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Abstract

Exploratory studies using human fetal tissue have suggested that intrastriatal transplanta-

tion of dopaminergic neurons may become a future treatment for patients with Parkinson’s

disease. However, the use of human fetal tissue is compromised by ethical, regulatory and

practical concerns. Human stem cells constitute an alternative source of cells for transplan-

tation in Parkinson’s disease, but efficient protocols for controlled dopaminergic differentia-

tion need to be developed. Short-term, low-level carbon monoxide (CO) exposure has been

shown to affect signaling in several tissues, resulting in both protection and generation of

reactive oxygen species. The present study investigated the effect of CO produced by a

novel CO-releasing molecule on dopaminergic differentiation of human neural stem cells.

Short-term exposure to 25 ppm CO at days 0 and 4 significantly increased the relative con-

tent of β-tubulin III-immunoreactive immature neurons and tyrosine hydroxylase expressing

catecholaminergic neurons, as assessed 6 days after differentiation. Also the number of

microtubule associated protein 2-positive mature neurons had increased significantly. More-

over, the content of apoptotic cells (Caspase3) was reduced, whereas the expression of a

cell proliferation marker (Ki67) was left unchanged. Increased expression of hypoxia induc-

ible factor-1α and production of reactive oxygen species (ROS) in cultures exposed to CO

may suggest a mechanism involving mitochondrial alterations and generation of ROS. In

conclusion, the present procedure using controlled, short-term CO exposure allows efficient

dopaminergic differentiation of human neural stem cells at low cost and may as such be

PLOS ONE | https://doi.org/10.1371/journal.pone.0191207 January 16, 2018 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Dreyer-Andersen N, Almeida AS, Jensen

P, Kamand M, Okarmus J, Rosenberg T, et al.

(2018) Intermittent, low dose carbon monoxide

exposure enhances survival and dopaminergic

differentiation of human neural stem cells. PLoS

ONE 13(1): e0191207. https://doi.org/10.1371/

journal.pone.0191207

Editor: Jozef Dulak, Faculty of Biochemistry,

Biophysics and Biotechnology, Jagiellonian

University, POLAND

Received: July 5, 2017

Accepted: December 30, 2017

Published: January 16, 2018

Copyright: © 2018 Dreyer-Andersen et al. This is

an open access article distributed under the terms

of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This research was supported by the

Lundbeck Foundation (MM, NDA), the Danish

Parkinson Association (MM), IMK Almene Fond

(MM), and the Danish National Research

Foundation (TS, SF; grant no. DNRF118). The

funders had no role in study design, data collection

https://doi.org/10.1371/journal.pone.0191207
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191207&domain=pdf&date_stamp=2018-01-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191207&domain=pdf&date_stamp=2018-01-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191207&domain=pdf&date_stamp=2018-01-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191207&domain=pdf&date_stamp=2018-01-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191207&domain=pdf&date_stamp=2018-01-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191207&domain=pdf&date_stamp=2018-01-16
https://doi.org/10.1371/journal.pone.0191207
https://doi.org/10.1371/journal.pone.0191207
http://creativecommons.org/licenses/by/4.0/


useful for derivation of cells for experimental studies and future development of donor cells

for transplantation in Parkinson’s disease.

Introduction

Parkinson’s disease is a neurodegenerative disorder affecting more than six million people

worldwide [1]. The disease is associated with a progressive loss of midbrain dopaminergic neu-

rons and subsequent depletion of striatal dopamine. Cardinal symptoms include bradykinesia,

rigidity, tremor and postural instability, but non-motor symptoms also occur [2].

Several explorative clinical studies using human fetal ventral mesencephalic tissue have

indicated that intrastriatal transplantation may become a future treatment for Parkinson’s dis-

ease [3–8]. However, the use of human fetal tissue is hampered by ethical concerns, suboptimal

survival of grafted dopaminergic neurons, development of postgrafting dyskinesias in some

patients, and the logistics related to collection and storage of the donor tissue [5,8–13].

Pre-differentiated induced pluripotent stem cells, embryonic stem cells and NSCs represent

potential alternative sources of cells for cell replacement therapy in Parkinson’s disease. NSCs

are self-renewable multipotent cells that can be isolated from the developing and mature ner-

vous system. Such cells may have significant advantages compared to human fetal tissue as

they can be propagated to almost unlimited numbers of relatively homogenous cells in vitro
and frozen without significant loss of viability [14,15]. Nevertheless, efficient, simple and cost-

effective protocols for controlled generation of functional dopaminergic neurons are still not

available.

CO is an endogenous product of heme degradation, a reaction catalyzed by the enzyme

heme oxygenase [16]. This gasotransmitter shows several beneficial biological activities and

has been the target of extensive studies in relation to cardiovascular diseases, inflammatory

disorders and organ transplantation [17]. The great potential of CO in biomedical applications

has prompted development of several delivery strategies of CO for therapeutic or research

purposes. Gas inhalation is the most simple strategy and has been greatly used in pre-clinical

in vivo experiments [18–20]. Cell cultures can also be exposed to CO in gas chambers as

described for neurons [21] and macrophages [22]. Another possible strategy for in vitro
application of CO is the use of CO-saturated solutions [23,24]. Nevertheless, for all these

approaches CO gas bottles are handled with the potential risk of leaking the odorless and

highly toxic gas. Furthermore, gas inhalation is not the most appropriate method for CO

administration in a clinical context, since it promotes increased carboxyhaemoglobin levels as

well as CO delivery to both healthy and diseased tissues. Therefore, CO-releasing molecules

(CORMs) providing controlled CO delivery have been developed [25]. The most studied non-

metal based CORM is boranocarbonate [H3BCO2]Na2 (CORM-A1), which in several studies

has been shown to modulate cytoprotection, hormesis and inflammation [26–28]. There are

also many metal-based compounds studied in biological systems, and the most explored is the

water-insoluble dimer [Ru(CO)3Cl2]2 (CORM-2) and its water soluble derivative Ru(CO)3Cl

(κ2-H2NCH2CO2) (CORM-3). CORM-2 and CORM-3 have been tested in pre-clinical studies

of cardioprotection [29,30], inflammation [31–33], neuroprotection [34–36], transplantation

[37] and pain [38].

In the CNS, the CO/heme oxygeanse axis is a key player in processes involved in cytopro-

tection, vasomodulation, neuroinflammation, cell death, metabolism and cellular redox

responses [39]. CO was first recognized as a neurotransmitter by Verma and colleagues [40],
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and their work led to extensive research on CO and heme oxygenase in the nervous system.

Interestingly, both heme oxygenase and exogenous administration of CO were reported to

stimulate neuroprotection and maintenance of tissue homeostasis in response to various

pathophysiological conditions; including cerebral ischemia [20,36,41–43], cerebrovasodilation

[28,44,45], neuroinflammatory [19,34,35,46], and neurodegenerative diseases [47–49].

The CO-induced pathways and putative targets are a matter of debate. Nevertheless, it is

well accepted that CO activates soluble guanylyl cyclase and nitric oxide synthase, increasing

the cGMP and nitric oxide levels, respectively, whose best described effects are modulation

of vasodilation [50]. In neurons, CO-induced cGMP production is involved in protection

against cell death [21,36,51]. Nitric oxide signaling is related to anti-inflammatory effect of CO

in microglia [32].

In CO pathways, low amounts of reactive oxygen species play a crucial role in precondition-

ing and cytoprotection in neurons and astrocytes [21,24]. Interestingly, Chin and colleagues

have demonstrated CO-mediated stabilization of HIF-1α [52], although it is a controversial

subject [53].

In the present study two major novelties are approached. Firstly, the potential effect of CO

on dopaminergic differentiation of human NSCs is assessed. Secondly, a new strategy for deliv-

ering CO gas is being tested. In this new system, CO is generated by a decarbonylation reaction

using the new CORM methyldiphenylsilacarboxylic acid (MePh2SiCO2H), along with the

non-transition-metal activator potassium fluoride and dimethyl sulfoxide [54]. This strategy

avoids the use of CO gas bottles, thus being safer and more cost-effective than previously

described methods.

Materials and methods

Carbon monoxide releasing molecules (CORMs)

CORMs are chemical compounds typically containing transition-metal carbonyl complexes

that can release CO under certain conditions [55]. We used a crystalline silacarboxylic acid,

which was synthesized from the corresponding chlorosilane via reduction with metallic lith-

ium, and allowed it to react with CO2 [54]. By mixing methyldiphenylsilacarboxylic acid

(MePh2SiCO2H) with the non-transition-metal activator potassium fluoride (Sigma) and the

solvent dimethyl sulfoxide (Sigma) a decarbonylation reaction results in CO-release (Fig 1a)

[54]. For the present study, a plexi-glass chamber was developed (Fig 1b). In order to achieve

controlled CO concentrations we used 1 mg MePh2SiCO2H, 0.3 mg potassium fluoride and

62.5 μl dimethyl sulfoxide per mg MePh2SiCO2H to generate 7.4 ppm CO in the chamber. The

amount of solids required to achieve a predefined level of CO (12,5–100 ppm) were placed in a

glass vial (Supelco) and transferred to the exposure chamber together with the culture plates/

flasks (none of the solids entered the culture medium). The CO concentration in the chamber

was monitored with a Dräger Pac 7000 CO sensor device (Dräger Safety AG & Co. KGaA,

Lübeck, Germany). The chamber was placed at 36˚C, 5% CO2 and 95% humidified air. To

start CO release, dimethyl sulfoxide was lead through a separator in the wall of the chamber

and into the vial with silacarboxylic acid/potassium flouride. A ventilator homogenized the

concentration of gas in the closed atmosphere (Fig 1b). The CO concentration was measured

throughout all experiments (S1 Fig).

Culturing and passaging of NSCs

Tissue procurement was in accordance with the Declaration of Helsinki and in agreement

with national and institutional rules as well as the ethical guidelines of Network of European

CNS Transplantation and Restoration (NECTAR).
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Two human ventral mesencephalic (VM) stem cell lines generated in previous studies

were used (hVMbclXL; hReN). In brief, VM cells were derived from a 10-week-old foetus and

immortalized using a retroviral vector coding for v-myc (LTR-vmyc-SV40p-Neo-LTR), creat-

ing a multipotent cell line (hVM1) [56]. The hVM1 cells were genetically modified (MLV-

based retroviral vector) to over-express the anti-apoptotic gene BclXL (LTR-Bcl-XL-IRES-

rhGFP-LTR), essentially as described by Liste et al. [57].

Fig 1. Chemical reaction releasing carbon monoxide (CO) and experimental setup. (a) The chemical reaction

releasing CO when mixing methyldiphenylsilacarboxylic acid (MePh2SiCO2H), potassium fluoride and dimethyl

sulfoxide. (b) Illustration of the CO gas chamber. (c) Human neural stem cells were plated at day 0, cultured for 4 hrs

followed by one or two 30 min CO treatments. All culture medium was changed at days 4, 6 and 9. hREN VM cell

cultures received CO treatment at days 0 and 4 and were used for immunocytochemistry and Western blotting after 6

days. For experiments with hVMbclXL cells: 1) cultures received CO treatment at day 0 followed by

immunocytochemistry at days 1, 6 and 10, or 2) cultures received CO treatment at days 0 and 4 and were used for

cytokine profiling (day 5), immunocytochemistry (day 6 and 10), Western blotting (day 6) or MTS assay (day 6).

Untreated control cultures were included in all experiments. DIV = days in vitro.

https://doi.org/10.1371/journal.pone.0191207.g001
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Cells were propagated in poly L-lysine (10 μg/ml; Sigma)-coated culture flasks containing

HNSC100 medium (Dulbecco’s modified Eagle’s medium F12 w. Glutamax (Gibco), 2% (v/v)

30% glucose (Sigma), 0.5% (v/v) 1 M Hepes (Gibco), 2.5% (v/v) AlbuMAX-I (Gibco), 1% (v/v)

N2 supplement (Gibco), 1% (v/v) NEAA (Sigma) and 1% penicillin/streptomycin (Gibco))

supplemented with 20 ng/ml epidermal growth factor (R&D Systems) and 20 ng/ml basic

fibroblast growth factor (R&D Systems) at 36˚C, 5% CO2/95% humidified air. Medium was

changed every third day, and cells passaged at 80% confluence. Cells were counted using an

automatic cell counter (S2 Fig).

The hREN VM cell line was derived from a 10-week-old foetus (ReNeuron; Millipore) and

immortalized by retroviral transfection with the oncogene v-myc [58]. hREN VM cells were

cultured as described above.

Neuronal differentiation protocols

NSCs were passaged and plated into poly L-lysine-coated 24-/96-well trays or T75 culture

flasks (Nunc, Sigma) with HNSC100 medium (26,000 cells/cm2). Both cell lines, hVMbclXL

(passage 26–29) and hREN VM (passage 7), were exposed to CO for 30 min (hVMbclXL cells

also for 45 and 60 min). Untreated cultures served as controls.

hVMbclXL cultures either received CO treatment at day 0 followed by differentiation for

1, 6 and 10 days or were exposed to CO at days 0 and 4 and differentiated until day 6 or 10

(Fig 1c).

hREN VM cells received CO treatment at days 0 and 4 and were differentiated until day 6.

The culture medium was changed every third day.

Neurospheres

Cells (hVMbclXL) were plated (233,000 cells/ml medium) in 35 mm petri dishes (Nunc;

Sigma) with 4.3 ml HNSC100 medium containing 20 ng/ml epidermal growth factor and basic

fibroblast growth factor (R&D Systems) and grown at 36˚C in 5% CO2/and 95% humidified

air. Resulting neurospheres received 25 ppm CO for 30 min at days 0 and 4 versus untreated

controls. At day 9, all neurospheres were processed for immunohistochemistry.

Fixation and immunocytochemistry

Monolayer cultures were fixed (20 min) in 4% paraformaldehyde/0.15M phosphate buffer. For

immunocytochemistry cultures were washed in 0.05M tris-buffered saline (TBS) containing

0.1% triton X-100 (Sigma) and pre-incubated (30 min) in TBS/10% donkey or sheep serum

(Gibco). Primary antibodies (24 hrs; 4˚C) were diluted in TBS/10% donkey or sheep serum:

Tyrosine hydroxylase (TH; polyclonal rabbit; Chemicon) 1:600; β-tubulin III (β-tubIII; mono-

clonal mouse; Sigma) 1:2000; human nuclei (HN; monoclonal mouse; Chemicon) 1:500;

microtubule associated protein 2ab (MAP2; monoclonal mouse; Sigma) 1:2000; Ki67 (mono-

clonal mouse; BD Pharmigen) 1:500; active/cleaved caspase3 (Casp3; polyclonal rabbit; R&D

Systems) 1:5000.

Cultures were then incubated for 1 hr with biotinylated anti-rabbit or anti-mouse antibod-

ies (GE Healtcare) diluted 1:200 in TBS/10% donkey or sheep serum followed by 1 hr with

horseradish peroxidase-conjugated streptavidin (GE Healthcare) diluted 1:200 in TBS/10%

donkey or sheep serum. For development/visualization 3,3´-diaminobenzidine (Sigma) was

used.

Neurosphere cultures were fixed (24 hrs) in 4% neutral buffered formalin (Bie&Berntsen),

washed in a NaCl followed by treatment with plasma and thrombin (3:2 ratio). The resulting

fibrin-clot was paraffin embedded and sectioned at 3 μm. Sections were dewaxed in Xylene
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(DAKO) and rehydrated in a graded series of ethanol. Endogenous peroxidase was inhibited

by 1.5% hydrogen peroxide/TBS (DAKO). Heat-induced epitope retrieval (DAKO) was

performed with tris-EDTA-glucose (DAKO) or target retrieval solution (DAKO) buffer

(microwave: 9 min at 900 W, 15 min at 440 W—subsequently 15 min at room temperature).

Afterwards sections were placed in an Autostainer Universal Staining System (DAKO) for 1

hr. HIF1α (1:1000; B&D Systems) in target retrieval solution buffer and carbonic anhydrase IX

(CA9; 1:1000; Novus Biologicals) in cell conditioning1 buffer. Sections were incubated for 30

min with secondary antibodies; Powervision and Optiview for HIF1α and CA9, respectively.

Visualization with 3,3´-diaminobenzidine was followed by staining with Mayer’s Hematoxylin

(DAKO).

Western blotting

Western blotting was performed as described by Krabbe et al. [59]. Membranes were incu-

bated (over night/4˚C) with anti-TH (1:2000; monoclonal mouse; Chemicon) or anti-β-tubIII

antibody (1:2000; monoclonal mouse; Sigma) diluted in TBS/Tween-20, washed, incubated (1

hr) with horseradish peroxidase-conjugated anti-mouse antibody (1:2000; DAKO) diluted in

TBS/Tween-20, developed with chemiluminiscence (SuperSignal1Extended duration sub-

strate; Thermo Scientific), and visualized using a charge coupled device camera. Loading con-

trol: alpha-actin antibody (1:6000; mouse; Chemicon).

Quantitative-Polymerase chain reaction

Messenger RNA was extracted using the High Pure RNA isolation kit (Roche Diagnostics),

and cDNA synthesis was performed using the Transcriptor High Fidelity cDNA synthesis kit

(Roche Diagnostics). PCR was performed using specific forward and reverse primers designed

for: TH (50-CGGGCTTCTCGGACCAGGTGTA-30 and 50-CTCCTCGGCGGTGTACTCCACA-
30), Nurr1 (50-CTGCAAAAGGAGACAATATAGACCA-30 and 50-ATCGTAGACCCCAGTCACA
TAA-30), Dopamine transporter (DAT; 50-TTCCTCAACTCCCAGTGTGC-30 and 50-AGGAT
GAGCTCCACCTCCTT-30), Dopamine beta-hydroxylase (DBH; 50-CTTCCTGGTCATCCTGG
TGG-30 and 50-TCCAGGGGGATGTGATAGGG-30) and ribosomal protein L22 (5’-CACGAA
GGAGGAGTGACTGG-3’and 5’-TGTGGCACACCACTGACATT-3’). Fast Start DNA Master

Plus SYBR Green I (Roche Diagnostics) was applied using the following protocol: denaturation

program, 95˚C for 10 min followed by 45 cycles of 95˚C for 10 sec, 60˚C for 10 sec and 72˚C

for 10 sec.

MTS cell viability assay

Metabolically active, viable cells undergoing proliferation were investigated using the MTS kit

(CellTiter 961AqueousOne Solution; Promega) according to the manufacturer’s instructions

and a Vmax kinetic microplate reader with SoftMax1Pro software (Molecular Devices).

High-performance liquid chromatography

Dopamine and homovanillic acid were assessed in culture medium/extracts derived from cells

differentiated (14 days) according to our standard protocol supplemented by 25 ppm CO (30

min) at days 0 and 4.

Sample preparation; medium: Cells were washed twice in Hank’s balanced salt solution (Life

Technologies), followed by incubation (2 hrs/36˚C) in 200 μl of Hank’s balanced salt solution

containing 10μM nomifensine (Research Biochemicals International). A 100 μl sample was

transferred to HPLC vials containing 50 μl of mobile phase (10% methanol (v/v), 20 g/l citric
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acid monohydrate, 100 mg/l octane-1-sulfonic acid sodium salt, 40 mg/l EDTA dissolved in

Milli-Q water and pH adjusted to 4.0; all from Merck/VWR Chemicals) and stored at -20˚C

until HPLC analysis with electrochemical detection [60,61].

Sample preparation; extracts: After removing the culture medium, 150 μl/well of 0.1 M per-

chloric acid (Merck) with antioxidants (0.2 g/L Na2S2O5, 0.05g/L Na2-EDTA; Merck) was

added. Cells were resuspended in perchloric acid, transferred to dark eppendorf vials on ice,

briefly sonicated and centrifugated (20.000 x g/20 min/4˚C). The supernatant was stored at

-20˚C until analysis.

Multi cytokine array

Conditioned culture medium was frozen (-20˚C), and cells were collected as described for

Western blotting but with the cell pellets dissolved in RayBio1 Cell Lysis Buffer (RayBioech).

Protein concentrations were determined using a protein assay (BioRad). Four membranes

(Human Cytokine Antibody Array-5; RayBiotech) were incubated (30 min/room temperature)

with blocking buffer (RayBiotech), and 1 ml conditioned culture medium or 160 μg cell lysate

(diluted to 1 ml in blocking buffer) was added (incubation; 1 hr/RT followed by 12 hrs/4˚C).

After washing, membranes were incubated with biotin-conjugated antibody diluted in block-

ing buffer (2 hrs/room temperature and 12 hrs/4˚C). Membranes were then incubated with

horseradish peroxidase-conjugated streptavidin diluted in blocking buffer (2 hrs/room tem-

perature), washed, developed with chemiluminiscence (RayBiotech), and visualized using a

charged coupled device camera (Carestream). Densitometric analysis was performed using

Image J software (NIH). Changes >50% relative to control were taken into consideration.

Measurement of reactive oxygen species (ROS)

Determination of ROS in cultured cells was performed by analysis of hydrogen peroxide

(H2O2) formation. H2O2 production was measured with a homogenous bioluminescence

ROS-Glo™H2O2 Assay Kit according to the manufacturer’s protocol (Promega). Briefly, cells

were seeded in 96-well plates (5.000 cells/ well). ROS levels were determined at day 0 (two hrs

after after the first CO exposure) and at day 6 in vitro (two days after the second CO exposure).

The ROS-Glo™H2O2 Substrate was added during treatment (final concentration 25 μM), and

the cells were incubated for an additional hours (37˚C, CO2 incubator). After incubation, 50 μl

medium from each well was transferred to 96-well plates. ROS-Glo™H2O2 Detection Solution

was added (incubation for 20 min) before luminescence was determined using an Orion L

Microplate Luminometer (Titertek Berthold). Luminescence signals were normalized to pro-

tein concentrations determined by the BCA Protein Assay Kit (Thermo Fisher Scientific).

Cell counting

Quantification of cells was performed using bright field microscopy (Olympus). Cells with an

extensive immunostaining and a well-preserved cellular structure were counted in 16 ran-

domly selected areas/well (X200) using an ocular grid (0.5x0.5 mm2).

Statistical analysis

Statistical analysis was performed using Prism GraphPad Software. Sample size estimates

were made by power analysis. Cell numbers were compared by one-way analysis of variance

(ANOVA) followed by Dunnett’s multiple comparisons test. Student’s t-test or the non-

parametric Mann-Whitney U-test was used (depending on data distribution) when comparing

only two groups. p<0.05 (�), p<0.01 (��) and p<0.001 (���).
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Results

Carbon monoxide release

To characterize and validate the reaction from the new CO-releasing molecule (CORM)

MePh2SiCO2H (Fig 1a), the CO concentration was measured in the gas chamber every

minute throughout a 30 min exposure period (Fig 1b). The CO level increased rapidly

after mixing MePh2SiCO2H, potassium fluoride and dimethyl sulfoxide, reaching the desired

concentrations after 5 min and maintaining a constant level during the entire exposure

period (S1 Fig). Calculations of CO concentrations, using available data on the CO (g) solu-

bility in water at 36˚C and 1 atmosphere, revealed relatively low levels of CO in the culture

medium, e.g. 25 ppm CO in the gas chamber would result in approximately 20 nM CO in the

medium.

Effect of CO on stem cell differentiation

To investigate the effect of CO on the dopaminergic differentiation, hVMbclXL cells were dif-

ferentiated for 6 days and received CO (12.5–100 ppm; 30 min) at days 0 and 4 (Fig 1c). The

density of TH-ir neurons increased significantly, when the cells were exposed to CO at 25 and

100 ppm compared to control (control = 8.3±0.9; 12.5 ppm CO = 9.5±1.2; 25 ppm CO = 13.8

±1.1 (p<0.001); 50 ppm CO = 10.6±1.0; 100 ppm CO = 12.1±1.1 (p<0.05); TH-ir cells/mm2;

mean±SEM; n = 29–40; four independent experiments) (Fig 2a). Moreover, the percentage of

TH-ir neurons relative to HN-ir cells (total cells) was significantly higher for cultures exposed

to CO at 25 and 100 ppm compared to control (control = 1.9±0.2; 12.5 ppm CO = 2.1±0.2;

25 ppm CO = 3.6±0.2 (p<0.001); 50 ppm CO = 2.6±0.2; 100 ppm CO = 2.8±0.2 (p<0.05); %

TH-ir cells of total cells; mean±SEM; n = 29–40; four independent experiments) (Fig 2e). Rep-

resentative digital images visualizing the content and morphology of TH-ir neurons are shown

in Fig 2h.

The density of β-tubIII-ir neurons increased significantly in cultures treated with 25–

100 ppm CO compared to control (control = 44.2±2.8; 25 ppm CO = 58.3±3.1 (p<0.01);

50 ppm CO = 58.5±2.3 (p<0.01); 100 ppm CO = 66.5±3.4 (p<0.001); β-tubIII-ir cells/mm2;

mean±SEM; n = 29–40; four independent experiments) (Fig 2b). Furthermore, the percentage

of β-tubIII-expressing neurons of total cells was significantly higher (control = 10.7±0.8;

25 ppm CO = 15.2±0.6 (p<0.001); 50 ppm CO = 15.6±0.8 (p<0.001); 100 ppm CO = 16.4±0.6

(p<0.01); % β-tubIII-ir cells of total cells; mean±SEM; n = 29–40; four independent experi-

ments) (Fig 2f). No differences in total cells were detected (Fig 2c). Representative images of β-

tubIII-ir and HN-ir cells are shown in Fig 2h.

TH and β-tubIII expression was also investigated by Western blotting showing increased

TH expression at 25 and 100 ppm CO compared to control. Moreover, there was indication of

increased β-tubIII expression in all CO treated groups (Fig 2g).

To investigate whether similar effects could be obtained for other cell lines, hREN VM cells

were treated with 25 ppm CO at days 0 and 4. A significantly higher density of β-tubIII-ir neu-

rons was detected for CO treated cultures compared to control (control = 2.9±0.3; CO = 5.7

±0.4 (p<0.001); β-tubIII-ir cells/mm2; mean±SEM; n = 10) (S3a Fig). Total cell numbers did

not differ between the groups (control = 418±9.7; CO = 439±20; HN-ir cells/mm2; mean

±SEM; n = 4). Moreover, the percentage of β-tub III-ir neurons relative to total cells was signif-

icantly higher for the CO group compared to control (control = 0.7±0.07; CO = 1.3±0.08

(p<0.001); % β-tubIII-ir cells of total cells; n = 10) (S3b Fig). Representative digital images of

β-tubIII-ir neurons and HN-ir cells are shown in S3c and S3d Fig. Western blotting analysis

for β-tubIII did not reveal differences in signal intensities between CO treated cultures and
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Fig 2. Dose response effects of short-term carbon monoxide (CO) treatment on neuronal differentiation of

human neural stem cells (hVMbclXL). Quantitative analysis of total cells (human nuclei-immunoreactive (HN-ir)

cells), cells differentiated into tyrosine hydroxylase-ir (TH-ir) and β-tubulinIII-ir (β-tubIII) neurons in 6-day-old

cultures. Cultures received CO treatment (12.5–100 ppm) for 30 min at days 0 and 4. Untreated cells served as

controls. (a) Quantification of TH-ir neurons showed a significant increase for 25 and 100 ppm CO compared to

CO stimulates dopaminergic differentiation
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controls. The number of TH-ir neurons was too low in the hREN VM cell cultures for a valid

comparison of the groups.

In summary, short-term CO exposure during stem cell differentiation has the capacity to

increase both density and relative content of TH-ir and β-tubIII-ir cells.

Effect of short versus longer-term CO exposure and role of differentiation

time

To investigate the potential role of short-term versus longer-term CO exposure, hVMbclXL

cells were treated with 25 ppm CO for 30, 45 or 60 min at day 0 and 4 and differentiated for 6

days (n-16/group; two independent experiments). All treatments resulted in significantly

higher relative contents of TH-ir cells, but no differences between the CO exposure groups

were detected (data not shown).

To address if the effect of CO was transient or long-lasting hVMbclXL cells received CO

treatment (25 ppm; 30 min) at days 0 and 4 and were differentiated for 6 or 10 days (Fig 3). At

day 6 and 10, the content of TH-ir neurons relative to β-tubIII-ir neurons had increased signif-

icantly in the CO treated groups (control 6 days = 24.7±2.1; 25 ppm CO 6 days = 32.2±2.4

(p<0.05); control 10 days = 36.7±1.7; 25 ppm CO 10 days = 45.3±1.9 (p<0.01); % TH-ir

cells of β-tubIII-ir neurons; mean±SEM; n = 17–20; two independent experiments) (Fig 3b).

Furthermore, the relative yields of TH-ir neurons of total cells had increased (control 6

days = 2.9±0.2; 25 ppm CO 6 days = 4.2±0.3 (p<0.01); control 10 days = 5.5±0.3; 25 ppm CO

10 days = 6.5±0.2 (p<0.001); % TH-ir cells of total HN-ir cells; mean±SEM; n = 17–20; two

independent experiments) (Fig 3c). At day 6 and 10, Western blotting analysis indicated

increased signal intensities for β-tub III, and at day 10 TH expression was slightly increased for

cultures exposed to CO compared to control (Fig 3a). Representative photomicrographs of

TH-ir and β-tubIII-ir neurons are shown in Fig 3d and 3e.

To investigate if a single dose of CO would be sufficient to elevate the content of TH-ir

cells, a group of cultures were exposed to 25 ppm CO at day 0 followed by differentiation for 1,

6 and 10 days. No difference was found between CO treatment and control cultures at day 1,

whereas a significant increase in TH-ir neurons was seen at 6 and 10 days after CO treatment

(data not shown). The number of HN-ir cells did not differ between CO treatment and control

cultures at any time point. Consequently, the relative content of TH-ir neurons had increased

significantly at day 6 and 10 in CO exposed cultures compared to controls.

In summary, the positive effect of CO on the relative content of TH-ir cells was not tran-

sient, and it could be obtained even with a single dose of CO.

Effect of CO on neuronal maturation and dopaminergic capacity

To investigate the potential effect of CO on neuronal maturation, numbers of mature MAP2-ir

neurons were quantified in 6-day-old cultures (25 ppm CO; 30 min; day 0 and 4 versus con-

trol). The percentage of MAP2-ir neurons of total cells was significantly higher for CO-treated

control. (b) Quantification of β-tubIII-ir neurons revealed a significant increase for cells treated with 25, 50 and

100 ppm CO. (c) No differences between numbers of HN-ir cells were seen. (d) The percentage of TH-ir neurons of β-

tubIII-ir neurons did not differ between the groups. (e) Exposure to 25 and 100 ppm CO resulted in a significant

increase in the percentage of TH-ir neurons of total cells, and (f) 25–100 ppm CO resulted in a significant increase in

the percentage of β-tubIII-ir neurons of total cells as compared to untreated controls. Data are based on four

independent experiments (n = 29-40/group) and expressed a mean±SEM (�p<0.05, ��p<0.01, ���p<0.001). (g)

Western blotting for β-tubIII showed an increase in signal intensities for all CO treatment groups compared to control.

10 μg protein was loaded per lane and α-actin served as loading control. β-tubIII� 50 kDa; TH� 56 kDa; α-actin�

43 kDa. (h) Digital images of cultures treated with CO expressing TH, β-tubIII and HN. Scale bar = 50 μm.

https://doi.org/10.1371/journal.pone.0191207.g002
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cultures (control = 5.5±0.7; CO = 7.9±0.7 (p<0.05); % MAP2-ir cells of total cells; mean±SEM;

n = 26; two independent experiments) (Fig 4a). Moreover, CO treated cells displayed a more

mature morphology with long and branching processes. Representative images of MAP2-ir

neurons can be seen in Fig 4b.

The expression of catecholaminergic/midbrain-specific genes (TH, Nurr1, DAT and DBH)

was assessed by mRNA quantification using real-time Q-PCR. TH and Nurr1 (Fig 4c) were

increased significantly after CO treatment, whereas DAT levels were lower (not shown). DBH

mRNA levels were also increased after CO treatment (not shown). HPLC analysis revealed a

significant elevation of dopamine levels in cell extracts (Fig 4d) and significantly increased

homovanillic acid levels in conditioned culture medium from cells exposed to CO compared

to controls (Fig 4e). Noradrenaline could not be detected under the chromatographic condi-

tions used.

In summary, CO treatment stimulates neuronal maturation and formation of neurons with

midbrain characteristics.

Mechanisms of action: Effects of CO on cell proliferation, apoptosis,

cytokine profile, expression of hypoxia-inducible factor-1α, and

production of ROS

To address the effect of CO on cell proliferation, hVMbclXL cells received a single dose of CO

at day 0 (25 ppm; 30 min) and were differentiated for 1, 6 or 10 days. The relative content of

proliferative cells did not differ between the groups at any time-point (control 1 day = 32.3

±3.6; CO 1 day = 34.7±3.8; control 6 days = 42.3±1.1; CO 6 days = 44.9±1.8; control 10

Fig 3. Effects of carbon monoxide (CO) on neuronal and dopaminergic differentiation. Quantitative analysis of 6- and 10-day-old cultures

(hVMbclXL) differentiated into dopaminergic neurons by exposure to 25 parts per million (ppm) CO (30 min) at days 0 and 4. Control cells followed

the same protocol but received no CO treatment. (a) Western blotting for β-tubulinIII (β-tubIII) and tyrosine hydroxylase (TH) showed a slight

increase in band intensities after CO treatment compared to controls. 15 μg protein was loaded per lane and α-actin served as a loading control. β-

tubIII� 50 kDa; TH� 56 kDa; α-actin� 43 kDa. (b) At day 10, the percentages of TH-immunoreactive (-ir) neurons of total neurons (β-tubIII) were

significantly higher for the CO treatment groups compared to control. (c) At days 6 and 10 also the percentages of TH-ir neurons of total cells (human

nuclei (HN)-ir cells) were significantly increased for the CO treatment groups (n = 17–20; two independent experiments). Data are expressed as mean

±SEM (�p<0.05, ��p<0.01, ���p<0.001). (d, e) Representative digital images of TH-ir neurons displaying a mature neuronal morphology with long

processes. Scale bar = 50 μm. Con = control.

https://doi.org/10.1371/journal.pone.0191207.g003
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days = 59.9±3.8; CO 10 days = 63.8±4.3; % Ki67-ir cells of total cells; mean±SEM; n = 12–14;

two independent experiments). However, the overall percentage of Ki67-ir cells was found to

increase during the differentiation from day 1 to 10 (Fig 5a). Representative photomicrographs

of Ki67-ir cells are shown in Fig 5b. Further evaluation of metabolically active, viable cells in

proliferation was performed by measuring MTS tetrazolium reduction in 6-day-old cultures

receiving 25 ppm CO treatment (30 min) at days 0 and 4 compared to control. The analysis

revealed no difference between the groups (Fig 5c). In summary, CO does not modulate cell

Fig 4. Characterization of neuronal cells in differentiated cultures. Assessment of neuronal maturation of

hVMbclXL cells receiving 25 parts per million (ppm) CO treatment (30 min) at days 0 and 4 and differentiated for 6,

10 and 14 days. Control cultures followed the same protocol but received no CO treatment. (a) Percentage of

microtubule-associated protein2ab-immunoreactive (MAP2-ir) neurons of total cells showed a significant increase for

cultures treated with CO compared to controls (control = 5.52±0.71; CO = 7.98±0.69 (p<0.05); % Map2-ir cells of total

cells; mean±SEM; n = 26; two independent experiments). Data are expressed as mean±SEM. (b) Digital images of

MAP2-ir neurons showing mature neuronal morphology with long processes. Scale bar = 50 μm. (c) Quantitative

mRNA analysis of hVMbclXL cells receiving 25 ppm CO treatment at days 0 and 4 and differentiated for 10 days.

Control cells followed the same protocol but received no CO treatment. Quantities of mRNA were compared with

mRNA levels at day 0. Tyrosine hydroxylase (TH) and Nurr1 mRNA levels were significantly increased for cultures

treated with CO compared to controls. (d,e) HPLC analysis for dopamine (DA) in cell extracts (n = 10–11; ��p<0.01)

and the DA metabolite homovanillic acid (HVA) in conditioned culture medium (n = 11–12; ���p<0.001) from

untreated controls and cultures receiving 25 ppm CO at days 0 and 4 and differentiated for 14 days. The analyses

revealed significant elevations in both DA and HVA for cultures treated with CO compared to controls.

https://doi.org/10.1371/journal.pone.0191207.g004
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proliferation during neuronal differentiation. To evaluate the potential effect of CO on apopto-

sis, 6-day-old cultures receiving 25 ppm CO treatment (30 min) at days 0 and 4 were immu-

nostained for active/cleaved Casp3. The relative content of Casp3-ir cells was significantly

reduced after CO treatment (control = 0.3±0.03; CO = 0.2±0.02 (p<0.001); % Casp3-ir cells of

total cells; mean±SEM; n = 26; two independent experiments) (Fig 5d).

To address whether CO had an effect on cytokine profiles (conditioned culture medium/

cell lysates), multi-cytokine analysis was performed using hVMbclXL cells receiving 25 ppm

CO (30 min) at days 0 and 4 and differentiated for 5 days versus untreated controls (Fig 6).

Densitometric analysis indicated a reduction in the release of neurotrophin-3 (0.5 fold) and an

increase in neurotrophin-4 (2.4 fold), vascular endothelial growth factor (2.3 fold), and osteo-

pontin (1.9 fold) in cells receiving CO (Fig 6). The conditioned culture medium revealed a

reduction in interleukin-15 (0.4 fold) and interferon-γ (0.5 fold) levels and an increase in insu-

lin-like growth factor binding protein-4 (IGFBP-4; 1.7 fold) after CO treatment (Fig 6).

To investigate whether CO treatment had an effect on HIF1α stabilization and the expres-

sion of a HIF1α regulated enzyme, CA9, hVMbclXL cells were grown in non-adherent culture

until neurospheres were visible. Neurospheres then received 25 ppm CO (30 min) at days 0

and 4 and were grown for 9 days (n = 16–18; two independent experiments). Immunostaining

for HIF1α revealed a significant increase in the number of HIF1α-ir cells for cultures receiving

Fig 5. Effects of carbon monoxide (CO) treatment on proliferation and apoptosis. Assessment of proliferation in

hVMbclXL cells receiving 25 parts per million (ppm) CO at day 0 (30 min) and differentiated for 1, 6 and 10 days and

apoptosis in cultures receiving 25 ppm CO treatment (30 min) at days 0 and 4 and differentiated for 6 days. Control

cells followed the same protocol but received no CO treatment. (a) The percentage of Ki67-immunoreactive (Ki67-ir)

cells of Human Nuclei (HN)-ir cells showed no difference between CO treatment and control cultures at any time-

point (n = 12–14; two independent experiments). (b) Representative digital images of Ki67-ir cells receiving 25 ppm

CO treatment at day 0 and differentiated for 1, 6 and 10 days. (c) Analyses of MTS reduction in cultures receiving

25 ppm CO treatment at days 0 and 4 and differentiated for 6 days did not differ between the groups. (d) The

percentage of active/cleaved Caspase3 (Casp3)-ir apoptotic cells of total cells was significantly reduced for cultures

receiving CO compared to controls (n = 26; two independent experiments). Data are expressed as mean±SEM

(���p<0.001). (e) Digital images of Casp3-ir cells. Scale bar = 50 μm.

https://doi.org/10.1371/journal.pone.0191207.g005
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CO compared to controls (Fig 7a and 7b–7d). Accordingly, neurospheres exposed to CO dis-

played more immunoreactivity to CA9 than untreated controls (Fig 7c).

To investigate whether the observed effect of CO also involved changes in levels of reactive

oxygen species (ROS), ROS was assessed at 2 and 48 hrs after CO treatment (25 ppm, 30 min)

(Fig 7e). The analysis showed that ROS levels were significantly elevated (p<0.001) at both

Fig 6. Effects of carbon monoxide (CO) treatment on cytokine profiles. Semi-quantitative expression profile of cytokines in cells (hVMbclXL) and

conditioned medium from cultures receiving 25 parts per million (ppm) CO treatment (30 min) at days 0 and 4 and differentiated for 5 days compared

to untreated controls. (a) Digital images of signal intensities for representative arrays containing 80 different cytokines plus positive and negative

staining controls. Selected key changes in the arrays, representing the compiled dataset, are highlighted by red (up-regulation) and green circles (down-

regulation). (b) Schematic overview illustrating the different cytokines. Densitometric analysis and comparison of signal intensities indicated an

increase for vascular endothelial growth factor (VEGF), neurotrophin-4 (NT-4) and ostepontin and a relative reduction for neurotrophin-3 (NT-3) in

cells receiving CO compared to controls. The content of cytokines in the medium indicated an increase for insulin-like growth factor binding protein 4

(IGFBP-4) and a reduction in interferon-γ (IFN-γ) and interleukin-15 (IL-15) for cultures treated with CO compared to control.

https://doi.org/10.1371/journal.pone.0191207.g006
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time-points investigated (day 0, two hrs after CO exposure: control = 8593±437 relative light

units (RLU) versus CO group = 15940±402 RLU and day 6, 48 hrs after CO exposure: control

15399±380 RLU versus CO group = 21165±643 RLU; mean±SEM; n = 6; two independent

experiments).

Fig 7. Effect of carbon monoxide (CO) treatment on stabilization of hypoxia inducible factor1α (HIF1α) and levels of reactive oxygen species

(ROS). Assessment of HIF1α-immunoreactive (-ir) and carbonic anhydraseIX (CA9)-ir cells in hVMbclXL cultures propagated as neurospheres. Cells

received 25 parts per million (ppm) CO (30 min) at days 0 and 4 and were grown for 6–9 days. (a, b) Representative photomicrographs of HIF1α-ir cells

in thin sections from CO-treated and untreated neurospheres (insert: negative control; omission of primary antibody (Ab)). (c) Photomicrographs of

CA9, a protein regulated by HIF1α, in sections from neurosphere cultures receiving CO versus control (insert: negative control). (d) Densitometric

analysis of HIF1α-ir cells (values normalized to area of interest) revealed a significant increase in sections from cultures treated with CO compared to

control. Scale bars = 50 μm. (e) Assessment of ROS in differentiating hVMbclXL monolayer cultures at day 0 (2 hrs after first CO exposure) and at day 6

(48 hrs after second CO treatment). At both time-points, ROS levels were significantly elevated (p<0.001) after CO treatment (25 ppm CO (30 min);

RLU: relative light units).

https://doi.org/10.1371/journal.pone.0191207.g007
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In summary, the complex mechanisms underlying the observed effects of CO on stem cell

differentiation involve a reduction of apoptotic cell death, a changed cytokine profile, stabiliza-

tion of HIF1α and elevated ROS levels but do not influence cell proliferation.

Discussion

In the present study, CO was generated by a decarbonylation reaction using the new CORM

methyldiphenylsilacarboxylic acid (MePh2SiCO2H), along with the non-transition-metal acti-

vator potassium fluoride and dimethyl sulfoxide. This new strategy avoids the use of CO gas

bottles, thus being more simple, safer and more cost-effective than previously described meth-

ods. To our knowledge, this is also the first paper to report a positive effect of CO on dopami-

nergic differentiation of human neural stem cells (NSCs). In brief, two stem cell lines were

exposed to low levels of CO during their differentiation. Short-term CO treatment significantly

increased both the numbers and relative yields of β-tubIII-ir neurons, suggesting that CO

treatment stimulates neurogenesis. Moreover, the relative content of TH-ir neurons was signif-

icantly increased after CO exposure (Fig 3), which suggests that CO treatment favors induction

or survival of the catecholaminergic phenotype. Exposure of hVMbclXL cells to CO also

increased the number of MAP2-ir neurons (Fig 4a), indicating that CO affects neuronal matu-

ration. Control experiments using inactive CORMs (iCORMs) confirmed that the observed

effects were due to the release of CO and not the reagents used to initiate the chemical reaction

(S4 Fig).

Many biological effects of CO are associated with generation of low levels of reactive oxygen

species, which act as signaling molecules [21–23,62–64]. CO-induced reactive oxygen species

generation is mainly due to partial inhibition of cytochrome C oxidase [65–67]. Interestingly,

stimulation of reactive oxygen species production is also important for cell signaling during

neuronal differentiation and/or survival of embryonic stem cells, mesenchymal stem cells and

neuronal progenitor cells [21,24,66,67].

In our study, CO treatment did not alter the total number of cells. Furthermore, the MTS

analysis used to assess cell proliferation and viability revealed no change after CO treatment,

which was in line with the unchanged content of HN-ir cells (Fig 5). Thus, it is unlikely that

the applied CO concentrations influenced cell proliferation or were toxic to the cells. This is to

some extent in accordance with studies showing an anti-proliferative effect of CO in other tis-

sues, including vascular smooth muscle cells and T-lymphocytes, through activation of mito-

gen-activated protein kinases and the cell cycle inhibitor p21 [16,68,69].

Interestingly, studies exposing NSCs to low oxygen tension have reported both increased

cell proliferation and dopaminergic differentiation [14,70]. In the present study using CO

exposure in ambient oxygen, dopaminergic differentiation was increased without an increase

in cell proliferation, which suggests other underlying mechanisms than those triggered by low

oxygen.

Previous studies have shown an anti-apoptotic effect of CO treatment on fibroblasts, endo-

thelial cells, astrocytes and cerebellar granule cells [21,23,71,72]. To address whether a similar

effect was present in hVMbclXL cells, cultures were immunostained for active/cleaved Casp3.

The relative content of Casp3-ir cells was significantly reduced after CO, indicating that CO

has an anti-apoptotic effect. However, the number of Casp3-ir cells was very low most likely

due to the over-expression of the anti-apoptotic protein BclXL, which should be taken into

account. Interestingly, Almeida and colleagues have recently demonstrated that CO increases

neuronal differentiation in hippocampal slice cultures, NT2 and SH-Y5Y cells by limiting apo-

ptosis [35]. The specific molecular mechanism by which CO suppresses apoptosis was beyond

the scope of the present study, but it is likely to involve p38 MAP kinases.
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For characterization of the catecholaminergic cell population obtained after CO treatment,

the expression of catecholaminergic/midbrain-specific genes (TH, Nurr1, DAT and DBH) was

assessed by real-time Q-PCR (Fig 4c). Nurr1 is involved in maintenance of midbrain dopami-

nergic activity and is related to dopaminergic differentiation since Nurr1-null mouse-derived

NSCs fail to differentiate and express TH [73,74]. In the present study, Nurr1 expression was

increased after CO exposure, which is in line with the observed increase in TH expression and

release of dopamine and homovanilic acid. This could indicate that a substantial fraction of

neurons was dopaminergic.

The levels of dopamine in neuronal cells can be modulated by the activity of DAT and

DBH. DAT is responsible for dopamine transport from the synaptic cleft, and surprisingly it

was down-regulated after CO treatment. This may be due to the significant increase in the

pool of free dopamine after CO treatment and/or due to the artificial in vitro conditions. The

observed increase in DBH after CO treatment, which catalyses the conversion of dopamine

into noradrenaline, may simply reflect the rise of intracellular dopamine levels as a result of

TH up-regulation.

Semi-quantitative cytokine profiling of cell lysates and conditioned culture medium

showed an increase in vascular endothelial growth factor for CO-treated cultures (cell

lysates) compared to controls (Fig 6). This is consistent with other studies demonstrating

that CO elevates vascular endothelial growth factor levels in astrocytes and cardiomyocytes

[75–77]. Interestingly, a reduction in neurotrophin-3 and an increase in neurotrophin-4

levels were found in cell lysates from cultures receiving CO treatment. No studies have

investigated the effect of CO treatment on neurotrophin-3 and neurotrophin-4, but both

neurotrophins have been reported to be involved in neuronal growth, synapse formation,

maturation and plasticity. Moreover neurotrophin-3 is expressed in NSCs, stimulating their

neuronal differentiation and survival [78–80]. The down-regulation of neurotrophin-3 may

reflect the observed stimulatory effect of CO on neurogenesis and cell maturation leading to

a reduction in the pool of NSCs. On the other hand the observed up-regulation of neurotro-

phin-4 could potentially stimulate further maturation and growth of cells, which, at day 5,

are still undergoing differentiation. An increase in osteopontin expression was also found in

CO-treated cultures, which to some extent is consistent with another study, showing that

heme oxygenase-1 activity increased osteopontin expression and promoted differentiation of

odontoblasts [81].

The cytokine profiling of conditioned culture medium revealed changes for interleukin-

15, interferon-γ and IGFBP-4 after CO treatment (Fig 6). The decrease in interleukin-15

observed for CO-treated cultures could indicate that CO exhibit an anti-inflammatory effect

on NSCs. Previous studies have demonstrated that interleukin-15 is a pro-inflammatory cyto-

kine present in both NSCs and differentiated neurons during inflammation, but it has also

been reported that decreased levels of interleukin-15 in vivo leads to an increase in cell differ-

entiation and reduction in cell proliferation [82–84]. Interestingly, a study culturing rat NSCs

showed that interleukin-15 treatment reduced the number of MAP2-ir neurons thus inhibiting

neuronal maturation [85]. The observed decrease of interleukin-15 found in our study may

therefore have contributed to increased cell maturation as shown by the increased number of

MAP2-ir neurons found after treatment. The reduction in interferon-γ in cultures receiving

CO also suggests an anti-inflammatory role of CO since existing literature describe pro-

inflammatory characteristics of interferon-γ [32].

Previous studies have shown that IGFBP-4 plays a role in the developing brain by stimulat-

ing neuronal differentiation of NSCs. In the present study the increase in IGFBP-4 in cultures

receiving CO could indicate that CO signals through IGFBP-4 to promote cell differentiation

[86,87].
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Culturing of human NSCs at low oxygen tension has been shown to favor their dopaminer-

gic differentiation [59,70,88,89]. During fetal development and even in the adult brain the

physiological oxygen tension is relatively low (1–5%) [90]. Low oxygen tension stabilizes the

transcription factor HIF1α, which leads to up-regulation vascular endothelial growth factor

and erythropoietin [88,91–94]. Previous studies have suggested that also CO can stabilize

HIF1α [52,75,95]. In the present study, immunostaining for HIF1α revealed an increase in

HIF1α expression in cultures receiving CO compared to controls. This, together with the

detected increase in vascular endothelial growth factor, could indicate that the observed effect

CO on NSCs to some extent mimics effects of low oxygen, by stabilizing HIF1α [94,96,97] (Fig

7). However, our additional finding of a significant and long-lasting elevation in ROS levels

after treatment clearly indicates that CO has a more complex mechanism of action.

Conclusion

Short-term treatment of differentiating human neural stem cells with a low dose of CO, pro-

duced by CO-releasing compounds, represents an efficient, simple, cost-effective and safe

method for in vitro derivation of viable dopaminergic neurons with midbrain characteristics.

This finding may have implications for the derivation of cells for experimental studies and

future development of donor cells for potential transplantation in Parkinson’s disease.

Supporting information

S1 Fig. Repeated measure of carbon monoxide (CO) levels in the CO chamber during the

30 min exposure period. Measurements visualized in the figure represent data from the analy-

sis of 4 different CO concentrations (12.5–100 parts per million (ppm)). Data are expressed as

mean±SEM (12.5 ppm: n = 4; 25 ppm: n = 5; 50 ppm: n = 5; 100 ppm: n = 5 at each time point;

4–5 independent experiments).

(TIF)

S2 Fig. Analysis of cells by a NucleoCounter1 NC-200. Neural stem cells (hVMbclXL) were

dissociated using trypsin/EDTA, centrifuged for 5 min at 800 rpm and 4˚C, resuspended in

culture medium and loaded on the automatic cell analyzer. (a) Data on cell viability, cell diam-

eter and density. (b) Image of cells counted in the sample. (c) Graph representing cells stained

with Acridine Orange (AO), marking all viable and non-viable cells and their distribution in a

Via1-Cassette, revealed that 90% of the cells were located in the squared area of counting. (d,e)

The intensity and location of cells stained with AO. (f) Non-viable cells stained with 4’,6-dia-

midino-2-phenylindole and their distribution in the Via1-Cassette. (g,h) The intensity and

location of cells stained with 4’,6-diamidino-2-phenylindole.

(TIF)

S3 Fig. Effects of carbon monoxide (CO) treatment on neuronal differentiation of neural

stem cells. Human REN VM cells were plated in laminin-coated trays at a density of 26,000

cells/cm2 and differentiated for 6 days. One group of cultures was treated with 25 parts per mil-

lion (ppm) CO for 30 min at days 0 and 4. Control cells received no CO treatment. (a) Quanti-

fication of β-tubulinIII-immunoreactive (β-tubIII-ir) neurons showed a significant increase

for CO-treated cultures compared to control. (b) The percentage of β-tubIII-ir neurons of

human nuclei (HN)-ir cells (total cells) was significantly higher for the CO treatment group

compared to control (n = 10). Data are expressed as mean±SEM (���p<0.001). (c,d) Represen-

tative digital photomicrographs of β-tubIII-ir neurons and HN-ir cells in CO-treated and con-

trol cultures. Scale bar = 50μm.

(TIF)

CO stimulates dopaminergic differentiation

PLOS ONE | https://doi.org/10.1371/journal.pone.0191207 January 16, 2018 18 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0191207.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0191207.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0191207.s003
https://doi.org/10.1371/journal.pone.0191207


S4 Fig. Test of inactive carbon monoxide releasing molecules (iCORMs) on dopaminergic

differentiation. To validate that the observed effect of the CORMs on dopaminergic differen-

tiation was mediated by CO, hVMbcl-xl cells were exposed to iCORMs (potassium flouride,

1,25 mg; dimethyl sulfoxide, 0.25 ml) for 30 min at days 0 and 4 and differentiated for 6 days.

Cultures kept under the same conditions but without exposure to CORMs served as a refer-

ence and additional control. At day 6, cultures were immunostained for tyrosine hydroxylase

(TH) and human nuclei (HN; total cells). (a) The relative content of TH-immunoreactive

(-ir) neurons, revealed no significant difference between the iCORM exposure group and the

untreated control group (n = 11–20). Data are expressed as mean±SEM.

(TIF)
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active HIF-1-dependent genes are involved in carbon monoxide-induced cerebral hypoxic stress

response. Eur J Appl Physiol. 2008; 104(1): 95–102. https://doi.org/10.1007/s00421-008-0776-9 PMID:

18560881

96. Fukuda R, Zhang H, Kim J, Shimoda L, Dang CV, Semenza GL. HIF-1 Regulates Cytochrome Oxidase

Subunits to Optimize Efficiency of Respiration in Hypoxic Cells. Cell. 2007; 129(1): 111–122. https://doi.

org/10.1016/j.cell.2007.01.047 PMID: 17418790
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