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Abstract

In rodents, CHRNs are involved in bitter taste transduction of nicotine and ethanol. Cur-

rently, it is not clear if CHRNs are expressed in human taste cells and if they play a role in

transducing the bitter taste of nicotine and ethanol or in the synthesis and release of neuro-

humoral peptides. Accordingly, we investigated the expression and functional role of

CHRNs in HBO cells. Using molecular techniques, we demonstrate that a subset of HBO

cells express CHRNs that also co-express TRPM5, T1R3 or T2R38. Exposing HBO cells to

nicotine or ethanol acutely or to nicotine chronically induced a differential increase in the

expression of CHRN mRNA and protein in a dose- and time-dependent manner. Acutely

exposing HBO cells to a mixture containing nicotine plus ethanol induced a smaller increase

in CHRN mRNAs relative to nicotine or ethanol treatment alone. A subset of HBO cells

responded to nicotine, acetylcholine and ATP with a transient increase in [Ca2+]i. Nicotine

effects on [Ca2+]i were mecamylamine sensitive. Brain-derived neurotrophic factor (BDNF)

protein was detected in HBO cells using ELISA. Acute nicotine exposure decreased BDNF

in HBO cells and increased BDNF release in the medium. CHRNs were also detected in

HEK293 cells by RT-PCR. Unlike HBO cells, CHRNs were localized in most of HEK293

cells and majority of HEK293 cells responded to nicotine and ethanol stimulation with a tran-

sient increase in [Ca2+]i. BDNF levels in HEK293 cells were significantly higher than in HBO

cells but the nicotine induced release of BDNF in the media was a fraction of the BDNF cellu-

lar content. We conclude that CHRNs are expressed in TRPM5 positive HBO cells. CHRN

mRNA expression is modulated by exposure to nicotine and ethanol in a dose- and time-

dependent manner. Nicotine induces the synthesis and release of BDNF in HBO cells.

Introduction

In taste buds, a dedicated subset of taste receptor cells (TRCs) detect bitter taste stimuli in the

oral cavity. This subset of TRCs express G-protein coupled bitter taste receptors (GPCRs)
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designated as T2Rs. The requisite downstream intracellular signaling components for bitter

taste transduction include the enzyme PLCβ2 and a cation channel TRPM5 [1]. Consistent

with this, as described in detail previously [2], TRPM5 knockout (KO) mice lack behavioral

and neural responses to quinine, a prototypical bitter taste stimulus. However, TRPM5 KO

mice respond to nicotine (Nic), a bitter stimulus, as aversive when compared to water or to

quinine. Stimulating the anterior tongue with Nic (1–20 mM) evoked chorda tympani (CT)

taste nerve responses in TRPM5 KO mice that were about 40% smaller than those observed in

wildtype (WT) mice [2]. Based on these observations, it was proposed that the bitter taste of

Nic is sensed by two bitter taste transduction mechanisms. One mechanism comprises the

T2R-PLCβ2-TRPM5 pathway that is shared by many bitter stimuli. The second pathway is

TRPM5-independent. The presence of a TRPM5-independent pathway for Nic is further sup-

ported by the observations that Nic at high concentrations inhibits TRPM5 cation channels

overexpressed in HEK cells [3].

As described in detail previously [2], in both WT and TRPM5 KO mice, mecamylamine

(Mec), a non-specific blocker of CHRNs, inhibited the CT response to Nic but not to quinine.

In behavioral studies, Mec also decreased the aversiveness of Nic in both WT and TRPM5 KO

mice. These studies provided the first evidence that TRPM5-independent neural and behav-

ioral responses to Nic in WT and TRPM5 KO mice are partially dependent upon CHRNs. As

described in detail previously [4], in addition to Nic, CHRN blockers Mec, dihydro-β-erythroi-

dine (DHβE), and CP-601932 (a partial agonist of α3β4� CHRN) also blocked CT responses to

acetylcholine (ACh) and ethanol (ETOH). These results indicate that a component of the bitter

taste of Nic, ACh and ETOH is dependent upon the expression of CHRNs in a subset of taste

bud cells.

We previously detected the expression of mRNAs for α3, α4, β2, and β4 CHRN subunits in

rat fungiform (FF) and circumvallate (CV) taste bud cells [2]. We have now confirmed the

expression of CHRN subunit mRNAs and proteins using in situ hybridization (ISH), immuno-

cytochemistry (ICC) and qRT-PCR techniques in a subset of rat and mouse CV and FF TRCs.

As described in detail previously [5], ISH technique revealed the expression of mRNAs for α7,

β2 and β4 CHRN subunits in rat and mouse FF and CV taste bud cells. Specific binding of α3,

α4, α7, β2, and β4 antibodies to a subset of WT mouse CV and FF TRCs was observed. In a

TRPM5-GFP transgenic mouse model, α3, α4, α7, and β4 antibody binding was localized in a

subset of TRPM5 positive TRCs.

As described in detail previously [5], Nic exposure differentially increased the expression of

α3, α4, α5, α6, β2 and β4 mRNAs in CV taste bud cells to varying extent. In contrast, ETOH

exposure induced an increase in the expression of α5 and β4 mRNAs in CV taste bud cells

with a significant decrease in the expression of α3, α6 and β2 mRNAs. These results suggest

that changes in CHRN expression may be related to the adaptation of the bitter taste of Nic

and ETOH during chronic oral exposure.

Although CHRN subunit expression has been verified in rat and mouse TRCs using several

techniques [4, 5], a detailed investigation of CHRN subunit expression and function in human

TRCs is lacking. In this regard, in a stably proliferating human taste cell line (HTC-8), RT-

PCR demonstrated the gene expression of CHRNA5. In contrast, CHRNA3, CHRNA4,

CHRNA6, CHRNB2, and CHRNB4 mRNAs were not detected in HTC-8 cells by RT-PCR [6].

However, at present, it is not clear if beside CHRNA5, HTC-8 cells do not express other

CHRNs or their expression levels are too low to be detected. Also it is not clear if CHRN

expression in HTC-8 cells can be upregulated following Nic or ETOH exposure. Here, we

undertook a detailed investigation of the expression and functional role of CHRNs in HBO

cells [7, 8]. RT-PCR studies demonstrated the expression of β-actin, α-gustducin, PLCβ2,

T1R3, T2R5, and TRPM5 in HBO cells. Approximately, 60% of HBO cells showed labeling

CHRN expression in HBO cells
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with α-gustducin antibody and 20–30% of HBO cells showed labeling with PLCβ2 antibody.

HBO cells also responded with an increase in intracellular Ca2+ ([Ca2+]i) to stimulation with

denatonium and sucralose [7, 8]. A subset of HBO cells also express α, β, γ, and δ ENaC sub-

units [9]. This indicates that HBO cells are an excellent model for investigating the expression

and function of receptors involved in human taste reception.

In parallel studies, we also performed CHRNA expression and function in HEK293 cells, an

epithelial cell line that has been shown to endogenously express α7 and α5 CHRNs. HEK293

cell line has also been used quite extensively to stably overexpress α3β4, α4β2, and α7 CHRNs

[10]. These studies were undertaken to show case the differences in CHRN expression and

function in HBO cells and HEK293 cells. Our studies demonstrate that both HBO cells and

HEK293 cells endogenously express functional CHRNs that respond with a transient increase

in [Ca2+]i when stimulated with Nic, ACh or ETOH.

Materials and methods

HBO and HEK293 cells

HBO cells were cultured as described earlier [7, 8] and were used for experiments between pas-

sage 3 and passage 6. HBO cells can be successfully maintained in culture for at least 12 months

without loss of viability. During this time, HBO cells stably display all molecular and physiologi-

cal features characteristic of mature taste cells. This was demonstrated by RT-PCR and con-

firmed by sequencing and immunostaining with many taste related molecules. In addition, HBO

cells exhibited increase in [Ca2+]i in response to appropriate concentrations of taste stimuli rep-

resenting all five taste qualities, indicating the presence of all appropriate signaling pathways [7,

11–13]. HBO cells, therefore, serve as a model taste system to investigate proliferation, differenti-

ation, and physiological function of human taste cells in vitro. HEK293 cells were cultured in a

medium contained Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine

serum, 100 units/ml penicillin G, 100 g/ml streptomycin, and 0.7 mg/ml Geneticin (G418) [3].

RT-PCR

Total RNA from HBO cells or HEK293 cells was purified by using the TRIzol reagent (cat#

15596018, Thermo Fisher Scientific, MA, USA) and reverse transcripted by using RevertAid

First Strand cDNA Synthesis Kit (cat# K1622, Thermo Fisher Scientific, MA, USA). RT–PCR

for the detection of CHRN subunits and the other taste receptors were carried out by using

MyTaq red mix (cat: BIO-25043, Bioline, Luckenwalde, Germany). Briefly, 2 μg total RNA was

used for reverse transcription in a total volume of 20 μl per reaction. Reverse transcription

were performed at 42˚C x 60 min, then 70˚C x 5 min and cooled to 4˚C. Subsequently, 100 ng

total cDNA was used as template, 35 to 40 cycles of PCR amplification were performed (initial

denaturation at 95˚C for 1 min, denaturation at 95˚C for 15 sec, annealing for 15 sec at 53–

60˚C, and extension for 10 sec at 72˚C). RT-PCR products were subjected to electrophoresis

on a 1% agarose gel to determine the expression of CHRN subunits and other taste receptors.

Human primers used to detect the presence of mRNAs for the CHRN subunits (CHRNA3,

CHRNA4, CHRNA5, CHRNA6, CHRNA7, CHRNB2, and CHRNB4) are shown in Table 1.

Human primers used for detecting T1R1, T1R3, PLCβ2, and TRPM5 are shown in Table 2.

The primers were synthesized by Thermo Fisher Scientific.

Quantitative real-time PCR (qRT-PCR)

qPCR was used to measure RNA transcripts of CHRN subunits, TRPM5 and PLCβ2. Total

RNA was purified by using the TRIzol reagent (cat# 15596018, Thermo Fisher Scientific, MA,

CHRN expression in HBO cells
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USA) and reverse transcripted using High-Capacity cDNA Reverse Transcription Kit (cat#

4368814, Thermo Fisher Scientific, MA, USA). Real-time PCR was conducted using carboxy-

fluorescein (FAM)-labeled probe sets from Invitrogen, (Carlsbad, CA): GAPDH:

Hs02758991_g1, CHRNA3: Hs01088199_m1, CHRNA5: Hs00181248_m1, CHRNA6:

Hs02563509_s1, CHRNA7: Hs01063372_m1, CHRNB2: Hs01114010_g1, and CHRNB4:

Hs00609520_m1. Results were calculated using the 2−ΔΔCt method based on GAPDH ampli-

fication, and normalized to the control group.

Immunocytochemistry (ICC) studies

ICC studies were performed on HBO cells and HEK293 cells. Cells were plated into 8-well

chamber slides (1x104 cells/well) and fixed with ice-cold methanol for 10 min at -20˚C. After

washing with 1xPBS for 5 min and blocking with 3% (v/v) normal donkey serum in Phosphate

Buffered Saline (PBS) for 1 h at room temperature, cells were stained with primary antibodies

(1:50 dilution) in 3% (v/v) normal donkey serum in PBS at 4˚C overnight. After washing, cells

were incubated with fluorescent-conjugated secondary antibodies for 1h at room temperature.

Table 1. RT-PCR primers for CHRN subunits.

Gene Product Sequence NCBI Reference Sequence

CHRNA3 F GGTGGACGACAAGACCAAAG NM_000743.4

CHRNA3 R GGGAAGTAGGTCACGTCGATT

CHRNA4 F GGAGGGCGTCCAGTACATTG NM_000744.6

CHRNA4 R GAAGATGCGGTCGATGACCA

CHRNA5 F AAAGATGGGTTCGTCCTGTGG NM_000745.3

CHRNA5 R CAAACAAAACGATGTCTGGTGTC

CHRNA6 F TGAGACTCTTCGCGTTCCTG NM_001199279.1

CHRNA6 R ATTTCAGCTTTGTCATACGTCCA

CHRNB2 F CAATGCTGACGGCATGTACGA NM_000748.2

CHRNB2 R CACGAACGGAACTTCATGGTG

CHRNB4 F AACCCGTTACAATAACCTGATCC NM_000750.4

CHRNB4 R ATTCACGCTGATAAGCTGGGC

F = forward; R = reverse

Except for CHRNA6, all the primers for other CHRNs were same as described by Hochheimer et al. [6]

https://doi.org/10.1371/journal.pone.0194089.t001

Table 2. RT-PCR primers for GPCRs and signaling components.

Gene Product Sequence NCBI Reference Sequence

PLCβ2 F CACCCCAGGGGCTATAAGAG NM_004573.2

PLCβ2 R GGACAGGGTTGAGCAGAGAC

T1R1 F CGGAGTCTTCTCCTGACTTCA NM_138697.3

T1R1 R CCGTGGAGTTGTTTATCTCCTC

T1R3 F CCGCCTACTGCAACTACACG NM_152228.2

T1R3 R CTAGCACCGTAGCTGACCTG

T2R38 F TCCCTGGGAAGGCACATGAG NM_176817.4

T2R38 R CAGCACAGTGTCCGGGAATC

TRPM5 F GTGACCTGGAGGAGGTGATG NM_014555.3

TRPM5 R AGCAGGCTCTTGCGTGAC

F = forward; R = reverse

https://doi.org/10.1371/journal.pone.0194089.t002

CHRN expression in HBO cells
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Nuclei were visualized with 1 μg/ml DAPI. Images were acquired with a 40X or 63X (1.4

numerical aperture) oil immersion objective and Zeiss LSM 700 confocal laser scanning

microscope. Images were processed using Zen 2011 Image Processing Program, ImageJ (NIH

software), and Photoshop CS2 software (Adobe Systems). Primary antibodies against AChRα3

(sc-5590), AChRα4 (sc-5591), AChRα5 (sc-376979), AChRα7 (sc-1447), AChRβ2 (sc-11372),

TRPM5 (sc-27366), T2R38 (sc-67109), and T1R3 (sc-50352) were obtained from Santa Cruz

Biotechnology, CA, USA. AChRα6 (Ca# ab 65168) and AChRβ4 (cat# ab129276) antibodies

were obtained from Abcam, MA, USA.

Immunoblotting and immunoprecipitation

HBO cells were washed with ice-cold PBS and lysed in modified radio-immunoprecipitation

assay buffer (50 mM Tris-Cl [pH 7.4], 1% Nonidet P-40, 150 mM NaCl, 1 mM EDTA, 1 mM

PMSF, 1 μg/ml each of aprotinin and leupeptin, and 1 mM Na3VO4). For immunoprecipita-

tion, 40 μl Protein A/G-plus agarose (Santa Cruz Biotechnology) was incubated with 2 μg of

antibody for 3h at 4˚C with gentle rotation, after removing the antibody by washing the aga-

rose beads once with RIPA buffer, beads were incubated with 1 mg whole cell extracts over-

night at 4˚C with gentle rotation. The beads were washed with RIPA buffer three times to

remove non-specific binding. Immune complexes were eluted by boiling in 2×SDS gel-loading

buffer for 5 min. For immunoblotting, 20–50 μg protein was resolved by 10% SDS-PAGE and

transferred to nitrocellulose membranes. Membranes were immunoblotted with primary anti-

bodies, followed by HRP-conjugated secondary antibodies. Reactions were visualized by

enhanced chemiluminescence reagents (Amersham Biosciences, Piscataway, NJ).

Ca2+-imaging

HBO and HEK cells were grown on glass coverslips (Warner Instruments, Hamden, CT, USA)

and washed three times with Ringer’s solution containing (in mM): 140 NaCl, 5 KCl, 1 CaCl2,

1 MgCl2, 10 glucose, 10 HEPES, pH 7.4 The cells were incubated with 16 μM Fura-2-AM (acet-

oxy methyl ester from Molecular Probes, Eugene, OR, USA) for 90–120 min at room tempera-

ture. Cells were washed with Ringer’s solution and coverslips were mounted in an

experimental chamber (RC-26GLP, Warner Instruments; 0.7 ml volume) that fitted on to a

Series 20 Chamber Platform (Warner Instruments). The cells were visualized through a water

immersion 40X objective (Zeiss; 0.9 NA) with a Zeiss Axioskope 2 plus upright fluorescence

microscope. The cells were imaged with a set-up consisting of a cooled CCD camera (Imago,

Photonics) attached to an image intensifier (VS4-1845, VideoScope), an epifluorescent light

source (Polychrome 5, Photonics), dichroic filter (415 nM), and 510 emission filter (40 nM

band pass). The cells were alternately excited with 340 nM and 380 nM and emitted light was

imaged at 15s intervals. The temporal changes in fluorescence intensity ratio (FIR; F340/F380)

in individual cells was analyzed using imaging software TILL Vision V3.3 (TILL Photonics,

Martinsried, Germany). The changes in FIR were monitored under control conditions and

after treating the cells with 0.01 to 1.0 mM nicotine or 10–50 mM ETOH in Ringer’s solution

in the absence or presence of 50 μM Mec (Sigma-Aldrich). The FIR values in each cell were

normalized to 1 under control conditions [7, 8, 14].

Enzyme-linked immunosorbent assay for BDNF

BDNF was measured in HBO cells and HEK293 cell lysates and culture medium via a sand-

wich ELISA using the Promega Emax immune assay (Promega Corporation, Madison, WI,

USA) according to the manufacturer’s protocol. ELISA plates were coated with anti-BDNF

mouse antibody (mAb; 1:1000) and incubated overnight at 4˚C. Next day the plates were

CHRN expression in HBO cells
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washed and blocked with Blocking Buffer (Promega). BDNF standard or sample (100 μl) was

added to each well and incubated with shaking for 2h at room temperature. The plates were

washed and anti-Human BDNF pAb (1:500; 100 μl) was added to each well and incubated

with shaking for 2h at room temperature. After washing, 100 μl of diluted anti-IgY HRP

(horseradish peroxidase conjugate; 1:200) was added to each well and developed with TMB

(3,3’,5,5’-tetramethylbenzidine) solution. The reaction was stopped by adding 100 μl 1N HCl.

The absorbance at 450 nm was measured using a VICTOR 2 plate reader and the concentra-

tion of BDNF in the samples was calculated from the standard curve and expressed as pg/

2�106 cells as described in detail previously [14, 15].

Results

Localization of CHRNs using RT-PCR and Western blots

Studies using HBO cells. From RNA isolated from HBO cells, using RT-PCR, we

detected the mRNAs of CHRNA3, CHRNA4, CHRNA5, CHRNA6, CHRNA7, CHRNB2, and

CHRNB4 (Fig 1A). In addition, we detected the mRNAs for T1R1 (a component of the umami

taste receptor), T1R3 (a component of the sweet taste receptor and the umami taste receptor),

T2R38 (a bitter taste receptor), PLCβ2 (an enzyme essential for the transduction of sweet, bit-

ter and umami taste) and TRPM5 (a cation channel essential for the transduction of bitter,

sweet and umami taste) (Fig 1B) [7, 8]. Western blot analysis of HBO cell lysate demonstrated

the presence of CHRNA4 and CHRNA5 proteins (Fig 1C). We have previously shown the

expression of α-, β-, γ-, and δ-ENaC mRNAs and δ-ENaC protein in HBO cells [9]. Taken

together, these results indicate that in addition to the classical taste receptors and their down-

stream signaling effectors, HBO cells express CHRNs.

Studies using HEK293 cells. From RNA isolated from HEK293 cells, using RT-PCR tech-

nique, we detected the mRNAs for CHRNA3, CHRNA4, CHRNA5, CHRNA6, CHRNB2, and

CHRNB4 (Fig 1D). In addition, we detected the mRNAs for T2R38 and TRPM5 (Fig 1D).

Western blot analysis of HEK293 cell lysate demonstrated the presence of CHRNA4 (α4) and

CHRNA5 (α5) proteins (Fig 1C). HEK293 cells have been shown to endogenously express α7

and α5 CHRNs [10].

ICC studies

Studies using HBO cells. In a representative slide (Fig 2A; α4), at lower magnification,

specific staining of AChRα4 antibody was observed in 3 out of 14 cells in the viewing field. At

higher magnification, antibody binding was observed in individual HBO cells. In another rep-

resentative slide (Fig 2B; α5), at lower magnification, AChRα5 antibody binding was observed

in 2 out of 11 cells. At higher magnification, antibody binding was observed in individual

HBO cells. In another representative slide (Fig 3C and 3D; α3), AChRα3 antibody demon-

strated specific binding to a subset of HBO cells.

Dual labelling with AChRα4 and AChRα5 antibodies demonstrated that CHRNA5 (α5) co-

localizes with CHRNA4 (α4) in a subset of HBO cells (Fig 3A and 3B; α5, α4). Dual labelling

with AChRα5 and AChRα3 antibodies demonstrated that CHRNA5 (α5) co-localizes with

CHRNA3 (α3) in a subset of HBO cells (Fig 3C and 3D; α5, α3). Dual labelling with AChRα3

and AChRβ4 antibodies demonstrated that CHRNA3 (α3) co-localizes with CHRNB4 (β4)

(Fig 4A and 4B; α3, β4). Dual labelling with AChRα5 and AChRβ2 antibodies demonstrated

that in a subset of HBO cells, CHRNA5 (α5) co-localizes with CHRNB2 (β2) (Fig 4C and 4D;

α5, β2). These results indicate multiple CHRN subunits are expressed in the same subset of

HBO cells.

CHRN expression in HBO cells
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In additional HBO cells, dual labelling with AChRα5 and TRPM5 antibodies demonstrated

that CHRNA5 (α5) co-localizes in cells that also express TRPM5 (Fig 5A and 5B; α5, TRPM5).

Dual labeling with AChRα4 and TRPM5 (Fig 6A) or AChRβ2 and TRPM5 (Fig 6B) antibodies

demonstrated that CHRNA4 (α4) and CHRNB2 (β2) subunits co-localize in cells expressing

TRPM5. Dual labeling with AChRα6 and TRPM5 antibodies demonstrated that CHRNA6

(α6) subunit co-localize in cells expressing TRPM5 (Fig 7A, 7B and 7C).

Dual labeling with AChRα5 and T1R3 antibodies demonstrated that CHRNA5 (α5) subunit

co-localizes in cells expressing T1R3 (Fig 8A and 8B; α5, T1R3). Dual labeling with AChRβ2

and T2R38 antibodies demonstrated that CHRNB2 (β2) subunit co-localizes in cells expressing

T2R38 (Fig 9A and 9B; β2, T2R38). Taken together, the above results show that CHRNs are

expressed in TRPM5 positive cells that also express T1R3 or T2R38.

We have recently demonstrated that in rat and mouse CV and FF taste bud cells, CHRNs

are expressed in a subset of cells that also express TRPM5 [5]. Taken together, the above results

indicate that HBO cells faithfully represent the distribution of taste receptors observed in intact

taste buds and serve as an excellent model for investigating human taste receptor expression

and function.

Fig 1. Expression of CHRN subunits, taste receptors, and intracellular signaling intermediates in HBO and

HEK293 cells. Consensus primers to amplify CHRN subunits, GPCRs, and downstream signaling intermediate were

designed based on the published sequences and are shown in Tables 1 and 2. (A) Based on the predicted sizes of the

PCR products (Table 1), mRNAs for the CHRNA3, CHRNA4, CHRNA5, CHRNA6, CHRNA7, CHRNB2, and

CHRNB4 were detected in HBO cells. (B) In addition, mRNAs for T1R1, T1R3, T2R38, PLCβ2, and TRPM5 were

detected in HBO cells. (C) In Western blot analysis using specific AChRα4 and AChRα5 antibodies, the expression of

α4 and α5 proteins were detected in HBO and HEK293 cell lysates. (D) Based on the predicted sizes of the PCR

products (Table 1), mRNAs for the CHRNA3, CHRNA4, CHRNA5, CHRNA6, CHRNB2 and CHRNB4 were detected

in HEK293 cells. In addition, mRNAs for T2R38 and TRPM5 were detected.

https://doi.org/10.1371/journal.pone.0194089.g001

CHRN expression in HBO cells
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Fig 2. Immunofluorescence staining of CHRNA4 and CHRNA5 in HBO cells. Shows immunostaining of CHRNA4

(A; α4) and CHRNA5 (B; α5) in HBO cells using 20x and 40x objectives (total 200x and 400x magnification). The

panels show merged confocal images of DAPI (blue) and secondary antibody fluorescence (green). The negative

control (NC) without primary antibody is also shown. The horizontal red lines represent 10 μm.

https://doi.org/10.1371/journal.pone.0194089.g002

Fig 3. Co-localization of CHRNA subunits in HBO cells. Dual immunostaining was used to co-localize CHRNA

subunits in individual HBO cells. (A and B) Show immunostaining of CHRNA5 (α5) with CHRNA4 (α4). The panels

show confocal images of α5 (green), α4 (red), DAPI (blue), and merged images of DAPI and dual fluorescence labels.

(C and D) Show immunostaining of CHRNA5 (α5) with CHRNA3 (α3). The panels show confocal images of α5

(green), α3 (red), DAPI (blue), and merged images of DAPI and dual fluorescence labels.

https://doi.org/10.1371/journal.pone.0194089.g003

CHRN expression in HBO cells
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Studies using HEK293 cells. Unlike HBO cells, most of the HEK293 cells (Fig 10) demon-

strated specific binding to AChRα3 (A; α3), AChRα4 (A; α4), AChRα5 (A; α5), and AChRβ2

(B; β2) antibodies. In addition CHRNA5 was found to co-localize in cells that also express

CHRNB2 (Fig 10B; α5/β2). These results indicate that most of the HEK293 express CHRN

subunits.

Fig 4. Co-localization of CHRNA and CHRNB subunits in HBO cells. Dual immunostaining was used to co-localize

CHRNA and CHRNB subunits in individual HBO cells. (A and B) Show immunostaining of CHRNA3 (α3) with

CHRNB4 (β4). The panels show confocal images of α3 (green), β4 (red), DAPI (blue), and merged images of DAPI

and dual fluorescence labels. (C and D) Show immunostaining of CHRNA5 (α5) with CHRNB2 (β2). The panels

show confocal images of α5 (green), β2 (red), DAPI (blue), and merged images of DAPI and dual fluorescence labels.

https://doi.org/10.1371/journal.pone.0194089.g004

Fig 5. Co-localization of CHRNA5 subunit with TRPM5 in HBO cells. Dual immunostaining was used to co-

localize CHRNA5 (α5) subunit with TRPM5 in individual HBO cells. (A and B) Show confocal images of α5 (green),

TRPM5 (red), DAPI (blue), and merged images of DAPI and dual fluorescence labels.

https://doi.org/10.1371/journal.pone.0194089.g005
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Fig 6. Co-localization of CHRNA4 and CHRNB2 subunits with TRPM5 in individual HBO cells. Dual immunostaining was

used to co-localize CHRNA4 (α4) or CHRNB2 (β2) subunit with TRPM5 in individual HBO cells. (A) Show confocal images of

DIC, α4 (green), DAPI (blue), TRPM5 (red), and merged images of DAPI and dual fluorescence labels. (B) Show confocal images of

DIC, β2 (green), DAPI (blue), TRPM5 (red), and merged images of DAPI and dual fluorescence labels.

https://doi.org/10.1371/journal.pone.0194089.g006

Fig 7. Co-localization of CHRNA6 subunit with TRPM5 in individual HBO cells. Dual immunostaining was used to co-localize CHRNA6 (α6) subunit

with TRPM5 in individual HBO cells. (A, B and C) Show confocal images of DIC, DAPI (blue), α6 (green), TRPM5 (red), and merged images of DAPI and

dual fluorescence labels.

https://doi.org/10.1371/journal.pone.0194089.g007
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Localization of CHRN mRNAs in HBO cells using single cell PCR

To further investigate the differential expression of CHRN subunits in individual cells, single

cell PCR was performed to detect the expression of CHRNA5, CHRNA6, CHRNB4 and

T2R38 mRNAs in 32 individual HBO cells (Fig 11A–11C). GAPDH was used as a control (Fig

11A). We did not observed T2R38 mRNA expression in cell number 1–11 (Fig 11A). Out of 32

HBO cells examined, 14 cells (43.7%) were positive for one or more CHRN mRNAs, 7 cells

(21.9%) expressed multiple CHRNs, and 6 cells (18.7%) were positive for T2R38 mRNA (Fig

11A–11C). Out of 6 T2R38 positive cells, 3 cells (50%) co-expressed CHRNs (Fig 11A and

11B). These results suggest that CHRNs are expressed in a subset of T2R38 positive cells.

Co-immunoprecipitation (co-lP) of CHRN subunits in HBO cells

To investigate if multiple CHRN subunits combine to form complex CHRNs in HBO cells, we

performed co-IP studies in HBO cell lysates. In HBO cell lysates, the AChRα3 antibody

Fig 8. Co-localization of CHRNA5 subunit with T1R3 in HBO cells. Dual immunostaining was used to co-localize

CHRNA5 (α5) subunit with T1R3 in individual HBO cells. (A and B) Show confocal images of α5 (green), T1R3

(red), DAPI (blue), and merged images of DAPI and dual fluorescence labels.

https://doi.org/10.1371/journal.pone.0194089.g008

Fig 9. Co-localization of CHRNB2 with T2R38 in HBO cells. Dual immunostaining was used to co-localize CHRNB2 (β2) with T2R38 in

individual HBO cells. (A and B) Show confocal images of DIC, β2 (green), DAPI (blue), T2R38 (red), and merged images of DAPI and dual

fluorescence labels.

https://doi.org/10.1371/journal.pone.0194089.g009
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immune-precipitated CHRNA5 and CHRNB4 proteins (Fig 12). These results suggest that in

HBO cells CHRN subunits can assemble to form complex CHRNs containing CHRNA3,

CHRNA5 and CHRNB4 subunits and perhaps other subunits.

Effect of acute Nic and ETOH exposure on CHRN mRNA levels in HBO

cells

As described in detail previously [14], treating STC-1 cells with Nic induced changes in the

expression of CHRNA4, CHRNA5, CHRNA6, and CHRNB4 mRNAs with only minor

changes in the mRNA levels of PLCβ2 and TRPM5. In mice, chronic exposure to Nic or

ETOH also induced significant changes in CHRN mRNAs in CV taste bud cells [5]. In alcohol

non-preferring rats, chronic exposure to 5% ETOH produced a 9 fold increase in CHRNA5

mRNA expression with only minor changes in the mRNA expression of T1R3, T2R38 and

TRPM5 [16]. Taken together, these results indicate that CHRNs expressed in taste cells or

enteroendocrine cells of the gut are a major target of Nic and ETOH. Accordingly to investi-

gate the effect of acute Nic treatment on CHRN mRNA expression levels, HBO cells were

treated with 0.25 μM, 0.5 μM or 1.0 μM Nic for 24 h (Fig 13A). Relative to control, increasing

Nic concentration from 0.25 to 0.5 μM, induced a dose dependent increase in CHRNA6,

CHRNB2, and CHRNB4 mRNA levels. However, at 1.0 μM Nic, CHRNA6, CHRNB2, and

CHRNB4 mRNA levels were significantly lower than the levels observed at 0.5 μM Nic (Fig

13A). While increasing Nic concentrations induced a decrease in the CHRNA3 mRNA levels,

no significant changes were observed in CHRNA7 mRNA levels after acute Nic treatment.

These results indicate that Nic differentially affects the expression of CHRN mRNAs in HBO

cells in a dose dependent manner.

Fig 10. Immunofluorescence staining of CHRNA and CHRNB subunits in HEK293 cells. (A) Shows immunostaining

of CHRNA3 (α3), CHRNA4 (α4), and CHRNA5 (α5) in HEK293 cells. (B) Shows immunostaining of CHRNB2 (β2) in

HEK293 cells. The panels show merged confocal images of DAPI (blue) and secondary antibody fluorescence (green). The

negative control (NC) without primary antibody is also shown. Dual immunostaining was used to co-localize CHRNA5

(α5) with CHRNB2 (β2). (B, α5/β2) Shows immunostaining of CHRNA5 (α5; green) with CHRNB2 (β2; red). The panel

shows merged confocal images of DAPI and dual fluorescence labels.

https://doi.org/10.1371/journal.pone.0194089.g010
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Fig 11. Expression analysis of CHRN subunits using single cell PCR. (A, B, C) Single cell real-time RT-PCR

technique was used to perform expression analysis of CHRN subunits using the Single Cell-to-CTTM Kit in 32

individual HBO cells. The final real-time PCR products were separated by electrophoresis on a 2% agarose gel

containing 1 μg/ml ethidium bromide. In (A) T2R38 was not detected in cell number 1–11.

https://doi.org/10.1371/journal.pone.0194089.g011

Fig 12. Co-IP of CHRNs in HBO cell lysates. In HBO cell lysates, CHRNA5 and CHRNB4 proteins were immune-

precipitated by AChRα3 antibody. WB = Western blot; IgG = negative control.

https://doi.org/10.1371/journal.pone.0194089.g012
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Relative to control, treating HBO cells with ETOH (50 mM) induced an increase in

CHRNA5, CHRNA6, and CHRNB2 mRNA levels (Fig 13B). These changes were accompa-

nied by a decrease in CHRNA3 mRNA level. Interestingly, when HBO cells were treated

with a mixture containing 50 mM ETOH + 0.5 μM Nic, there was a significant decrease in

the CHRNA3 (p = 0.0049) and CHRNA6 (p = 0.0024) mRNA levels relative to their levels in

the presence of 50 mM ETOH alone (Fig 13B). In the presence of the mixture, mRNA levels

for CHRNA3 (p = 0.0023) and CHRNA6 (0.0042) were also lower than those observed in

the presence of 0.5 μM Nic alone (Fig 13B). These results indicate that treating HBO cells

with a mixture containing Nic + ETOH inhibits CHRNA3 and CHRNA6 mRNA expression

in HBO cells. It is important to note that CHRNA7 mRNA levels in HBO cells were not

altered by either Nic or ETOH treatment. These results further demonstrate that both Nic

and ETOH produce major effects on CHRNA6 mRNA expression.

To investigate the effect of chronic Nic treatment on CHRN mRNA expression, HBO

cells were treated with 0.25 μM, 0.5 μM or 1.0 μM Nic for 4 days (Fig 13C). Relative to con-

trol, at 0.5 μM Nic, a significant increase was observed in CHRNA5, CHRNA6, CHRNA7,

and CHRNB4 mRNA levels (Fig 13C). Relative to 0.5 μM Nic, at 1.0 μM Nic CHRNA7 and

CHRNB4 mRNA levels were significantly decreased. Thus, unlike the condition with acute

Nic treatment, chronic Nic treatment induced significant changes in CHRNA7 mRNA

levels.

Effect of acute Nic and ETOH exposure on CHRN protein levels in HBO

cells

Western blots were analyzed for CHRNA5 and CHRNA6 protein expression using specific

AChRα5 or AChRα6 antibody relative to β-actin (Fig 14A). At 0.25 μM and 0.5 μM Nic

there was a dose-dependent increase in CHRNA5 protein expression (p = 0.0001) (Fig

14B). Increasing Nic to 1.0 μM produced a significant decrease in CHRNA5 protein rela-

tive to its level in 0.5 μM Nic (p = 0.0065). Relative to control, CHRNA5 protein expression

demonstrated an increase (p = 0.0001) after 50 mM ETOH treatment (Fig 14B). However,

CHRNA5 protein expression in the presence of 0.5 μM Nic + 50 mM ETOH mixture was

significantly less than its level in 50 mM ETOH alone (p = 0.0001) or 0.5 μM Nic alone

(p = 0.0001) (Fig 14B).

In another set of HBO cells, we detected a small decrease (p = 0.015) in CHRNA6 protein

expression after 0.25 μM Nic exposure (Fig 14C). At 0.50 μM Nic, the CHRNA6 protein

expression increased above control (p = 0.0001). At 1.0 μM Nic, the CHRNA6 protein expres-

sion decreased relative to 0.5 μM Nic (p = 0.0072). Relative to control, CHRNA6 protein

expression demonstrated a small but significant (p = 0.0001) increase after 50 mM ETOH

treatment. However, CHRNA6 protein expression in the presence of 0.5 μM Nic + 50 mM

ETOH mixture was not statistically different from the level in the presence of 0.5 μM Nic alone

(Fig 14C).

Taken together, the above results show that in HBO cells, acute and chronic exposure to

Nic produces changes in CHRN mRNA and protein levels in a dose-dependent manner. In

our earlier studies in STC-1 cells, acute and chronic exposure to Nic also produced dose-

dependent changes in the CHRN mRNA levels [14].

Fig 13. Effect of Nic and ETOH treatment on CHRNA5 and CHRNA6 protein expression in HBO cells. HBO cells were treated with Nic (0.25–

1.0 μM), ETOH (50 mM), and 0.5 μM Nic + 50 mM ETOH for 24h. Western blots were developed using specific AChRα5 or AChRα6 antibodies (A) and

analyzed (B and C). The fold change in protein expression was calculated with respect to β-actin. The values are means of triplicate measurements.

https://doi.org/10.1371/journal.pone.0194089.g013
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Fig 14. Effect of Nic exposure on the CHRN subunit mRNA expression level in HBO cells. (A) After 24h Nic

treatment. Relative to control, at 0.25 μM Nic the �p values for CHRNA3, CHRNA5, CHRNA6, CHRNB2, and

CHRNB4 mRNAs were 0.0111, 0.0306, 0.0017, 0.0239, and 0.0173, respectively. Relative to control, at 0.50 μM Nic the
�p values for CHRNA3, CHRNA5, CHRNA6, CHRNB2, and CHRNB4 mRNAs were 0.0022, 0.0473, 0.0014, 0.0049,

and 0.0141, respectively. Relative to control, at 1.0 μM Nic the �p values for CHRNA3, CHRNA5, CHRNA6, CHRNB2,

and CHRNB4 mRNAs were 0.0194, 0.0055, 0.0013, 0.0236, and 0.0003, respectively. Relative to 0.25 μM Nic, at

0.50 μM Nic the �p values for CHRNA6 and CHRNB4 were 0.0039 and 0.0024. Relative to 0.50 μM Nic at 1.0 μM Nic
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Effect of Nic on BDNF in HBO cells

HBO cells were treated with 0.25 μM, 0.5 μM or 1.0 μM Nic for 30 min. The total amount of

BDNF in cell lysis plus in the medium increased with 0.25 μM (p = 0.0289) and 0.5 μM Nic

(p = 0.0002) treatment and decreased at 1 μM Nic (p = 0.0014) (Fig 15A). When BDNF con-

centration was examined separately in the cell lysates and the media, BDNF content increased

in the media at 0.5 μM Nic (p = 0.0001) with a concomitant decrease in the BDNF concentra-

tion in the cell lysate (p = 0.0004). However, no significant changes were observed in the

BDNF concentration in the cell lysate or the media at 1 μM Nic (Fig 15A). These results sug-

gest that the effect of Nic on BDNF synthesis and release in HBO cells is dose-dependent. We

have previously shown that Nic exposure in STC-1 cells decreases BDNF concentration in cell

lysates [14]. Exposure of neonate rats to Nic has been shown to cause a decrease in the expres-

sion of nerve growth factor and BDNF in hippocampus and frontal cortex [17].

Effect of Nic on BDNF in HEK293 cells

In contrast to HBO cells, in HEK293 cells the BDNF concentration in cell lysate was about 6

times higher (Fig 15B). Treating HEK293 cells with 0.25 μM Nic, significantly increased the

content in cell lysate that remained elevated at 0.5 and 1.0 μM Nic. Relative to control, treating

HEK293 cells with 0.25, 0.5 and 1.0 μM Nic produced a small but dose dependent increase in

BDNF concentration in the media (Fig 15B). These results suggest that although the intracellu-

lar concentration of BDNF is significantly higher than in HBO cells, the release of BDNF from

HEK293 cells in the presence of Nic is significantly smaller.

Effect of acute Nic exposure on HBO cell Ca2+ ([Ca2+]i)

Only a subset of HBO cells express CHRNs (Figs 2–9). We hypothesize that Nic, a bitter stimu-

lus, will induce an increase in [Ca2+]i in a subset of HBO cells by interacting with both T2Rs

and CHRNs. The increase in [Ca2+]i due to the interaction of Nic with CHRNs should be

inhibited by Mec. Accordingly, we monitored changes in [Ca2+]i as temporal changes in FIR

(F340/F380) in individual HBO cells loaded with Fura-2 as shown in Panel A in S1 Fig (HBO

cells). Nic evoked a transient increase in [Ca2+]i in individual HBO cells (Fig 16A and 16B).

The cells that responded to Nic also responded to ACh and ATP (Fig 16A and 16B). An addi-

tional HBO cell that responded to ACh also responded to glutamine (Fig 16C). Fig 16D shows

mean changes in FIR in response to ACh and ATP in 5 individual HBO cells.

Fig 17A shows a representative HBO cell that responded with a dose-dependent increase in

FIR when stimulated with 0.01, 0.05 and 1.0 mM Nic. In 1 out of 8 cells investigate, one cell

responded with a robust increase in [Ca2+]i after exposure to 50 mM ETOH. Two additional

cells gave a modest increase in [Ca2+]i after ETOH stimulation (Fig 17B). Fig 17C shows

another representative HBO cell that responded to 1 mM Nic. The Nic-induced transient

increase in [Ca2+]i was significantly inhibited in the presence of 50 μM Mec. These studies

indicate that HBO cells express functional CHRNs that form Mec-sensitive cation channels.

the �p values for CHRNA6, CHRNB2, and CHRNB4 were 0.0192, 0.0144, and 0.0046, respectively. (B) After 24h

ETOH treatment. Relative to control, at 50 mM ETOH the �p values for CHRNA3, CHRNA5, CHRNA6, and

CHRNB2 mRNAs were 0.0048, 0.0207, 0.0020, and 0.0169, respectively. Relative to 50 mM ETOH, at 50 mM ETOH

+ 0.5 μM Nic the �p values for CHRNA3 and CHRNA6 mRNAs were 0.0049 and 0.0024. (C) After 4 days treatment.

Relative to control, at 0.25 μM Nic the �p values for chrna6 and CHRNA7 mRNAs were 0.0003 and 0.024, respectively.

After 4 days treatment, relative to control, at 0.50 μM Nic the �p values for CHRNA5, CHRNA6, CHRNA7, and

CHRNB4 were 0.0402, 0.0001, 0.0049, and 0.0001, respectively. Relative to control, at 1.0 μM Nic, the �p values for

CHRNA5, CHRNA6, CHRNA7, and CHRNB4 were 0.0009, 0.0005, 0.0001, and 0.0001, respectively. The values

represent mean ± SEM of triplicate measurements.

https://doi.org/10.1371/journal.pone.0194089.g014
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Fig 15. Effect of Nic on BDNF synthesis and release in HBO cells and HEK293 cells. (A) HBO cells were treated with 0.25, 0.50,

and 1.0 μM Nic for 30 min. Following that BDNF concentration was measured in cell lysate and the media. Relative to control BDNF

concentration in cell lysate increased at 0.25 μM Nic (p = 0.0274) and decreased at 0.5 μM Nic (p = 0.0055). No significant increase

in BDNF concentration was observed at 0.25 μM Nic, however, at 0.5 μM Nic, BDNF concentration was significantly increased

relative to control (p = 0.0001). Relative to control at 1.0 μM Nic, a small but significant increase in the BDNF concentration was

observed in the media (p = 0.0004). The p values for the changes in total BDNF content for 0.25, 0.5 and 1.0 μM Nic were 0.0289,

0.0002, and 0.0014, respectively. The values are mean ± SEM of triplicate measurements. (B) In HEK293 cells, BDNF concentration

in cell lysate was about 6 times greater than in HBO cells. Relative to control, at 0.25 μM Nic, BDNF concentration in cell lysate was
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Effect of acute Nic exposure on HEK293 cell [Ca2+]i

In contrast to HBO cells, all 45 HEK293 cells loaded with Fura-2 as shown in Panel B in S1 Fig

(HEK cells) responded with a robust increase in [Ca2+]i upon stimulation with 10 μM Nic (Fig

18A). In addition, all 43 HEK293 cells responded with a robust increase in [Ca2+]i upon stimu-

lation with 10 mM ETOH (Fig 18B). These results are consistent with our IHC studies that

show a much higher and wider distribution of CHRNs in HEK cells relative to HBO cells.

Discussion

CHRN expression in HBO cells

CHRNs have been shown to be expressed in rodent CV and FF TRCs [5], STC-1 cells [14],

enteroendocrine cells of the gut [5, 14], and in epithelial cells of intrapulmonary airways that

also co-express TRPM5 [18]. However, at present the information regarding CHRN expres-

sion and function in human taste cells is lacking. In a stably proliferating human taste cell line

(HTC-8), RT-PCR technique only demonstrated the gene expression of CHRNA5 [6]. It is not

clear if HTC-8 cells do not express additional CHRNs or their expression levels are too low for

detection.

significantly increased (p = 0.0001), and remained elevated at 0.5 μM (p = 0.0331) and 1.0 μM Nic (p = 0.0041). Relative to control at

0.25 μM, 0.5 μM, and 1.0 μM Nic, a small but significant increase in the BDNF concentration was observed in the media (p = 0.0001).

The values are mean ± SEM of triplicate measurements.

https://doi.org/10.1371/journal.pone.0194089.g015

Fig 16. Effect of Nic, acetylcholine (ACh), and other taste stimuli on temporal changes in [Ca2+]i in individual

HBO cells. Temporal changes in [Ca2+]i were monitored as changes in Florescence Intensity Ratio (FIR; F340/F380) in

Fura-2 loaded single HBO cells in response to stimulation with different taste stimuli. (A and B) Show two

representative HBO cells that responded with a transient increase in FIR when stimulated with 200 μM ACh, 200 μM

ATP, and 200 μM Nic. (C) Shows another HBO cell that responded with a transient increase in FIR when stimulated

with 200 μM ACh and 200 μM glutamine. (D) Shows mean ± SEM changes in FIR from 5 individual HBO cells that

were stimulated with 200 μM ACh and 200 μM ATP. In each cell, the FIR was normalized to 1 with respect to its value

under the control conditions.

https://doi.org/10.1371/journal.pone.0194089.g016
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Fig 17. Effect of Nic, ETOH, and mecamylamine (Mec) on temporal changes in [Ca2+]i in individual HBO cells. (A) Shows a

representative HBO cell that responded with a dose-dependent increase in FIR when stimulated with 0.01, 0.05 and 1.0 mM Nic.

(B) Shows 1 out of 8 HBO cells that responded with a transient increase in FIR when stimulated with 50 mM ETOH. Two

additional cells responded with a small but significant increase in FIR when stimulated with 50 mM ETOH. (C) Shows another

representative HBO cell that responded with an increase in FIR in the presence of 1 mM Nic. Mec (50 μM) inhibited the Nic-

induced increase in FIR. In each cell, the FIR was normalized to 1 with respect to its value under the control conditions.

https://doi.org/10.1371/journal.pone.0194089.g017
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In this paper we used HBO cells to investigate the expression and function of CHRNs. Par-

allel studies on CHRN expression and function were carried out in HEK293 cells, an epithelial

cell line that has been shown to endogenously express CHRNA7 and CHRNA5 [10]. At pres-

ent a detailed investigation of endogenous CHRN expression and function in HEK293 cells is

also lacking. Parallel studies on HBO cells and HEK293 cells allowed us do a comparative anal-

ysis of CHRN expression and function in these two cell lines of human origin.

Similar to the case in HTC-8 cells [6], we detected the expression of CHRNA5 mRNA (Fig

1A) and protein (Fig 1C) in HBO cells. In contrast to HTC-8 cells, we also detected the

Fig 18. Effect of Nic and ETOH on temporal changes in [Ca2+]i in individual HEK293 cells. (A) Shows changes in

FIR in all 45 HEK293 cells in the visual field that were stimulated with 0.01 mM Nic. In each cell, the FIR was

normalized to 1 with respect to its value under the control conditions. The values are mean ± SEM of the number of

cells in the visual field. (B) Shows changes in FIR in all 43 HEK293 cells in the visual field that were stimulated with 10

mM ETOH. In each cell, the FIR was normalized to 1 with respect to its value under the control conditions. The values

are mean ± SEM of the number of cells in the visual field.

https://doi.org/10.1371/journal.pone.0194089.g018
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mRNAs for CHRNA3, CHRNA4, CHRNA6, CHRNA7, CHRNB2, CHRNB4 (Fig 1A), and

CHRNA4 protein in HBO cell lysate (Fig 1C). Both HTC-8 cells [6] and HBO cells demon-

strate the expression of mRNAs for T1R1, T1R3, T2R38, PLCβ2, and TRPM5 (Fig 1B). We

have previously demonstrated the presence of all four (α, β, γ, and δ) ENaC subunits in a sub-

set of HBO cells [9].

Further confirmation of CHRN expression in HBO cells was obtained by using specific

antibodies to various CHRNA and CHRNB subunits. In our ICC studies, CHRNA3,

CHRNA4, CHRNA5, CHRNA6, CHRNA7, CHRNB2, CHRNB4 were expressed in a subset of

HBO cells (Figs 2–9). CHRNA5 was co-expressed in HBO cells with CHRNA3 and CHRNA4

(Fig 3), and with CHRNB2 (Fig 4C and 4D). In addition, CHRNA3 was co-expressed in HBO

cells with CHRNB3 (Fig 4A and 4B). In single cell PCR studies, 43.7% of HBO cells expressed

one or more CHRN mRNAs and 21.9% of HBO cells demonstrated the expression of multiple

CHRNs (Fig 11).

CHRNA4 (Fig 6A), CHRNA5 (Fig 5A and 5B), CHRNAA6 (Fig 7) and CHRNB2 (Fig 6B)

were expressed in cells that were positive for TRPM5. These results are consistent with the

expression of CHRNs in TRPM5 positive mouse CV and FF taste bud cells [5]. In our ICC

studies CHRNA5 was also co-localized in a subset of HBO cell that were positive for T1R3 (Fig

8) and CHRNB2 was co-localized in a subset of HBO cells that were positive for T2R38 (Fig 9).

In our single cell PCR experiments 50% of the T2R38 positive cells also expressed one or more

CHRNs (Fig 11). Taken together, our ICC and single cell PCR studies suggest that CHRNs are

expressed in TRPM5 positive cells that are either T2R38 positive or T1R3 positive. The expres-

sion of CHRN and markers of taste cells detected by RT-PCR, qRT-PCR, ICC, immunohis-

tochemistry (IHC) and in situ hybridization (ISH) in HBO cells, HEK293 cells, STC-1 cells

[14], and mouse taste receptor cells (TRCs) [5] are summarized in S1 Table. Thus, in HBO

cells, STC-1 cells, HEK293 cells and mouse TRCs, CHRNs localize in TRPM5 positive cells.

Currently, the role of CHRNs in T1R3 expressing cells is not clear. However, the expression of

CHRNs in T2R38 positive (bitter sensing) cells is consistent with the involvement of CHRNs

in the neural and behavioral responses to Nic and ETOH in rodents [2, 4, 5]. In future studies,

single cell PCR analysis for all CHRNA and CHRNB subunits in a much larger population of

HBO cells will give a clearer picture of CHRN expression in HBO cells.

Individual HBO cells responded with a transient increase in [Ca2+]i when stimulated with

Nic or ACh (Figs 16 and 17). Individual HBO cells demonstrated a dose-dependent increase in

[Ca2+]i when stimulated with increasing concentration of Nic (Fig 17A). Nic effects on [Ca2+]i

were partially Mec-sensitive (Fig 17C). Individual HBO cells also responded to ETOH stimula-

tion with a transient increase in [Ca2+]i (Fig 17B). Muscarinic acetylcholine receptors have

been shown to be expressed in TRCs [19, 20]. Inhibition of Nic-induced increase in [Ca2+]i by

Mec (Fig 17C) indicates that in addition to muscarinic acetylcholine receptors, CHRNs are

expressed in a subset of HBO cells. Collectively, the above data demonstrate that a subset of

HBO cells express functional CHRN receptors. As described in detail previously [4], in our

whole cell patch clamp studies, Nic elicited currents in a subset of isolated rat FF TRCs that

were inhibited in the presence of 0.3 mM Mec. Although most of the current in CHRNs is car-

ried by Na+ and K+, Ca2+ make a significant contribution [21]. Activation of CHRNs causes

cell depolarization that activates voltage-gated ion channels and allows Ca2+ influx. However,

our data indicates that in HBO cells CHRNs, by themselves, serve as the Ca2+ entry pathway

(Fig 17C). The higher Ca2+ permeability of the α7 CHRN is due to the arrangements of

charged residues at the inner mouth of the ionic pore and polar residues in the outer part of

the channel [21].

Individual HBO cells demonstrate differential expression of CHRNs (Fig 11) and can form

complex receptors comprising multiple subunits (Fig 12). While CHRNA7 subunits assemble
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as homopentamers, most of the other CHRNs assemble into heteropentamers comprising two

or more different kinds of subunits. The α2, α3, α4 or α6 subunits may combine in a binary

fashion with β2 or β4 subunits. These complexes give rise to ligand binding and/or functional

CHRNs. The β3 and α5 subunits are termed as ‘wild cards” and can integrate into complexes

with two other subunits to form more complex receptors [22]. CHRNs that are most abun-

dantly detected in brain are homomeric α7 and α4β2 [23]. The heteromeric α4β2 subtypes

demonstrates high affinity for Nic and the homomeric α7 provides α-bungarotoxin-binding

sites in the brain [21]. However, α4β2� CHRNs can also exist in several isoforms forms:

(α4)2(β2)3 or (α4)3(β2)2 that show different sensitivities towards Nic [22]. In addition, there is

evidence to show that α7 and β2 CHRNs can assemble to form heteromeric functional chan-

nels [24].

Genetic association studies in humans show that gene variants in CHRNA5 influence both

ETOH and Nic dependence [24–28]. The α5 subunit functions as an accessory subunit and is

only co-expressed with other α and β CHRN subunits. It facilitates α4� CHRNs assembly in
vitro. The α5 subunit is critical for controlling the expression and functional role of a popula-

tion of α4�-containing CHRNs in the ventral tegmental area (VTA) [29].

The α6 subunit is expressed in midbrain dopaminergic regions associated with pleasure,

reward, and mood control. This suggests that α6�-containing CHRNs play an important role

in Nic dependence and in Nic induced changes in mood and emotions [22]. The dopaminergic

neurons from the posterior VTA have been reported to express α6 and β3 subunits with the α4

and β2 subunits [30, 31]. VTA provides main projection to the nucleus accumbens. However,

at present the role of complex CHRNs, expressed in the taste bud cells, in the detection of the

bitter taste of Nic and ETOH is not clear. To further clarify the role of individual CHRNs in

the detection of the bitter taste of Nic and ETOH, in future studies, we will monitor CT

responses to Nic and ETOH in specific CHRN KO mice.

CHRNs and BDNF regulation

CHRNs have been shown to be involved in structuring and maintenance of neurites and syn-

apses, modulation of neuronal viability and death, and in the control of transmitter release [22;

32]. Our results suggest a potential role of CHRNs in the regulation of BDNF synthesis and

release in HBO cells (Fig 15A). In the taste system, BDNF and its cognate receptor trkB are

present mainly in type III taste cells [33, 34] and are required for the developmental remodel-

ing of taste bud innervation [35] and to maintain normal amounts of innervation to adult taste

buds [36–38]. Exposure of neonate rats to Nic causes a decrease in the expression of nerve

growth factor and BDNF and affects both brain development and impairs brain function [17].

In addition, BDNF is present in the gut. It participates in survival and growth of enteric neu-

rons, augmentation of enteric circuits, and stimulation of intestinal peristalsis and propulsion

[15, 39].

Upregulation of CHRNs in HBO cells by Nic and ETOH

Smokers have an average serum concentration of 100–200 nM Nic after smoking [40, 41]. In

our studies, exposing HBO cells acutely (24h) to 250–500 nM Nic concentrations significantly

enhanced mRNAs for CHRNA5, CHRNA6, CHRNB2 and CHRNB4. At 1.0 μM Nic, the

CHRNA6, CHRNB2, and CHRNB4 mRNA levels were significantly lower than the levels

observed at 0.5 μM Nic (Fig 13A).

Similar changes in CHRN mRNA and protein levels have been observed in other cells.

Treating human dermal fibroblasts with 10 μM nicotine for 24h produced 1.8 to 3.8 fold

increase in the expression of CHRNA3, CHRNA5, CHRNA7, CHRNB2, and CHRNB4. These
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changes were not observed in the presence of Mec [42]. In human squamous cell lung cancer

(SCC-L) cell lines and SCC-L tumors, 100 nM Nic increased the levels of α7-nAChR mRNA

and α7-nAChR transcription [43]. In K-177, a stable cell line (HEK293) expressing human

CHRNA4 and CHRNB2, Nic (100 nM) caused upregulation of the α4β2 receptor [44]. Similar

effects were reported at 1 μM Nic [45].

After chronic (4 days) Nic (0.5 μM) exposure, a significant increase in the CHRNA5,

CHRNA6, CHRNA7, and CHRNB4 mRNA levels was observed (Fig 13C). Relative to 0.5 μM

Nic, at 1.0 μM Nic the CHRNA7 and CHRNB4 mRNA levels were significantly decreased.

Thus, unlike the condition with acute Nic treatment, chronic Nic treatment induced signifi-

cant changes in CHRNA7 mRNA levels. In male rats continually self-administering Nic

(approximately 1.5 mg free base/kg/day) was associated with upregulation of brain α4, α6, and

β2 CHRN subunits [46]. Under chronic Nic exposure, α4β2 CHRNs undergo a Nic-induced

upregulation of receptor numbers at the membrane in several areas of the brain [47]. Overex-

pressing CHRNs in mice increases sensitivity to Nic. The CHRNs comprising α5, α6, β3, and

β4 subunits regulate Nic intake [48].

Exposure to Nic alters the trafficking and assembly of CHRNs, leading to their up-regula-

tion in the plasma membrane [49]. Nic and cotinine increased the number of α4β2 receptors

on the plasma membrane and caused a redistribution of intracellular receptors. In contrast to

this, cotinine exposure down-regulated α6β2β3 receptors. Cotinine and Nic both alter the

assembly of α4β2 receptors to favor the high sensitivity (α4)2(β2)3 stoichiometry [49]. Upregu-

lation of α7 is systematically observed after incubation of lymphocytes with Nic or α-bungaro-

toxin [50]. Taken together, Nic exposure produces differential effects on the expression of

CHRN mRNAs depending upon the dose, exposure time, and cell type.

Acute ETOH exposure also significantly upregulated CHRNA5, CHRNA6, and CHRNB2

but decreased the mRNA expression of CHRNA3 (Fig 13B). Polymorphisms localized to chro-

mosome 15q24 that encodes α5, α6, β3, and β4 CHRNs are also linked to alcohol dependence

and early initiation of alcohol use [48]. Over expression of CHRNs α5, α3, and β4 subunit

genes reduces ETOH intake in mice [51].

In our studies, acutely exposing HBO cells to a mixture containing 0.5 μM Nic + 50 mM

ETOH inhibited the increase in CHRNA6 mRNA observed with 0.5 μM Nic or 50 mM ETOH

alone (Fig 13B). In rats with moderate ETOH preference, ETOH consumption increases after

Nic treatment [52] and application of a CHRN blocker reduces ETOH intake [53]. Vareni-

cline, a partial agonist of α4β2 CHRN subtype, used for cessation of smoking may also reduce

alcohol intake [54]. This suggests that Nic and ETOH can interact on common CHRNs [48].

However, in some cases, there was no correlation between CHRN subunit protein and

mRNA. In the temporal cortex of smokers there was an increase in the α4 and α7 CHRN sub-

unit protein compared to non-smokers but there was no difference in CHRNA4 and

CHRNA7 mRNA [55]. In some cultured human cell lines changes in CHRN numbers were

not attributable to changes in CHRN mRNAs [56]. In these cases the Nic-induced upregula-

tion of CHRN numbers is independent of transcriptional events [47].

As described in detail previously [14], we investigated the effect of 0.25, 0.5, and 1.0 μM Nic

exposure for 24h on the differential expression of CHRN mRNAs in STC-1 cells. As summa-

rized in S2 Table, in both HBO cells and STC-1 cells, Nic at 0.25 and 0.5 μM induced an

increase in CHRNA5, CHRNA6, CHRNB2 and CHRNB4 mRNAs in a dose-dependent man-

ner. Although at 1 μM Nic the enhancement was smaller than at 0.5 μM Nic, Nic still produced

enhancement in CHRNA5, CHRNA6 and CHRNB2 mRNA relative to control (0 Nic).

CHRNB4 mRNA increased in STC-1 cells but decreased in HBO cells. In contrast, in HBO

cells and STC-1 cells, CHRNA3 and CHRNA7 mRNA expression did not change in the same

direction in the presence of Nic. After 4 days of Nic treatment, Nic produced an increase in
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CHRNA5 and CHRNA6 mRNAs in HBO cells and STC-1 cells. These results suggest that in

human TRCs and mouse enteroendocrine cells Nic consistently enhances the expression of

CHRNA5 and CHRNA6 mRNAs. In the present study we did not test the effect of Nic or

ETOH on G-protein coupled sweet, umami, and bitter taste receptors and their downstream

intracellular signaling effectors.

Upregulation of CHRNs in HEK293 cells by Nic

Changes in CHRN subunit expression following acute or chronic Nic or ETOH exposure was

not monitored in HEK293 cells in this study. In HEK293 cells, that expressed heterologous

α4β2 CHRNs, a significant increase in [3H]cytisine binding was observed when the cells were

exposed to 100 nM Nic. A maximal 15-fold increase in binding was observed at 10 μM of Nic,

consistent with the upregulation of CHRNs [57]. In HEK293 cells stably expressing α4β2

CHRNs, Nic markedly increased the density of the β2 subunit protein in cell membranes. This

increase was proportional to the increase in CHRN binding sites [58]. Taken together, these

results indicate that Nic and ETOH induce upregulation of functional CHRNs in both HBO

cells and HEK293 cells.

In summary our data indicates that both HBO cells and HEK293 cells express endogenous

CHRNs. In HBO cells CHRNs are involved in detecting the bitter taste of Nic and ETOH and

in the release of BDNF.
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S1 Table. Expression of CHRNs and markers in HBO cells, STC-1 cells, HEK293 cells and

mouse TRCs.

(DOCX)

S2 Table. Nic-induced changes in CHRN mRNA expression in HBO and STC-1 cells.

(DOCX)

S1 Fig. Fura-2 loading in HBO cells and HEK293 cells. HBO and HEK293 cells were loaded

with Fura-2. (A) Shows images of Fura-2 loaded HBO cells using excitation wavelengths of

340 and 380 nm. (B) Shows images of Fura-2 loaded HEK293 cells using excitation wave-

lengths of 340 and 380 nm.

(TIF)
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