised algorithm

for keratoconus identification and monitoring.

Conclusion

Keratoconus status and severity can now be well identified using automated unsupervised

clustering algorithms using topographic, tomographic, and thickness profiles of cornea. This

approach can be used in corneal clinics and research settings to better diagnose, monitor

changes and progression and improve our understanding of corneal changes in keratoconus.
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