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Abstract

The maximum entropy (ME) method is a recently-developed approach for estimating local

false discovery rates (LFDR) that incorporates external information allowing assignment of

a subset of tests to a category with a different prior probability of following the null hypothe-

sis. Using this ME method, we have reanalyzed the findings from a recent large genome-

wide association study of coronary artery disease (CAD), incorporating biologic annotations.

Our revised LFDR estimates show many large reductions in LFDR, particularly among the

genetic variants belonging to annotation categories that were known to be of particular inter-

est for CAD. However, among SNPs with rare minor allele frequencies, the reductions in

LFDR were modest in size.

Introduction

Current technologies for measuring genome-wide genetic variation easily capture millions of

variants across the genome. High dimensional genotyping arrays already commonly include

several million variants. Through direct sequencing or by imputation against large previously-

sequenced reference panels where sequencing has been performed[1–3], the number of

assayed genetic variants may increase substantially. Hence, when performing an association

study to identify genetic variation associated with a phenotype of interest, the number of vari-

ants to be tested may easily include many millions of variants[4], most of which will be single

nucleotide polymorphisms (SNPs).

Stringent genome-wide significance thresholds of 5x10-8, established to control the family-

wise error rate (FWER) at approximately 5% for genome-wide testing, have been in standard
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usage in the field of human genetics for many years[5]. Recently, this threshold has been

refined downwards to account for the much larger number of variants tested in sequenced or

imputed data[6]. Certainly, strict application of these thresholds has led to substantially

increased reproducibility of identified genetic associations[7–9].

However, although few positive results are now published when associations meet genome-

wide significance thresholds controlling FWER, power can be severely compromised by the

use of these necessarily very small significance thresholds. Substantial missing heritability has

been seen for many traits and diseases, yet many true loci of small effect may not be identified

due to low power studies.

In order to improve power, many research groups are increasing their sample sizes through

collaborations and meta-analyses (e.g.[3]). Other groups are pursuing analytic alternatives that

relax the genome-wide significance threshold. In particular, strategies that control the false dis-

covery rate (FDR) instead of the family-wise error rate (FWER) often allow testing at much

more liberal significance thresholds[10, 11]. The argument can be made that when performing

millions of tests, that to control the probability of at least one false positive result at 5% is

unnecessarily strict, and that it makes sense to control merely the proportion of false results

among the set of significant results, i.e. the FDR.

Despite the potential benefits of using FDR-defined significance thresholds instead of the

FWER-defined thresholds, control of type 1 errors through the use of a chosen, fixed FDR

threshold may be suboptimal. In fact, the use fixed FDR thresholds incurs a bias and tends to

allow a higher proportion of false positives than indicated by the selected FDR[12]. Therefore,

a better strategy may be to rely on the local FDR (LFDR), which is the probability of a test

result being a false positive, given the exact value of the test statistic[10] (Fig 1).

Power remains low even when FDR methods (or LFDR methods) are used, due not only to

the chosen significance thresholds, but also because the effect sizes of most genetic variants

tend to be small. Furthermore, power is particularly low for variants that have lower minor

allele frequencies—i.e. variants that are uncommon in the population—since the standard

errors associated with the estimated effects are large due to the small number of individuals

carrying the uncommon variants. Additional strategies for increasing power are, therefore, of

great interest. Approaches motivated along these lines include finding subsets of genetic vari-

ants that are of particular interest, and performing significance threshold adjustments that pri-

oritize these subsets. It has been shown that judicious use of good external annotation about

the genetic variants can increase the statistical power to identify associations with low prior

power, and that the significance rankings can be improved[13, 14]. For example, recent studies

have shown that some functional categories of the genome contribute disproportionately to

the heritability of complex diseases.[15, 16] An approach has been developed, using mixed lin-

ear models, to systematically leverage annotation information together with genome-wide

genotype data to identify subset of SNPs that show significant heritability-enrichment[17, 18].

In this paper, we focus on obtaining improved false discovery rate estimates for coronary

artery disease (CAD) through the use of an LFDR method that incorporates external informa-

tion about the genetic variants, leading to a posterior probability of non-association that varies

with the annotations. Similar approaches for the FDR, i.e. methods that stratify or modify the

FDR as a function of external information, have been shown to be effective in reducing the

overall type 1 error rates[13, 19, 20]. Specifically, we implement a new LFDR estimation

method recently developed by David Bickel’s group at University of Ottawa: the ME method

[21], that optimally combines LFDR estimates from a small class of test statistics (for some

genetic variants) with the larger set of all tests[21]. The theoretical framework underlying the

ME LFDR method has been provided in the Appendix. Here, the small class is defined by

external annotation categories that showed significant enrichment of CAD heritability.
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We modelled the p-values arising from the CARDIOGRAMplusC4D genome-wide associa-

tion (GWA) consortium[3] to explore the performance of these new false discovery rate esti-

mators. We selected nine functional categories where heritability of CAD is known to be

enhanced to define high risk subsets of SNPs[22] and we compare LFDR results with and with-

out the use of external annotation information to demonstrate the potential benefits.

Methods

CARDIOGRAM

The p-values from the CARDIOGRAMplusC4D Consortium (http://www.cardiogramplusc4d.

org/data-downloads/) meta-analysis GWA study of coronary artery disease[3] (CAD) were

Fig 1. FDR and LFDR. FDR at a cutoff of 1.95 (p-value 0.05 for a normally distributed test) is the ratio of the area of the light

blue region divided by the area of (beige plus light blue). LFDR compares the height of the dark blue line to the height of the

brown line.

https://doi.org/10.1371/journal.pone.0185174.g001
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extracted for our investigations here. CARDIOGRAMplusC4D included 60,801 cases

and 123,504 controls from 48 studies, and tested for association at 9,455,779 variants. We sum-

marize briefly here the methods used to calculate these p-values; detail can be found in the pri-

mary publication of CARDIOGRAMplusC4D[3]. Imputation was based on the 1000 Genomes

phase 1 version 3 training set with 38 million variants of which over half are low frequency

(MAF< 0.005) and one-fifth are common (MAF > 0.05) variants. After selecting variants that

surpassed allele frequency (MAF> 0.005) and imputation quality control criteria in at least 29

(>60%) of the studies, 8.6 million SNPs and 836K (9%) indels were included in the meta-analy-

sis; of these, 2.7 million (29%) were low frequency variants (0.005< MAF< 0.05). The tests of

significance arising from the meta-analysis, after application of genomic control, were used for

our investigations of LFDR.

LFDR estimation with maximum entropy method

There are several well-known approaches to estimate LFDR[23–28]. In this paper, we used the

recently-developed ME estimation method[21]. In this method, we assume we have several

categories of SNPs where the categorization is obtained from external annotation. Each SNP

may be a member in more than one category or reference set. The ME procedure first calcu-

lates the LFDR in each of the reference sets. For the SNPs in the intersection of two reference

sets, there will therefore be two estimates of LFDR, and the concept of maximum entropy is

then used to obtain a single estimate.

To decide whether a separate or a combined reference class should be used, the ME method

bases the LFDR estimate mostly on the separate reference class if it has enough SNPs for reli-

able estimation and otherwise uses the combined reference class alone [21, 29]. ME is so-called

because it minimizes the relative entropy function over a confidence interval or likelihood

interval constructed based on the separate reference class. If the interval is sufficiently narrow,

the separate reference class has enough SNPs to derive reliable estimates of LFDR. In this case,

the ME method chooses the separate reference class to estimate the LFDR, and the LFDR esti-

mate is the limit of the interval that is closest to the estimate based on the combined reference

class. On the other hand, if the constructed interval is so wide that it includes the estimate of

the LFDR based on the combined reference class, then the separate-class estimate is considered

unreliable. In that case, the ME method estimates the LFDR based solely on the combined ref-

erence class.

Construction of reference sets

SNPs were categorized into 53 overlapping functional categories based on the annotation data

from Finucane et al. [15] and their polygenic contributions to heritability of CAD were esti-

mated using mixed linear models[15, 17, 22]. Nine functional categories showed significant

heritability enrichment (Bonferroni corrected P<0.01). These categories were used to illustrate

the performance of the LFDR method. For ease of presentation, results for three categories

(Hoffman enhancers, H3 lysine 9 acetylation (H3K9ac), and fetal DNAse I hypersensitivity

(DHS) mark (H3K27ac)) are highlighted in the main paper and additional results are in the

Supplement.

Results

The results from CARDIOGRAMplusC4D can be seen in their primary publication[3]. Here,

we used the p-values obtained at 9.45 million variants to estimate LFDR. We define three dif-

ferent levels of “significance” for use in our explorations. Firstly, there are 1,836 SNPs that met

the most stringent threshold of p-values less than 1x10-8 (Table 1)[6], appropriate for genome-
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wide sequencing studies and MAFs down to 0.005. There are 2,213 SNPs with p-values less

than 5x10-8, and 32,508 that are in the tail of the QQ plot that deviates from the null distribu-

tion. For this latter definition, we refer to these SNPs as “P deviated” in Table 1, and the signifi-

cance threshold is 0.001 (i.e 3 on the – log 10 scale). The gene names (if available), p-values,

parameter estimates and MAF for each of the p-deviated SNPs are provided in S1 Table.

Table 1 also shows the proportion of the significant SNPs—by each definition of signifi-

cance—that fall into different MAF bins. SNPs with MAF�0.05 account for 71% of all ana-

lyzed SNPs, but they account for 93.6% of the p-deviated set. To examine these data from

another perspective, SNPs with a frequency less than 1% account for 2.5% of analyzed SNPs

but only 0.32% of deviated SNPs. Therefore, the data indicate that there may be too few SNPs

showing statistical evidence of association at small MAFs, probably due to low power.

To demonstrate the potential of the ME LFDR method, we applied it to nine annotation

categories(22) known to significantly contribute to CAD heritability (Table 2). Changes of

LFDR estimates for all nine categories are shown with violin plots in Fig 2. For any of the

annotations, the largest decreases in the LFDR estimates can be found among the set of

Table 1. Number of SNPs by minor allele frequency bins, as well as the number and percentage of significant SNPs, using several definitions of

statistical significance.

MAF bins <0.001 0.001–0.005 0.005–0.01 0.01–0.05 �0.05 All

# SNPs 0 0 240,423 2,500,103 6,715,230 9,455,778

(%) of row 0 0 2.54 26.44 71.02 100

P deviated* 0 0 103 1,988 30,417 32,508

(%) of row 0 0 0.32 6.11 93.57 100

P<5x10-8 0 0 0 61 2,152 2,213

(%) of row 0 0 0 2.76 97.24 100

P<1x10-8 0 0 0 39 1,836 1,875

(%) of row 0 0 0 2.08 97.92 100

*P deviated: the p-value was in the tail of the QQ plot, after a point of inflexion where the line sloped away from the line of expectation. This includes all

SNPs with p< 0.0074

https://doi.org/10.1371/journal.pone.0185174.t001

Table 2. Observed heritability (h2 obs) and its standard error (SE), expected heritability (h2 exp) and the adjusted P-value from LD-score regres-

sion for enrichment in CAD. Also, the distances between p-value distributions (D-statistics) from Kolmogorov-Smirnov tests are shown, comparing different

MAF groups: (a) [0.005–0.01) vs. [0.01–0.05); (b) [0.005–0.001) vs. (�0.05); (c) [0.01–0.05) vs. (�0.05).

Annotation Category h2 obs (SE) h2 exp P-value (adjusted)(1) # of SNPs (2) KS-test D measure (a,b,c)

Enhancer_Hoffman. extend.500(3) 0.18 (0.03) 0.03 1.1x10-04 401,897 0.030, 0.069, 0.042

H3K9ac_Trynka 0.15 (0.03) 0.02 2.7x10-04 322,412 0.027, 0.074, 0.048

H3K9ac_Trynka.extend.500 0.18 (0.03) 0.04 3.7x10-04 601,848 0.028, 0.072, 0.045

Enhancer_Hoffman 0.14 (0.03) 0.01 4.1x10-04 163,480 0.030, 0.072, 0.044

H3K27ac_PGC2.extend.500 0.19 (0.03) 0.07 3.8x10-03 962,593 0.024, 0.065, 0.041

H3K4me3_Trynka.extend.500 0.20 (0.04) 0.05 3.9x10-03 713,844 0.024, 0.065, 0.042

H3K27ac_PGC2 0.18 (0.03) 0.05 3.9x10-03 768,410 0.024, 0.065, 0.042

H3K9ac_peaks_Trynka 0.11 (0.03) 0.01 4.0x10-03 95,531 0.032, 0.079, 0.049

FetalDHS_Trynka 0.18 (0.04) 0.02 9.1x10-03 255,582 0.022, 0.059, 0.039

(1) Adjusted p-value for enrichment, using a Bonferroni correction
(2) The number of SNPs used for the adjusted p-value
(3) “extend.500” implies that a 500 base pair window around the category was included with the annotation to minimize inflation of heritability from flanking

regions[22]

https://doi.org/10.1371/journal.pone.0185174.t002
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p-values less than 0.01, where a majority of the SNPs show substantial decreases in their

LFDR estimates using the ME method, with any of the three annotation categories. For

smaller p-values (<0.001), the magnitudes of the changes in LFDR estimates are spread quite

uniformly across the possible range. For the Fetal DHS annotation (bottom right in Fig 2),

Fig 2. Changes in LFDR estimates between unadjusted LFDR and LFDR estimated with the ME method, when each of nine functional

annotations are used to define a high risk subset of SNPs. Within each panel, the three distributions are divided by p-value ranges: unadjusted

p<0.05; unadjusted p<0.01; unadjusted p<0.001.

https://doi.org/10.1371/journal.pone.0185174.g002
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which was the least significant LD-score enriched category in Table 2, LFDR decreased by at

least 10% at only 0.66% 4785/722,377 of the SNPs when we used the ME method. However,

SNPs that showed substantial decreases in LFDR were more common for some of the other

annotations. For example, we found a 20% decrease in LFDR for 0.85% of Hoffman enhancer

SNPs (4,530 / 533,446), and a 30% decrease in LFDR for 0.99% of H3K9ac histone modifica-

tions (3200 /322,804). Fig 3 displays the LFDR estimates versus the p-values after using the

ME method, and demonstrates that the benefit associated with the ME method is strongest

for the H3K9ac category, whether with the extended window, or with post-processing fol-

lowing [30]. In agreement with Fig 2, it can be seen that the largest LFDR estimates are

found for the Fetal DHS annotation.

In Fig 4, the changes in LFDR for the Enhancer Hoffman (extended 500bp) annotation are

shown as a function of MAF. Although the differences are not very discernible to the eye, the

distribution of changes in LFDR is more left-skewed when the MAFs are smaller. Kolmogo-

rov-Smirnov (KS) tests were used to compare the LFDR distributions between MAF groups

for all nine functional categories (Table 2). All tests were highly statistically significant

(p<10−16) indicating differences between the distributions. Table 2 shows that the magnitudes

of the distances between distributions in different MAF subgroups, as measured by the D-sta-

tistic of the KS tests, are quite consistent across the annotations. The general pattern is that

LFDR values tend to be smaller for the SNPs in the groups with smaller MAFs, i.e. the LFDR

empirical cumulative distribution (ECDF) for SNPs with MAFs in (0.005–0.01) is shifted to

the right (i.e. lower values) than the ECDF for SNPs with MAFs in (0.01–0.05) or SNPs with

MAF>0.05. We note that since the KS test is rank based, identical test results are obtained

when using p-values or LFDR estimates.

Fig 3. LFDR estimates with the ME method, as a function of the –log(10) of the raw p-values, for all nine SNP annotation

categories considered.

https://doi.org/10.1371/journal.pone.0185174.g003
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Finally, in Fig 5, we focus on SNPs with small MAF (<0.10) and with small LFDR estimates

(LFDR-ME<0.10) for H3K9ac, where only 93 SNPs are selected by this filter. For comparison,

in S1 and S2 Figs, similar results are shown for Enhancer Hoffman and Fetal DHS, where 67

SNPs were selected by the filter for Enhancer Hoffman, and 63 for Fetal DHS). Three-dimen-

sional scatterplots show the relationships between LFDR, MAF and the LFDR change in these

subsets of SNPs. In fact, the SNPs with the larger decreases in their LFDR estimates tend to be

those with larger MAF, and furthermore, the SNPs with the smallest local false discovery rates

Fig 4. Histogram of LFDR differences for three MAF categories using the Enhancer Hoffman.extended.500 annotation. Differences are

on an 0.25 power scale. (Left) MAF between 0.005 and 0.01. (Middle) MAF between 0.01 and 0.05. (Right) MAF greater than 0.05.

https://doi.org/10.1371/journal.pone.0185174.g004
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tend to have MAF closer to the upper bound of 0.10 and to show have only small decreases in

their LFDR with the new method.

Among the selected subset of 93 SNPs from the H3K9ac annotation, rs41423244 on chro-

mosome 12 showed the greatest LFDR decrease of 14.7%, from 24.7% to 9.998%, with a raw

p-value of 1.35x10-4. This SNP lies in the CS gene (citrate synthase), and the gene has been pre-

viously associated with psoriasis, height and celiac disease. Similarly, the SNP with the largest

LFDR decrease among the 67 SNPs highlighted in S1 Fig (Enhancer Hoffman) is rs61877912,

which is located on chromosome 11 in an H3K27ac mark in gene DENND5A. The naïve

p-value is 8.76x10-5; LFDR falls from 18.5% to 9.5% with the ME method. Although no previ-

ous GWAS associations have been reported with this SNP, the gene DENND5A has been

associated with Beta2-glycoprotein plasma levels. Finally, the SNP whose LFDR was most

influenced by use of the fetal DHS mark is rs75274818 on chromosome 12 (naïve p = 6.1x10-5;

LFDR.ME 9.9%; original LFDR 14.5%), located in SLC39A5, a zinc transporter. Again no pre-

vious GWAS associations have been reported with this SNP, but this gene has been associated

with inflammatory skin disease and height.

Discussion

These data showed many associations with CAD as has been previously reported[3]. However,

since power to detect associations with rare genetic variants is usually low, our goal here was to

Fig 5. Scatter plot of the LFDR-ME estimates by minor allele frequency and the decrease in LFDR estimates using the

ME method, when using the H3K9ac annotation.

https://doi.org/10.1371/journal.pone.0185174.g005
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investigate the potential improvements in power associated with a new LFDR method that

incorporates external SNP annotation.

Although the LFDR estimates changed for many SNPs, the LFDR estimates that changed

most due to the use of the ME method were not those that were particularly rare. When we

restricted SNPs to those with MAF <0.1 and LFDR< 0.1, it was always the SNPs near the

upper MAF bound that had the largest LFDR decreases (Fig 5). It seems that the ME method is

improving the power to detect SNPs with p-values that are small; however, among SNPs that

demonstrated genome-wide significance, there were few with small MAFs.

Here, we explored the effect on LFDR estimates by partitioning SNPs into reference sets

using functional annotation categories pointing towards excess risk for CAD that were

obtained from LD-score regression[15]. The approach that led to this categorization of the

SNPs leverages linkage disequilibrium patterns and known regulatory features, and then parti-

tions the heritability for GWAS summary statistics while accounting for linkage disequilibrium

patterns. The process or strategy for determining the best reference class of SNPs is an example

of what is known as the reference class problem; see [31] for references. In general, the poten-

tially-greater relevance of smaller reference classes must be balanced against their greater vari-

ability, as Efron[32] discussed (see also Section 10.4 of [33]). The maximum entropy method is

an attempt to automatically achieve that balance. The ME method can be applied to many

other ways of defining reference classes. For example, a reference set could be derived from

prior evidence for association in the region [13, 19], or many different kinds of functional

annotation. For coding variants, reference sets could be based on whether amino acids are

likely to be affected by a nucleotide change [34, 35]. Annotation can also be based on whether

the SNPs in the set are themselves located in regulatory features or demonstrate conservation

across species[36]. Here, the annotation definition depends not only on whether the SNPs

themselves are annotated, but also whether the SNPs are in linkage disequilibrium with an

interesting annotation, which allows enlargement of the featured reference class. However, in

more generality, LFDR estimates can depend on many kinds of additional information that

allow definition of classes of variants, and the ME method, in particular, is applicable when

there is uncertainty about which reference class should be used.

The general concept of giving different priority to different subsets of hypotheses has been

previously approached in several ways. Stratified FDR estimates can be obtained by separately

calculating the FDR in different classes, and then combining the results[13, 19]. The weighted

FDR method assigns an externally-chosen weight to each test[37], and the prioritized subset

method[38] identifies a subset of SNPs expected to show stronger significance when calculat-

ing FDR. Unlike these methods, ME is designed for estimation of LDFR. Due to the balancing

built into the ME method, if the chosen subsets are not optimal, then the LFDR estimate will

be obtained from the larger reference class, hence providing protection against a poor choice

of annotation.

Some substantial decreases in LFDR were seen in our work—as large as a drop of 0.4 in the

LFDR estimate. Inevitably, these very large changes tended to occur for SNPs where the origi-

nal LFDR estimate was large, and hence these SNPs may not be of great interest. Nevertheless,

the ME LFDR method has the potential to increase the level of interest for pursuing a SNP for

further investigations by using external annotation in a statistically principled way, and we saw

larger reductions in the LFDR. Since all the LFDR estimates calculated here are relevant for

functional annotations shown to be significantly associated with CAD, SNPs associated with

substantially reduced LFDR estimates may be worth further investigation. Therefore, we have

provided a spreadsheet (S1 Table) for all deviated SNPs indicating the LFDR estimates for each

of the nine annotation categories.
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Appendix

Following [39] the ME method is derived as follows. The method assumes that the distribution

of test statistics, ti, follows a chi-square distribution. Under the null hypothesis that there is no

association between SNP i and the disease, the test statistic ti follows the central chi-square dis-

tribution with one degree of freedom and the corresponding density is denoted by g0(.). Under

the alternative hypothesis, the test statistic ti is assumed to follow a non-central chi-square dis-

tribution with one degree of freedom and non-centrality parameter δ. We refer to the corre-

sponding density by gδ(.). Now, let

ci ¼
p0g0ðtiÞ

p0g0ðtiÞ þ ð1 � p0ÞgdðtiÞ

be the LFDR based on observing test statistic ti, where π0 is prior probability of SNPs not being

associated with the disease. To estimate ψi, one would have to estimate the parameters π0 and

δ. If SNP i belongs to both the separate and combined reference classes, the estimation proce-

dure can be based on either a small or a combined reference class selection. For such a SNP,

working only with those SNPs that belong to the separate reference class S, one can get p̂S and

d̂S, as estimates of parameters π0 and δ. Replacing the estimated values p̂S and d̂S in the above

equation leads to ĉ i;S. Alternatively, assuming that all SNPs belong to a combined reference

class C, one might get p̂C and d̂C, as estimates of parameters π0 and δ which results in ĉi;C.

Obviously, ĉi;S might differ from ĉi;C. In this case, one needs to make a careful decision

regarding the choice of a reference class.

Following [39], a likelihood set needs to be constructed. To do so, for all SNPs belonging to

the separate reference class S, define the following likelihood set

LS ¼ t :
LðtÞ
Lðt̂SÞ

�
1

2a ; p0 2 ½0; 1�; d 2 ½d1; d2�

� �

;

where τ = (π0, δ), L(τ) = Pi(π0g0(ti) + (1 − π0)gδ(ti)) is the likelihood function based on SNPs

falling into the separate reference class S, a is a pre-determined threshold, and d1 and d2 are

pre-specified limits of the non-centrality parameter δ, and t̂S ¼ ðp̂S; d̂SÞ is maximum likeli-

hood estimate of τ, i.e. t̂S ¼ argmaxp0 2 ½0;1�; d 2½d1 ; d2 �
LðtÞ. According to [39], we chose a = 3,

d1 = 0.1 and d2 = 50.

The likelihood set Ls provides a set of pairs of (π0, δ) that satisfy the condition
LðtÞ

Lðt̂SÞ
� 1

2a. For

such a pair of (π0, δ), a value of ψi can be computed. Computing ψi values for all pairs of (π0, δ)

of Ls would provide us a range of LFDR values, say ½c
L
i ;c

U
i �. Now, for each ψi, consider the fol-

lowing relative entropy function

Dðci; ĉi;CÞ ¼ ci log
ci

ĉi;C

 !

þ ð1 � ciÞ log
1 � ci

1 � ĉi;C

 !

:

Then ψi,ME, the ME estimate, is the value of ψi that minimizes the relative entropy function

Dðci; ĉ i;CÞ over the interval ½c
L
i ;c

U
i �. By the above procedure, if ĉi;C 2 ½c

L
i ;c

U
i �, then

ci ;ME
¼ ĉi;C. Otherwise, if ĉ i;C < c

L
i , then ci;ME

¼ c
L
i and if ĉ i;C > c

U
i , then ci;ME

¼ c
U
i . For

technical details, readers may refer to [39].
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Supporting information

S1 Fig. Scatter plot of the LFDR-ME estimates by minor allele frequency and the decrease

in LFDR estimates using the ME method, when using the Enhancer Hoffman annotation.

(TIF)

S2 Fig. Scatter plot of the LFDR-ME estimates by minor allele frequency and the decrease

in LFDR estimates using the ME method, when using the Fetal DHS annotation.

(TIF)

S1 Table. Local false discovery rate estimates using the maximum entropy method for nine

annotation categories. Columns include the SNP id (legendrs), chromosome (chr), position

(pos), minor allele frequency (maf), slope coefficient (beta) and p-value (p_dgc) for association

with CAD from the consortium, z-squared (z_sq), and then various LFDR estimates. They are

named for the set of SNPs used (LFDR.ME for the ME method, LFDR.Big for LFDR estimated

from the large set of SNPs, and LFDR.Small for LFDR from the small annotated category) as

well as for which annotation category was used (EH_ext for Enhancer Hoffman extend 500,

H3K9_Try for H3K9ac Trynka, H3K9_Try_ext for H3K9ac Trynka extend 500, EH for

Enhancer Hoffman, H3K27_ext for H3K27ac PGC2 extend 500, H3K4_Try_ext for H3K4me3

Trynka extend 500, H3K27 for H3K27ac PGC2, H3K9 for H3K9ac peaks Trynka and FDHS

for Fetal DHS Trynka). Differences between overall LFDR and maximum entropy LFDR are

also provided (Diff). The gene name is provided if the SNP is in a gene.

(XLSX)
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