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Abstract

Background

Handgrip strength, a measure of muscular fitness, is associated with cardiovascular (CV)

events and CV mortality but its association with cardiac structure and function is unknown.

The goal of this study was to determine if handgrip strength is associated with changes in

cardiac structure and function in UK adults.

Methods and results

Left ventricular (LV) ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume

(ESV), stroke volume (SV), mass (M), and mass-to-volume ratio (MVR) were measured in

a sample of 4,654 participants of the UK Biobank Study 6.3 ± 1 years after baseline using

cardiovascular magnetic resonance (CMR). Handgrip strength was measured at baseline

and at the imaging follow-up examination. We determined the association between

handgrip strength at baseline as well as its change over time and each of the cardiac out-

come parameters. After adjustment, higher level of handgrip strength at baseline was

associated with higher LVEDV (difference per SD increase in handgrip strength: 1.3ml,

95% CI 0.1–2.4; p = 0.034), higher LVSV (1.0ml, 0.3–1.8; p = 0.006), lower LVM (-1.0g,

-1.8 –-0.3; p = 0.007), and lower LVMVR (-0.013g/ml, -0.018 –-0.007; p<0.001). The asso-

ciation between handgrip strength and LVEDV and LVSV was strongest among younger

individuals, while the association with LVM and LVMVR was strongest among older

individuals.
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Conclusions

Better handgrip strength was associated with cardiac structure and function in a pattern

indicative of less cardiac hypertrophy and remodeling. These characteristics are known to

be associated with a lower risk of cardiovascular events.

Introduction

Cardiovascular disease (CVD) accounts for 17.3 million deaths per year worldwide and is

expected to account for 23.6 million by 2030 [1]. It is, therefore, important to identify predic-

tors of CVD incidence to be able to initiate evidence-based primary prevention among indi-

viduals at elevated risk. Handgrip strength is an inexpensive, reproducible and easy to

implement measure of muscular fitness that has been repeatedly shown to be associated with

CVD incidence [2–7], independent of measures of body composition such as muscle area and

BMI [2].

The association between handgrip strength and CVD has been demonstrated in various set-

tings. Sasaki et al [4] showed that the strength of the association between handgrip strength

and cardiovascular mortality is similar among men and women and Ortega et al [7] showed an

association between handgrip strength and premature cardiovascular death among adoles-

cents. More recently, the Prospective Urban Rural Epidemiology (PURE) study demonstrated

that the relationship between grip strength and CVD is consistent across a wide range of coun-

try-specific incomes [3]. Further study is needed to investigate potential underlying patho-

physiologic mechanisms linking handgrip strength to CVD incidence.

Recently, several pathways have been proposed through which sarcopenia, a cause of low

handgrip strength, could contribute to heart failure with preserved ejection fraction [8].

Among those are activation of systemic inflammation [9] and insulin resistance [10]. Cardiac

changes seen in patients with heart failure with preserved ejection fraction include concentric

left ventricular remodeling and concentric hypertrophy [11]. Thus, the observed association

between handgrip strength and CVD incidence may be due to less cardiac remodeling and

hypertrophy among individuals with better handgrip strength. The use of cardiac magnetic

resonance (CMR) imaging is the reference standard to accurately determine cardiac structure

and function [12]. However, no studies exist that have described the relationship with hand-

grip strength.

The goal of this study is to investigate the association between muscular fitness as repeatedly

assessed by handgrip strength and cardiac structure and function as measured by CMR in a

large sample of UK adults.

Methods

UK Biobank

The UK Biobank (http://www.ukbiobank.ac.uk) is a prospective cohort study of more than

500,000 men and women aged 40–69 at the time of recruitment between 2006 and 2010 in 22

centers across the UK. The baseline assessment of study participants included an extensive

questionnaire, a physical assessment including height, weight, body fat, blood pressure, pulse

rate, and handgrip strength, and collection of biological samples. Follow-up of participants

was conducted via linkage to health record systems and re-contact with the participants. The

study complies with the Declaration of Helsinki. All participants provided written consent and
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UK Biobank’s scientific protocol and operational procedures were reviewed and approved by

the North West Research Ethics Committee in the UK.

Exclusion criteria

We excluded participants with any history of cardiovascular conditions Details are available in

the supporting information (S1 Methods).

Cardiovascular magnetic resonance imaging

The UK Biobank invited participants back for a comprehensive imaging visit [13, 14] includ-

ing a 20-minute CMR examination at 1.5 Tesla with a goal to perform 100,000 CMR scans.

The current study represents an interim data release with 5,065 participants.

The CMR protocol and image analysis have been previously described [14]. In brief, CMR

imaging is being performed in Cheadle, United Kingdom, on a clinical wide bore 1.5 Tesla

scanner (MAGNETOM Aera, Syngo Platform VD13A, Siemens Healthcare, Erlangen, Ger-

many). 18 channels anterior body surface coil was used in combination with a 12 elements of

an integrated 32 element spine coil and electrocardiogram (ECG) gating for cardiac synchroni-

zation. Acquisitions include piloting and sagittal, transverse and coronal partial coverage of

the chest and abdomen. For cardiac function, three long axis cines (horizontal long axis—

HLA, vertical long axis—VLA, and left ventricular outflow tract—LVOT cines both sagittal

and coronal) and a complete short axis (SA) stack of balanced steady state free precession

(bSSFP) cines, covering the left ventricle (LV) and right ventricle (RV) are acquired [14]. For

all measured cardiac parameters, a CMR reference standard has been created for the UK Bio-

bank using 5,065 CMR scans as previously described [15]. The manual analysis of CMR scans

was performed across two core laboratories based in London and Oxford using cvi42 post-pro-

cessing software (Version 5.1.1, Circle Cardiovascular Imaging Inc., Calgary, Canada).

Handgrip strength measurement

Handgrip strength was measured at baseline and at the imaging visit using a Jamar J00105

hydraulic hand dynamometer. The participant was asked to squeeze the handle of the dyna-

mometer as strongly as possible for three seconds. At both visits, one measurement was

obtained from each hand.

Statistical analysis and model development

The primary exposures of interest in our models were (i) Handgrip strength at baseline and

(ii) change in handgrip strength between baseline and the imaging visit. Even though handgrip

strength was measured in both hands, we limited the analysis to the highest measurement at

each visit because of very high correlations between handgrip strength measurements.

The outcomes of interest were derived from the manually verified CMR results [15] and

included: (i) left ventricular ejection fraction (LVEF), (ii) left ventricular end-diastolic volume

(LVEDV), (iii) left ventricular end-systolic volume (LVESV), (iv) left ventricular stroke vol-

ume (LVSV), (v) left ventricular mass (LVM), and (vi) left ventricular mass to volume ratio

(LVMVR), a CMR measure of cardiac adaptation previously described [12, 15].

In all statistical models, we adjusted for: (i) baseline demographics, (ii) cardiac risk factors,

(iii) drivers of muscle mass, and (iv) physical activity level, measured in metabolic equivalent

of task (MET) minutes [16], mean centered as detailed in Table 1 (full details are available in

the supporting information [S1 Methods and S1 Table]). All potential confounders were

selected a priori.
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Table 1. Participant characteristics according to baseline handgrip strength.

Entire sample (N = 4,654) Missing, N (%)

Handgrip strength, kg

Baseline 34.9 (11.2) 8 (0.2)

Change -4.1 (6.1) 32 (0.7)

Cardiac parameters
LVEF, % 59.5 (6.3) 0 (0)

LVEDV, ml 143.4 (33.9) 0 (0)

LVESV, ml 58.7 (19.6) 0 (0)

LVSV, ml 84.6 (19.3) 0 (0)

LVM, g 89.1 (24.6) 0 (0)

LVMVR, g/ml 0.626 (0.120) 0 (0)

Demographics
Age, years 55.8 (7.6) 0 (0)

Time baseline visit—imaging, years 6.3 (1.0) 0 (0)

Male sex 2163 (46.5) 0 (0)

Caucasian 4382 (94.4) 13 (0.3)

Standing height, cm 169.4 (9.2) 4 (0.1)

Weight, kg 76.7 (14.9) 59 (1.3)

Body fat, % 30.5 (8.2) 61 (1.3)

Waist circumference, cm 88 (12.6) 3 (0.1)

Hip circumference, cm 102.2 (8.2) 3 (0.1)

Townsend score -1.9 (2.7) 2 (0)

Household income 423 (9.1)

<18k £ / year 604 (14.3)

18k–31k £ / year 1033 (24.4)

31k–52k £ / year 1281 (30.3)

52k–100k £ / year 1051 (24.8)

>100k £ / year 262 (6.2)

Advanced degree 2759 (59.5) 15 (0.3)

Cardiac risk factors
Hypertension 982 (21.1) 0 (0)

SBP, mmHg 135.3 (17.6) 94 (2.0)

DBP, mmHg 81.5 (9.9) 94 (2.0)

Diabetes mellitus 120 (2.6) 0 (0)

Dyslipidemia 529 (11.4) 0 (0)

Positive family history 3316 (71.3) 12 (0.3)

Tobacco use 0 (0)

Never 2759 (59.4)

Former (light) 514 (11.1)

Former (heavy) 1063 (22.9)

Current (light) 116 (2.5)

Current (heavy) 190 (4.1)

Drivers of muscle mass
Alcohol use 4 (0.1)

Never 262 (5.6)

On special occasions 395 (8.5)

One to three times / month 504 (10.8)

Once or twice / week 1186 (25.5)

(Continued)
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We used separate multivariable linear regression models to investigate the relationship

between baseline handgrip strength and change in handgrip strength and each of the cardiac

outcome parameters and expressed the results per standard deviation (SD) increase in hand-

grip strength / change in handgrip strength (mean centered). To evaluate whether the observed

associations differed by age, sex and physical activity level (MET minutes), we included prod-

uct terms between handgrip strength and each of these potential modifiers.

Although missingness was generally low, we used multiple imputation by chained equations

(MICE) to generate 10 complete datasets [17] (full details are available in the supporting infor-

mation [S1 Methods]). In brief, we used predictive mean matching with three nearest neigh-

bors for continuous variables, logistic regression for binary variables, and multinomial logistic

regression for categorical variables. Rubin’s rule [18] was used to pool estimates and standard

errors of the beta coefficients as well as predictions [17, 19]. Chi-square values of likelihood

ratio test were pooled as recommended by Meng and Rubin [20]. Figures shown are for a sin-

gle imputed data set in order to be able to use Stata’s commands ‘adjustrcspline’, ‘margins’,

and ‘marginsplot’. Confidence intervals pooled across all ten imputation sets were less than 1%

wider than those presented in the figures.

We conducted the following sensitivity analyses: (i) an analysis with the restricted-cubic-

spline-transformed exposures, investigating the relationship between handgrip strength and

the cardiac outcome parameters We used restricted cubic spline transformations with five

knots and knot locations as recommended by Harrell [21] if a non-linear relationship was

observed between handgrip strength or change in handgrip strength and any outcome condi-

tional on the covariates. Non-linearity was defined as a p-value of<0.05 of a likelihood-ratio

(LR) test comparing the model with the transformed predictor to the model including only the

linear term; (ii) an analysis excluding hypertension, systolic blood pressure, diastolic blood

pressure, and diabetes mellitus given the possibility that these might be important mediators

of the association between handgrip strength on the cardiac outcomes rather than confounders

[22, 23]; and (iii) an analysis of participants with complete data. We used Stata v.14.1 (Stata-

Corp, College Station, Texas, USA) for all statistical analyses.

Table 1. (Continued)

Entire sample (N = 4,654) Missing, N (%)

Three or four times / week 1241 (26.7)

Daily 1062 (22.8)

Cancer 298 (6.4) 9 (0.2)

Physical activity level

Total physical activity (MET minutes) 2796.6 (3512.2) 740 (15.9)

Days/week walked >10min 5.2 (2.0) 29 (0.6)

Duration of walks, min 55.3 (67.6) 447 (9.6)

Days / week moderate activity 3.5 (2.3) 120 (2.6)

Duration of activity, min 51.8 (66.7) 426 (9.2)

Days / week vigorous activity 1.9 (1.9) 95 (2)

Duration of activity, min 28.4 (40.9) 273 (5.9)

Numbers are mean (SD) or number (%), unless otherwise stated. Tertile sizes may vary because of ties in the data.

LVEF, left ventricular ejection fraction; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end-

systolic volume; LVSV, left ventricular stroke volume; LVM, left ventricular mass; LVMVR, left ventricular mass to

volume ratio; SBP, systolic blood pressure; DBP, diastolic blood pressure; MET minutes, metabolic equivalent of task

minutes.

https://doi.org/10.1371/journal.pone.0193124.t001
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Results

Sample characteristics

By April 2017, cardiac parameters had been measured in 5,065 individuals. Of those, the left

ventricular function was analyzed in 4,874 participants. After exclusion of 220 individuals with

prior cardiovascular disorders, 4,654 individuals (46.5% male, mean 55.8 years of age) were

included in our study (Fig 1). Mean baseline handgrip strength was 34.9 kg. Individuals with

higher levels of handgrip strength were younger, taller, heavier, and had a higher household

income. However, other demographic characteristics were similar among handgrip strength

Fig 1. Study population.

https://doi.org/10.1371/journal.pone.0193124.g001
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strata (Table 1). The amount of missing data ranged from 0% to 9.6% (duration of moderate

physical activity / week).

Association of baseline handgrip strength with cardiac structure and

function

Table 2 shows the associations between baseline handgrip strength and cardiac outcome

parameters after adjustment for all covariates. Higher baseline handgrip strength was signifi-

cantly associated with higher LVEDV (difference per SD increase in handgrip strength 1.3ml,

95% CI 0.1–2.4; p = 0.036) and LVSV (1.0ml, 0.3–1.7; p = 0.007). There was a significant

negative association with LVM (-1.0g, -1.8 –-0.3; p = 0.007) and LVMVR (-0.012g/ml,

-0.18 –-0.007; p<0.001). No clear association was found between handgrip strength and LVEF

or LVESV.

There was evidence that the association between baseline handgrip strength and LVEDV,

LVSV, LVM, and LVMVR varied by age, but not between men and women or across levels of

physical activity. The association with LVEDV and LVSV was strongest among younger indi-

viduals, while the association with LVM and LVMVR was strongest among older individuals.

Among 40 year olds, higher levels of handgrip strength at baseline were associated with higher

LVEDV (2.9ml, 1.1–4.8; p = 0.002) and LVSV (1.8ml, 0.7–3.0; p = 0.002). These associations

decreased with age. There was no clear association between baseline handgrip strength and

LVM or LVMVR among 40 year olds. However, these associations increased with age. Among

69 year olds, higher levels of handgrip strength at baseline were associated with lower LVM

(-2.8g, -3.9 –-1.7; p<0.001) and LVMVR (-0.018g/ml, -0.026 –-0.011; p<0.001) (Figs 2 and 3).

Association of change in handgrip strength with cardiac structure and

function

No association was found between change in handgrip strength and any of the CMR-based

measures of cardiac structure and function after adjustment for the covariates, nor was there

evidence that results varied by age, sex or physical activity (data not shown).

Table 2. Association between baseline handgrip strength and cardiac structure and function, adjusted for all

covariates.

Adjusted model Difference per SD increase in baseline handgrip strength

LVEF 0.17% (-0.13–0.48); p = 0.265

LVEDV 1.25ml (0.08–2.43); p = 0.036

LVESV 0.23ml (-0.55–1.00); p = 0.565

LVSV 1.01ml (0.28–1.74); p = 0.007

LVM -1.03g (-1.79 –-0.28); p = 0.007

LVMVR -0.012g/ml (-0.018 –-0.007); p<0.001

Numbers are difference (95% CI).

All estimates are adjusted for age, sex, ethnicity, time between baseline and imaging, height, weight, percent body fat,

waist circumference, hip circumference, Townsend score, household income, educational attainment, hypertension,

systolic blood pressure, diastolic blood pressure, diabetes mellitus, dyslipidemia, family history for cardiovascular

disease, smoking, alcohol consumption, cancer, and physical activity level.

SD, standard deviation; LVEF, left ventricular ejection fraction; LVEDV, left ventricular end-diastolic volume;

LVESV, left ventricular end-systolic volume; LVSV, left ventricular stroke volume; LVM, left ventricular mass;

LVMVR, left ventricular mass to volume ratio.

https://doi.org/10.1371/journal.pone.0193124.t002
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Fig 2. Association between baseline handgrip strength and cardiac structure and function by age, adjusted for all covariates. The figure shows the

association between baseline handgrip strength and the cardiac outcome parameters by age after adjustment for all covariates. Intervals of baseline handgrip

strength were chosen to closely represent one standard deviation with a mean at approximately 35 kg. Error bars represent 95% CI. Baseline handgrip

strength has a stronger association with LVEDV and LVSV among younger individuals and a stronger association with LVM and LVMVR among older

individuals. HGS, handgrip strength; LVEF, left ventricular ejection fraction; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end-

systolic volume; LVSV, left ventricular stroke volume; LVM, left ventricular mass; LVMVR, left ventricular mass to volume ratio.

https://doi.org/10.1371/journal.pone.0193124.g002
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Fig 3. Association between baseline handgrip strength and the difference in cardiac structure and function by age, adjusted for all covariates. The figure shows

the difference in each cardiac outcome parameter per one standard deviation increase in baseline handgrip strength by age after adjustment for all covariates. Error

bars represent 95% CI. Baseline handgrip strength has a stronger association with LVEDV and LVSV among younger individuals and a stronger association with LVM

and LVMVR among older individuals. LVEF, left ventricular ejection fraction; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end-systolic

volume; LVSV, left ventricular stroke volume; LVM, left ventricular mass; LVMVR, left ventricular mass to volume ratio.

https://doi.org/10.1371/journal.pone.0193124.g003
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Sensitivity analyses

There was no consistent evidence that the observed associations between handgrip strength

and the CMR-based measures of cardiac structure and function were non-linear (S1 Fig). Nei-

ther the results from analyses that did not adjust for hypertension, systolic blood pressure, dia-

stolic blood pressure and diabetes, nor the results from analyses of participants with complete

data were materially different from the primary analyses.

Discussion

The association between handgrip strength, a measure of muscular fitness, and measures of

cardiac structure and function was not previously known. This is the first study to show that

higher levels of handgrip strength are associated with higher LVEDV and LVSV, and lower

LVM and LVMVR. The association with LVEDV and LVSV decreased with age while the asso-

ciation with LVM and LVMVR increased with age. These findings advance our understanding

of the pathophysiologic processes that may mediate the association between handgrip strength

and cardiovascular incidence and mortality.

Two large Swedish studies [6, 7] showed lower cardiovascular disease incidence and mortal-

ity among male adolescents with higher levels of handgrip strength. The PURE study [3]

recently demonstrated a similar association across people of a wide age range and diverse eco-

nomic and sociocultural backgrounds. Those studies did not, however, investigate possible

mechanisms responsible for the observed associations.

Lower handgrip strength among younger individuals was associated with a pattern resem-

bling concentric remodeling, a process characterized by a lower LVEDV, no difference in

LVM, and higher LVMVR [12]. Among older individuals, lower handgrip strength was associ-

ated with a pattern resembling concentric hypertrophy, a process characterized by higher

LVM, no difference in LVEDV, and higher LVMVR [12]. It is not surprising that we did not

see an association between handgrip strength and LVEF, since such changes are only expected

to occur in LV decompensation. LV hypertrophy and concentric remodeling have been associ-

ated with a marked increase in adverse CVD events in the general population [24] as well as

outcome events in patients with heart failure [25], which could link handgrip strength to CVD

incidence.

Our results were not materially altered in models that did not adjust for other cardiac risk

factors such as hypertension and diabetes mellitus suggesting that these risk factors do not

strongly mediate the association between muscular fitness as assessed by handgrip strength

and the CMR-based measures of structure and function. This is in line with the PURE study

[3] that showed that the association between handgrip strength and cardiovascular disease

incidence and mortality persisted after adjustment for these risk factors.

The absence of an association between change in handgrip strength and any cardiac out-

come parameter was unexpected. However, several features of the study design preclude a

strong interpretation of those results: CMR was performed only once at the end of the study,

but not at baseline. The associations found for baseline handgrip strength therefore likely rep-

resent the relationship between handgrip strength and the CMR-based measures over a time

period that far exceeds the study period.

Our study has several notable strengths including a large population-based study sample;

standardized data collection protocols as part of the UK Biobank prospective cohort study;

CMR-based measures of cardiac structure and function measured with a consistent research

protocol; and robust results across a wide range of sensitivity analyses.

Like all observational studies, our study also had some limitations. Even though we adjusted

for many potential confounders, residual confounding cannot be excluded. Furthermore,
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CMR was performed only once at the end of the study and therefore reverse causation cannot

be excluded. However, it seems unlikely given the consistency of the results with previous

studies investigating clinical outcomes. Finally, as a population based study the UK Biobank

was planned without administration of contrast agents and therefore gadolinium / relaxometry

imaging was not available.

In conclusion, better handgrip strength was associated with the CMR-based measures of

cardiac structure and function that are indicative of less cardiac hypertrophy and remodeling.

Those characteristics are known to be negatively associated with CVD incidence. Handgrip

grip strength might, thus, allow early identification of individuals at risk for development of

CVD. Focused surveillance and intervention may improve outcomes, but further research is

necessary to assess whether fitness training can reduce cardiac remodeling and prevent cardio-

vascular events.
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