
RESEARCH ARTICLE

Constitutive Association of Tie1 and Tie2
with Endothelial Integrins is Functionally
Modulated by Angiopoietin-1 and Fibronectin
Annamarie C. Dalton1, Tomer Shlamkovitch2, Niv Papo2, William A. Barton1*

1 Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, Richmond,

Virginia, 23298, United States of America, 2 Ben-Gurion University of the Negev, Department of

Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Beer-Sheva, 8410501,

Israel

* william.barton@vcuhealth.org

Abstract
Functional cross-talk between Tie2 and Integrin signaling pathways is essential to coordi-

nate endothelial cell adhesion and migration in response to the extracellular matrix, yet the

mechanisms behind this phenomenon are unclear. Here, we examine the possibility that

receptor cross-talk is driven through uncharacterized Tie-integrin interactions on the endo-

thelial surface. Using a live cell FRET-based proximity assay, we monitor Tie-integrin

receptor recognition and demonstrate that both Tie1 and Tie2 readily associate with integ-

rins α5ß1 and αVß3 through their respective ectodomains. Although not required, Tie2-integ-

rin association is significantly enhanced in the presence of the extracellular component and

integrin ligand fibronectin. In vitro binding assays with purified components reveal that Tie-

integrin recognition is direct, and further demonstrate that the receptor binding domain of

the Tie2 ligand Ang-1, but not the receptor binding domain of Ang-2, can independently

associate with α5ß1 or αVß3. Finally, we reveal that cooperative Tie/integrin interactions

selectively stimulate ERK/MAPK signaling in the presence of both Ang-1 and fibronectin,

suggesting a molecular mechanism to sensitize Tie2 to extracellular matrix. We provide a

mechanistic model highlighting the role of receptor localization and association in regulating

distinct signaling cascades and in turn, the angiogenic switch.

Introduction

The human vasculature plays a central role in numerous pathological conditions ranging from
cardiovascular disease, to macular degeneration, stroke, tumor growth and metastasis [1–4].
Perhaps not surprisingly, many signaling proteins are required for proper vascular develop-
ment and function. Yet, studies suggest that Vascular Endothelial Growth Factor (VEGF) and
the VEGF receptors, the integrins (most notably the fibronectin receptor α5ß1 and the fibro-
nectin/vitronectinreceptor αVß3), and the Angiopoietins and Tie receptors are key participants
[5,6]. As our understanding of cellular signaling advances, it becomes clear that signaling cas-
cades are significantly more complex than previously appreciated. It is generally accepted that

PLOS ONE | DOI:10.1371/journal.pone.0163732 October 3, 2016 1 / 24

a11111

OPENACCESS

Citation: Dalton AC, Shlamkovitch T, Papo N,

Barton WA (2016) Constitutive Association of Tie1

and Tie2 with Endothelial Integrins is Functionally

Modulated by Angiopoietin-1 and Fibronectin.

PLoS ONE 11(10): e0163732. doi:10.1371/journal.

pone.0163732

Editor: Lucia R. Languino, Thomas Jefferson

University, UNITED STATES

Received: June 1, 2016

Accepted: September 13, 2016

Published: October 3, 2016

Copyright: © 2016 Dalton et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by CA127501,

http://www.cancer.gov, National Cancer Institute of

the National Institutes of Health WAB.

F31CA165673 http://www.cancer.gov National

Cancer Institute of the National Institutes of Health

ACD. The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0163732&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.cancer.gov
http://www.cancer.gov


multiple signaling networks are coordinated and co-regulated to control normal physiological
processes. Indeed, receptor-receptor interactions on the cell surface can drive changes in recep-
tor conformation, ligand access, and cellular localization, which collectively alter receptor sig-
naling characteristics. This is particularly evident during angiogenesis as Tie, VEGFR, and
integrin receptors cross-talk to synchronously govern endothelial cell survival,migration, and
proliferation in response to a diverse set of environmental cues [7,8].

It has only recently been appreciated that Tie2 activity is spatially and temporally fine-tuned
through its interaction with the functionally related co-receptors Tie1 and integrin cell adhe-
sion receptors α5ß1 and αVß3 [9–12]. The integrin receptors play critical roles in angiogenesis
through inside-out and outside-in signaling in response to their extracellularmatrix (ECM)
ligands. These heterodimeric cell adhesion molecules consist of one α and one ß subunit, the
combination of which confers ligand specificity [13]. Activated integrins assimilate signals
from the surrounding ECM to modify the rigid actin cytoskeleton inside the cell but may also
accept signals from inside the cell to affect their affinity for extracellular ligands [14,15]. At
least nine integrin heterodimers exist in endothelial cells, although genetic experiments in mice
specifically reveal the essential and compensatory roles of the vitronectin/fibronectinreceptor
αVß3 and fibronectin receptor α5ß1 in the regulation of angiogenesis [13,16–18].

Integrins are generally believed to influence and modulate the signaling potential of receptor
tyrosine kinases including; VEGFR2, PDGFRß,HGF, and Tie2 to list a few [19–21]. For exam-
ple, αVß3 and VEGFR2 associate in vivo and sensitize VEGFR2 to VEGF165 in the presence of
vitronectin. VEGFR2-dependent activation of the tyrosine kinase c-src directs phosphorylation
of the ß3 cytoplasmic tail within αVß3 promoting interaction between the two cell surface
receptors in an inside-out signaling manner. Physical association of αVß3 and VEGFR2 is not
only critical for receptor sensitization, but also essential for full activation of VEGFR2 [22–25].

In contrast to VEGFR2, the role of integrins in Tie2 signaling is significantly less clear. Tie2
is an endothelial specific receptor tyrosine kinase that signals in response to the angiopoietin
ligands. The agonist Angiopoietin-1 (Ang-1) promotes endothelial cell quiescence by clustering
Tie2 and initiating pro-survival downstream signaling cascades including the Akt/Survivin
pathway [26]. Alternatively, Angiopoietin-2 (Ang-2) is a unique, context-dependent ligand
whose function depends on the relative availability of the co-receptor and Tie2 homologue,
Tie1 [11]. At high concentrations, Ang-2 behaves as a partial agonist and is capable of activat-
ing the Tie2 receptor [27–29]. However, under physiological conditions and in the presence of
Tie1, Ang-2 behaves as a receptor antagonist preventing Tie2 activation [11, 27–30]. Addition-
ally, Tie1 appears to counter regulate expression of Tie2 on the cell surface, particularly at tip
cells. Therefore, Tie1 not only inhibits Tie2 by directly binding and interfering with active Tie2
clusters, but also inhibits Tie2 signaling via regulation of available protein on the cell surface
[11, 31]. Finally, Ang-2 destabilizes the quiescent endothelium, which results in inhibition of
Tie2 and vessel regression in the absence of VEGF. Alternatively, in the presence of VEGF,
Ang-2 promotes endothelial cell migration and vessel branching [27–28, 32].

Interestingly, both αVß3 and α5ß1 were implicated as additional binding partners of Tie2
and its ligands, Ang-1 and Ang-2 [9–10,12]. For example, Cascone et al. identified a constitu-
tive interaction betweenα5ß1 (but not αVß3) and Tie2, which was significantly enriched by
fibronectin. Intriguingly, integrin association sensitized Tie2 signaling to lower concentrations
of Ang-1, demonstrating a uniquely differential response of Tie2 to changes in co-receptor
association.However, more recent reports have challenged these initial findings. Thomas et al.
describe a transient interaction between Tie2 and αVß3 following stimulation with either Ang-
1 or Ang-2. The authors further reveal that Ang-2 specifically induces FAK recruitment to the
Tie2/integrin receptor complex resulting in integrin internalization and degradation. Under
these conditions, Ang-2 is also capable of activating αVß3 in endothelial cells independent of
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Tie2. Indeed, direct binding of the angiopoietin ligands to integrin molecules has precedent in
endothelial cells and several non-endothelial cell types lacking Tie2, including; neurons, cardio-
myocytes and breast cancer cells. In most cases it remains unclear which ligand, Ang-1 or Ang-
2, is the integrin binding partner [33–40].

The potential for receptor complementation in the integrin family makes it difficult to eval-
uate the role of specific complex components and their influences on Tie receptor signaling,
which likely explains many of the conflicting results [18]. Therefore, we used a number of bio-
chemical and biophysical techniques to evaluate the physical basis for individual Tie-integrin
and Ang-integrin interactions in an effort to clarify the role of integrins in Tie2 signaling. Sur-
prisingly, using purified signaling components; we demonstrate that both receptor homologues
Tie1 and Tie2 associate directly with the endothelial integrins, αVß3 and α5ß1. We further
reveal that the amino-terminal ligand-binding domain of the Tie receptors is sufficient and
essential for integrin recognition, demonstrating that additional cofactors or ligands are not
required for their association. Nevertheless, addition of the α5ß1 ligand fibronectin significantly
stabilizes the integrin/Tie2 complex, raising the intriguing possibility that the extended confor-
mation of the integrin moleculesmay be critical for Tie2 interactions.

Interestingly, we also reveal that the Ang-1 fibrinogen-like domain (Tie2 receptor binding
domain (RBD)), but not that of Ang-2, readily associates with the endothelial integrins both in
the presence and absence of Tie2. Finally, we illustrate that integration of both Ang-1 and
fibronectin ligands stimulate the integrin-Tie2 complex for selective activation of the mitogen-
activated protein (MAP) kinase cascade. Based on our studies, we propose a model for modula-
tion of Tie2 and integrin signaling by ligand association and receptor localization.

Results

Tie1 and Tie2 constitutively associate with the endothelial Integrins αVß3

and α5ß1 on the endothelial cell surface

Integrins associate with multiple growth factor receptors at the cell surface to selectively modu-
late intracellular signaling cascades. Of the nine integrin receptors present in endothelial cells,
αVß3 and α5ß1are essential for regulation of the angiogenic response [16, 37]. Knock out mice
of the integrins αV and α5 phenocopy angiogenic defects of the Tie2 and Ang-1 knockout mice
suggesting potential interactions and signaling crosstalk in vivo [18]. Nevertheless, integrin
receptor compensation has made it difficult to elucidate specific interactions taking place at the
endothelial cell surface.

Therefore, to more precisely define the combined roles of Tie receptors and integrins, we
began by examining the potential of the Tie receptor to associate with endogenous αVß3 in
endothelial cells using co-immunoprecipitation experiments. Tie protein was immunoprecipi-
tated (using a pan-specific anti-Tie antibody) from protein lysates prepared from confluent
EA.hy926 endothelial cells incubated for 30 minutes in the presence of a control vehicle (PBS)
or the Tie2 ligands Ang-1 or Ang-2. Western blots were probed for the presence of αV, and as
illustrated in Fig 1A, antibodies specific to Tie receptors, efficiently precipitate endogenous αV

under all conditions examined, while αV is absent from control immunoprecipitates (using a
non-specific antibody of the same subclass). Quite surprisingly, we find that the total amounts
of precipitated αV fails to significantly change in the presence of either Ang-1 or Ang-2, sug-
gesting that the angiopoietin ligands are not required for integrins and Tie receptor association.
It should, however, be noted that we observe an additional faster-migrating αV-reactive band
that is only apparent in immunoprecipitates from endothelial cells incubated in the presence of
Ang-1. This implies that Ang-1, although not having an effect on Tie/integrin association, does
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have an affect on the modification of Tie2-bound αV, which could possibly include heteroge-
neous glycosylation or proteolytic susceptibility (though we have not investigated further).

Unfortunately, due to the nature of the Tie antibody used for these immunoprecipitation
experiments, in was unclear if αV associated with Tie1, Tie2, or both (EA.hy926 as well as
many other endothelial cells express both of the highly homologous receptors Tie1 and Tie2)
[11]. Thus, to clearly differentiate between specific signaling components of the complex iden-
tified above, we utilized transient transfection experiments in HEK293 cells, which lack endog-
enous Tie1 or Tie2, yet do express α5ß1, αVß3 and αVß5 at low levels [38]. Full-length Tie1,
Tie2, and integrin subunits were cloned with either HA, myc, or FLAG epitopes, respectively,
and transiently transfected into HEK293 cells. Neither Tie2, nor integrin ligands were added
prior to harvest, although it should be noted that there are undoubtedly low levels of integrin
ligands including fibronectin present in the media or secreted from the cells themselves. Briefly,
integrin heterodimers were immunoprecipitated using anti-FLAG antibody from clarified
lysates prepared from confluent cells and probed for the presence of Tie1 or Tie2 using anti-

Fig 1. Tie1 and Tie2 interact with the endothelial Integrins αVß3 and α5ß1 through their extracellular domains. (A) Co-immunoprecipitation of

endogenous αV with Tie receptor in Ea.hy926 endothelial cells. Cells were serum starved and then treated with vehicle control (PBS), 500 ng/mL rhAng-1

or 500 ng/mL rhAng-2 for 30 minutes at 37 degrees Celsius prior to harvest. αV co-precipitated under all stimulation conditions tested when lysates were

incubated overnight with anti-Tie2 antibody, but not when incubated with a non-specific IgG. (B-C) Co-immunoprecipitation of αVß3 and α5ß1 with Tie

receptors from transiently transfected HEK293 cells. (B) Full-length integrins α5ß1 (top panel) or αVß3 (bottom panel) were immunoprecipitated with anti-

flag antibody, while co-precipitating HA-tagged Tie1 receptor or myc-tagged Tie2 receptor were detected by western blot using anti-HA or anti-myc

antibodies, respectively. (C) Same as in (B) alterations in the transfected vectors. Here, Tie1 and Tie2 receptor fluorophore fusion constructs were used in

which the intracellular tyrosine kinase domains were replaced with the GFP analogues sYFP2 and mTQ GFP variants respectively. Co-precipitating Tie1

and Tie2 fusion proteins were detected by western blot with anti-GFP antibodies indicating receptor association within the extracellular domains of the

proteins (α5ß1- top panel and αVß3—bottom panel). WCL- Whole Cell Lysate. IP- Immunoprecipitation. IB: Immunoblotting.

doi:10.1371/journal.pone.0163732.g001
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HA or anti-myc antibodies, respectively. Interestingly, and as illustrated in Fig 1B, both Tie1
and Tie2 efficiently co-precipitate when expressed with either α5ß1 (top panel) or αVß3 (bot-
tom panel) in HEK293 cells. Furthermore, in agreement with our earlier experiments, Tie/
integrin association occurs in the absence of Ang-1 or Ang-2 stimulation.

To further understand the physical basis for this phenomenon, we evaluated the hypothesis
that receptor recognition involved their respective ectodomains. To examine this possibility,
we replaced the intracellular tyrosine kinase domain of the Tie receptors with fluorophore vari-
ants of GFP and repeated the co-immunoprecipitation experiments described above. Previous
studies have demonstrated that Tie2-GFP receptor chimeras, which retain the full ectodomain
and trans-membrane portion of the protein, are functionally similar to full length Tie receptors
as demonstrated by Tie2-GFP’s ability to cluster in response to its agonist, Ang-1 [11,30]. As
shown in Fig 1C, Tie1-GFP and Tie2-GFP receptor chimeras (lacking their respective cyto-
plasmic domains) readily co-immunoprecipitate with either full-length flag-taggedα5ß1 (top
panel) or αVß3 (bottom panel) integrins. Collectively, our results illustrate that Tie/integrin
recognition occurs between their respective ectodomains and further suggest that although
Ang ligands do not dramatically affect Tie/integrin interactions, at least in this context, they
may potentially alter receptor localization and/or cellular signaling.

The Tie receptors associate directly with either αVß3 and α5ß1 and the

Tie2/integrin complex is stabilized by fibronectin

To more precisely define the requirements for integrin association, and exclude the possibility
that an indirect binding partner mediates the Tie/integrin interactions, we utilized purified
protein components in an in vitro binding assay. Individual receptor ectodomains, or variants
of Tie1, Tie2, αVß3, α5ß1, and Ang ligands were expressed and purified from mammalian cells.
Briefly, proteins were expressed as Fc fusion proteins from stably transfectedHEK293 cells,
purified via affinity chromatography on Protein-A Sepharose and in some cases cleaved from
their affinity tag via thrombin or TEV proteolysis, followed by gel filtration chromatography.
Representative purified proteins were visualized by coomassie stain in S1 Fig. Purifiedα5ß1

(12.5nM) was incubated with either the extracellular ligand-binding domain of Tie2-Fc
(33nM) (excluding the fibronectin repeats—designated Tie2 (1–4)) (Fig 2A) or the equivalent
region of Tie1 (33nM) (excluding the fibronectin repeats—designated Tie1 (1–4)) (Fig 2B), in
the presence or absence of recombinant fibronectin (5μg/mL) prior to precipitation of the Fc-
tagged proteins with Protein-A Sepharose.

In agreement with previous experiments, in the presence of either purified Tie1-Fc or
Tie2-Fc, α5ß1 is co-precipitated, illustrating that these receptors proteins interact directly (See
Fig 2A and 2B). Furthermore, because the Tie receptor variants are lacking their membrane
proximal fibronectin type-III repeats, our data also reveals that the integrins recognize the
compact Tie2-ligand binding domain (or equivalent region of Tie1) containing the three Ig
and three EGF repeats. Interestingly, when the experiments are repeated in the presence of full-
length fibronectin, the amount of co-precipitating α5ß1 increases dramatically for Tie2, but
remains relatively constant for Tie1 (See Fig 2A and 2B, and S2 Fig). Alternatively, when a
recombinant protein containing only the 9th and 10th Fibronectin Type III repeats is added
(FN9-10), which retains the principal fibronectin RGD motif that efficiently interacts with
α5ß1, the Tie2/integrin association is unaffected (See Fig 2A). These results demonstrate that
unlike Tie1, Tie2 is sensitive to the presence of full-length fibronectin. Additionally, using Sur-
face Plasmon Resonance, we were able to detect binding of purifiedα5ß1 to immobilizedTie1
protein as shown in Fig 2C. Similar experiments were completed with immobilizedTie2 pro-
tein; however, no binding was detected. Collectively, we interpret this to indicate that
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fibronectin facilitates associate betweenα5ß1 and Tie2, yet does not have an effect on Tie1/
integrin binding. Furthermore, fibronectin likely binds α5ß1 and Tie2 simultaneously, utilizing
a binding site for Tie2 outside of the 9th and 10th FNIII domains of fibronectin.

To further evaluate whether the Tie receptors interact with α5ß1 using the same, or overlap-
ping molecular interface, we examined the effect of excess untagged Tie2 on formation of
Tie1-Fc/ α5ß1 complexes. Specifically, varying concentrations of Tie2 (either 100nM or 600nM)
were co-incubatedwith Tie1-Fc (33nM) and α5ß1 (12.5nM) and analyzed as described above.
Interestingly, as demonstrated in Fig 2D, we reveal that increasing the Tie2 concentration results
in a dramatic decrease in the amount of α5ß1 precipitated with Tie1-Fc, implying that Tie2 effec-
tively competes with Tie1 for α5ß1 binding and that they likely utilize the same (or overlapping)
receptor interface for integrin recognition.Collectively, these results establish that additional cel-
lular components are not required for Tie/integrin complex formation while also precisely defin-
ing the requirements for the Tie Ig and EGF domains in integrin recognition.

The Ang-1 receptor binding domain, but not that from Ang-2, directly

associates with both αVß3 and α5ß1 independently of Tie2

Previous studies have suggested an integrin-dependent yet Tie2-independent function for
angiopoietin ligands in endothelial cells [33,37,39]. Interestingly, the effects of angiopoietins

Fig 2. Direct association between Tie1 and Tie2 and integrins using purified proteins. (A) Purified Tie2(1–4)-Fc protein (33nM) was incubated

with purified α5ß1 ectodomain protein (12.5nM) in the presence or absence of either full-length or recombinant fibronectin (5μg/mL) containing only the

9th and 10th fibronectin type-III repeats (9–10). All purified components were present at the indicated concentrations in 1mL of HBST buffer and

incubated overnight with 25μL ProteinA resin. Following precipitation of Tie2(1–4)-Fc with Protein-A sepharose, proteins were electrophoresed by

SDS-PAGE, transferred to nitrocellulose, and Tie2 was briefly visualized with PonceauS prior to western blotting with α5-specific antibodies. The α5ß1

ectodomain readily precipitates with Tie2, although the addition of full-length fibronectin, but not recombinant, truncated fibronectin (9–10), greatly

enhances the Tie2/integrin interaction. (B) As in (A) using Tie1(1–4)-Fc protein (33nM) incubated with purified α5ß1 ectodomain protein (12.5nM) in the

presence or absence of full-length fibronectin (5μg/mL). Unlike the experiments shown in (A), fibronectin does not significantly enhance the Tie1/

integrin interaction. (C) Surface Plasmon Resonance depiction of purified and untagged α5ß1 binding to immobilized Tie1 (Fc tagged full extracellular

domain protein). Similar experiments were completed with immobilized Tie2, however no interaction was captured. (D) 33nM purified Tie1(1–4)-Fc

protein was incubated with purified α5ß1 ectodomain (12.5nM) in the presence or absence of an increasing amount of Tie2(1–4) untagged protein

(either 100nM or 600nM as indicated). Following precipitation of Tie1(1–4)-Fc with Protein-A sepharose, proteins were subjected to western blotting

with α5-specific antibodies. α5ß1 readily precipitates with Tie1, demonstrating that the Ig and EGF repeats are sufficient for α5ß1 recognition.

Furthermore, Tie2 (1–4) effectively competes with Tie1 for integrin binding, suggesting a shared binding interface of Tie1 and Tie2 on the integrin

molecule. Quantified values represent a normalized ratio of α5 to Tie1(1–4)-Fc.

doi:10.1371/journal.pone.0163732.g002
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also have been described in cell types that lack Tie2, the primary endothelial receptor for the
angiopoietin ligands, including cardiomyocytes, breast cancer cells, and neurons [34–
36,38,40]. Therefore, to further investigate the association of integrins with the Ang ligands, we
repeated our in vitro binding assay using purified Fc-tagged receptor-binding domains (RBD)
of Ang-1 and Ang-2 (the receptor binding domain is equivalent to the fibrinogen-like domain
of the angiopoietins and does not include the coiled coil or super clustering domains of the
ligands). Purified angiopoietin-RBDproteins (50nM) were incubated with either the ectodo-
mains of αVß3 or α5ß1 (12.5nM) in the absence and presence of the Tie2 ectodomain (24nM).
As a positive control, we incubated Ang-1-RBD and Ang-2-RBD ligand with Tie2 to demon-
strate their functional ability to associate with the receptor. As demonstrated in Fig 3A and 3B,
the Ang-1-RBD-Fc fusion protein, but not Ang-2-RBD-Fc, readily precipitates integrin pro-
tein. Interestingly, Ang1-RBD-Fc is capable of binding to the integrin proteins regardless of the
presence of Tie2, indicating that integrins independently associate with Ang-1-RBD and the
Tie receptors. Moreover, the presence of Tie2 does not interfere with the ability of Ang-1-RBD
to bind to either αVß3 or α5ß1.

To further evaluate the role of fibronectin on this interaction, we repeated our binding
assays with Ang-1-RBD-Fc and Ang-2-RBD-Fc fusion proteins (50nM) incubated with α5ß1

integrin (12.5nM) in the presence or absence of fibronectin (5μg/mL). As demonstrated in Fig
3C, we reveal that the amount of α5ß1 that co-precipitates with Ang-1-RBD fails to significantly
change in the presence or absence of fibronectin, while Ang-2-RBD remains unable to co-pre-
cipitate with purifiedα5ß1 independent of fibronectin. Finally, to further demonstrate Ang-
1-RBD’s ability to associate with α5ß1 in isolation, a molar excess of Ang1-RBD was crosslinked
to purifiedα5ß1 using DTSSP and separated using gel filtration chromatography. Chro-
matographic fractions were subsequently analyzed by SDS-PAGE. As observed in Fig 3D,
Ang1-RBD binding to α5ß1 induces a significant shift in the elution profile of Ang1-RBD
(compared to the elution profile of Ang1-RBD alone), consistent with the formation of a 1:1
complex. Complex formation may also be observed in the absence of cross-linker, although the
decreased yield suggests that it remains less stable under these conditions (DTSSP is utilized to
stabilize the complex for structural studies).

The Tie2 / α5ß1 complex is stabilized by fibronectin in live cells

As discussed earlier, addition of fibronectin enhances the amount of Tie2-associated integ-
rin precipitated in our co-IP assays suggesting that it stabilizes Tie/integrin interactions.
Therefore, to further validate our findings and probe the potential role of fibronectin on
Tie-integrin association, we followed the interaction of Tie2 and α5ß1 in the presence or
absence of fibronectin by Förster Resonance Energy Transfer (FRET) microscopy in live
cells. FRET microscopy is a particularly powerful approach for examining real time protein-
protein interactions and has been utilized extensively in our lab to monitor interactions with
Tie2 [11,30]. HEK293 cells were plated on either vehicle or fibronectin coated culture dishes,
transiently transfected with GFP-fused receptor constructs, and imaged between 24 and 48
hours post-transfection. Specifically for these studies, α5-YFP, ß1-mCherry, and Tie2-mTur-
quoise (mTQ) were transiently co-transfected into HEK293 cells and protein localization
and receptor interactions were followed via fluorescence under various conditions. The
fluorophore variants of CFP (mTurquoise/mTQ) and YFP (mYFP or sYFP2) were utilized
for their increased intensity, and in the case of mTQ, display a single exponential decay pro-
file, which greatly simplifies fluorescence lifetime (FLIM)-FRET measurements. We noted
that co-expression of ß1 significantly enhances surface expression of α5-mYFP, and there-
fore, ß1-mCherrywas routinely co-transfected along with α5.
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PLOS ONE | DOI:10.1371/journal.pone.0163732 October 3, 2016 7 / 24



The positive control Tie1-sYFP2/Tie2-mTQ was used to validate our experimental system.
When the two receptors are co-expressed, as illustrated in Fig 4A and 4B, we observe an aver-
age FRET efficiencyof 32.9% +/- 5.5% using sensitized emission on a wide-field fluorescence
microscope, which is comparable to our previously published results [11]. As a negative con-
trol, we utilize the unrelated receptor PlexinA1 fused to YFP along with Tie2-mTQ. For these
receptors, which fail to associate on the cell surface, we observe a significantly decreased FRET
efficiencyof 5.8% +/- 0.4%. Alternatively, when Tie2-mTQ and α5-YFP are co-expressed and
imaged on standard culture dishes, we observe a FRET efficiencyof 17.4% +/- 2.1%, signifi-
cantly above our negative control value, yet approximately half of the signal obtained for Tie1

Fig 3. Direct association between the Ang-1 receptor binding domain and αVß3 and α5ß1. (A) The Ang-1 and Ang-2 receptor binding domains were

expressed and purified as Fc fusion proteins, and incubated at 50nM with purified α5ß1 (12.5nM) in the presence or absence of the Tie2 ectodomain

(33nM). Precipitating proteins were visualized with Tie2 and ß1 -specific antibodies (α5 migrates at the same position as Tie2 and, therefore, α5-antibodies

could not be used). The Tie2 ectodomain readily precipitates with both the Ang-1 or Ang-2 receptor binding domains, while α5ß1 only precipitates with Ang-

1-RBD. (B) Similar to the experiment in (A) using purified ectodomain of αVß3 protein incubated with either Ang-1-RBD-Fc or Ang-2-RBD-Fc. Precipitating

αVß3 was visualized with antibodies specific to ß3. (C) The Ang-1 and Ang-2 receptor binding domain Fc fusion proteins (50nM) were incubated with purified

α5ß1 (12.5nM) in the presence or absence of human fibronectin. Following precipitation of Ang-Fc proteins with Protein-A sepharose, proteins were

electrophoresed by SDS-PAGE, transferred to PVDF, and briefly visualized with PonceauS prior to western blotting with α5-specific antibodies. The α5ß1

ectodomain readily co-precipitates with Ang-1-RBD, but not with Ang-2-RBD. Fibronectin does not appear to significantly influence the Ang-1/integrin

interaction. (D) Direct association between Ang-1-RBD (10μM) and α5ß1 (5μM) by size-exclusion chromatography. Indicated fractions were incubated in

loading buffer with BME for 5 minutes and resolved on a 10% SDS-PAGE gel to separate proteins eluting from the column in reducible crosslinked

complexes. Top panel: Purified α5ß1 ectodomain was chromatographed on a Superdex 200 column and elutes as a single peak at ~12 mL. Middle panel:

Purified Ang-1-RBD elutes from a Superdex 200 as a single peak at ~17 mL. Bottom panel: 5μM α5ß1 purified protein was cross-linked to a 2 molar excess

of Ang-1-RBD using DTSSP and separated on a Superdex 200 column. Under these conditions, Ang-1-RBD now elutes in a complex with α5ß1 at ~11.5

mL.

doi:10.1371/journal.pone.0163732.g003
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and Tie2 (See Fig 4B). Interestingly, however, and in agreement with our co-immunoprecipita-
tion experiments, we obtain a significantly higher FRET efficiencyof 27.7% +/-2.5% when the
cells are cultured on fibronectin. Thus, unlike the angiopoietin ligands, and in agreement with
our in vitro binding experiments, fibronectin appears to dramatically affect and stabilize Tie2/
α5ß1 interactions.

To corroborate our results obtained using sensitized emission, we utilize Fluorescence Life-
time Microscopy (FLIM-FRET) and measure the exponential decay of mTQ fluorescence using
Time Correlated Single Photon Counting (TCSPC) with a femtosecond mode-lockedTi:Sap-
phire laser. In the presence of FRET, the fluorescence lifetime (τ) of the donor fluorophore
decreases substantially and correlates with FRET findings obtained by other methods. Using
conditions, which do not appreciably induce fluorophore bleaching, Tie2-mTQ was deter-
mined to display a single exponential mean fluorescence lifetime of 3.09 ns (See Fig 4C). Simi-
lar values (3.00 ns) were obtained when Tie2-mTQ was co-expressedwith the non-interacting
negative control Plexin-A1-YFP. In contrast, when Tie2-mTQ is co-expressedwith our positive
control (Tie1-YFP), we observed a reduced two-component mean lifetime of 2.3 ns,

Fig 4. Fibronectin increases Tie-integrin association by sensitized emission FRET and FLIM-FRET. (A)

HEK293 cells were transiently transfected with vectors for the indicated receptor fusion proteins and visualized by

fluorescence microscopy. FRET images were obtained for sensitized emission calculations on a wide-field

microscope and representative images are shown. PlexinA1 does not associate with Tie2 and is, therefore, used

as a negative control. Alternatively, Tie1 and Tie2 readily associate on the cell membrane and, therefore, serve as

a positive control. FRET values for n>3 experiments (displayed graphically in (B)), and demonstrate a robust

interaction between Tie2 and α5ß1. Values are depicted +/- Standard Error. * indicates student t-test values of

p < 0.05, ** p<0.01, *** p<0.001 (C) Fluorescence lifetime (FLIM-FRET) measurements were evaluated to

corroborate the values obtained by sensitized emission using a Becker & Hickl TCSPC system. FLIM-FRET

controls not shown here are available in S3 Fig.

doi:10.1371/journal.pone.0163732.g004
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demonstrating significant energy transfer from the donor to acceptor due to close proximity of
the receptors (Shown in S3 Fig). Likewise, in the presence of α5-YFP and in agreement with
our sensitized emission experiments, the Tie2-mTQ mean fluorescence lifetime decreased to
2.55 ns when HEK293 cells were cultured on untreated dishes. Addition of 5 μg/mL fibronectin
protein coated on the imaging dishes, reduced the lifetime slightly more to 2.5 ns corroborating
our earlier FRET results obtained using sensitized emission (See bottom panel of Fig 4C).

A similar interaction was observedbetweenTie1-mTQ and α5-YFP/ß1-mCherry using
acceptor photobleaching FRET microscopy. Similar to sensitized emission, acceptor photo-
bleaching is an alternate method to measure FRET that is just as reliable and sensitive as the
others and has been routinely used to monitor Tie2 interactions in the past. Under these condi-
tions, our positive control (Tie1-sYFP2/Tie2-mTQ) yielded a FRET efficiencyof 16.8% +/-
1.1%, which is similar to that obtained by other methods (S3C and S3D Fig). Interestingly, and
in agreement with our earlier results, we find that when co-expressed, Tie1 and α5 show a sig-
nificant FRET efficiency (11.0%+/- 1.3%) compared to the PlexinA1 negative control (3.4% +/-
1.8%), demonstrating that Tie1 and α5ß1 interact directly on the cell surface. Thus, FRET
microscopy confirms that the interaction betweenTie2 and integrin is enhanced by the addi-
tion of exogenous fibronectin.

Receptor cross-talk modulates MAPK signaling

The integrin and Tie receptors activate distinct signaling cascades including Focal Adhesion
Kinase (FAK), MAPK (ERK1/2), and Akt, which individually elicit diverse physiological effects
on endothelial cells. In an effort to identify the downstream effects brought about by integrin/
Tie interactions, we monitored activation of these signaling pathways following exposure of
Telomerase-Immortalized Microvascular Endothelial (TIME) cells to either the Tie2 receptor
ligands, Ang-1 and Ang-2, or the ECM component and integrin agonist fibronectin. Briefly,
suspended TIME cells were incubated with shaking for one hour in serum and growth factor-
free EBM-2 media and plated with or without Angiopoietin ligand on PBS-treated plates or
plates that had been previously coated with fibronectin. To follow activation of specific signal-
ing cascades, we monitored FAK, MAPK (ERK1/2), and Akt protein phosphorylation in west-
ern blots of cellular lysates harvested following a brief 15 minute incubation (longer time
points are shown in S4C Fig).

FAK is a well-characterizedpartner of integrin molecules that primarily regulates actin cyto-
skeletal rearrangements, facilitating motility and cell spreading. Integrin activation of FAK can
be robustly followed using antibodies against tyrosine-phosphorylated FAK residue Y397 [41].
As shown in S4A Fig and Fig 5A, cells plated on fibronectin demonstrated a consistent and sig-
nificant increase in Y397 phosphorylation of FAK. Alternatively, the presence or absence of
angiopoietin ligand had little effect on FAK activation. Similarly, the combination of either
Ang-1 or Ang-2 in addition to fibronectin had no effect over that seen with fibronectin alone at
15 minutes. Finally, to verify FAK activation is dependent on α5ß1, we efficiently reduced the
levels of α5 protein by lentiviral-mediated shRNA delivery, as demonstrated in Fig 5E. As
expected, cellular FAK phosphorylation was not significantly stimulated above basal levels in
response to fibronectin in α5-silenced cells (See Fig 5C). Thus, integrin activation, at least eval-
uated by FAK signaling, does not seem significantly modulated by the Tie2 ligands Ang-1 or
Ang-2 under these conditions.

We next examined the Akt signaling cascade for activation by integrins and Tie2 [42]. First,
we examined Akt activation in response to the Tie2 ligands Ang-1 and Ang-2. As expected,
cells cultured in the presence of Ang-1 display elevated levels of phosphorylated Akt (using
anti-pT308 antibodies) (S5B Fig). Alternatively, levels of activated Akt were not significantly
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Fig 5. MAPK is cooperatively regulated by the Tie2/Integrin complex in response to Ang-1 and fibronectin.

Serum starved telomerase-immortalized endothelial cells (TIMEs) were plated for 15 minutes on control treated or

fibronectin treated dishes with vehicle stimulation, 500 ng/mL full length Ang-1, or 500 ng/mL full length Ang-2. Cell

lysates were resolved by SDS-PAGE and analyzed for p-FAK (Y397) / FAK (A) and p-ERK1/2 (T202/Y204)/ ERK

(B) after treatment. (C and D) Integrin α5 protein levels were decreased using shRNA in TIME cells. (C) Ang-1

stimulated shControl cells or sh-α5 TIME cells were plated on either PBS treated or 5 μg/mL fibronectin treated

plates, lysed, and probed as above for p-FAK (Y397) / FAK (C) or p-ERK1/2 (T202/Y204) / ERK1/2 (D). (E) Levels

of α5 protein were monitored in control and silenced cells via western blotting. Actin was used as a loading control.

Error bars represent the standard error of 3 independent experiments. * represents student t-test values of

p < 0.05.

doi:10.1371/journal.pone.0163732.g005
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affected in endothelial cells stimulated with Ang-1 yet expressing diminished levels of α5 (S5B
Fig). Additionally, levels of activated Akt did not increase in the presence of fibronectin alone;
therefore, we did not examine Akt further (See S5A Fig).

Finally, MAPK activation was specificallymonitored by western blotting with anti-phos-
pho-MAPK antibodies [43]. As shown in Fig 5B and S5C Fig, neither the Tie2 ligands Ang-1
or Ang-2, nor the α5ß1 ligand fibronectin alone significantly affect MAPK activation at the 15
minute time point in our assay. At later time points, fibronectin treatment induces a slight
increase in MAPK phosphorylation while Ang-1 has no significant effect (See S5B Fig). Inter-
estingly, at the 15 minute time point, only the combination of Ang-1 and fibronectin is capable
of significantly stimulating MAPK phosphorylation. Alternatively, neither Ang-2 nor the com-
bination of Ang-2 and fibronectin significantly affect MAPK activation.

Importantly, our results are reminiscent of prior studies demonstrating that α5ß1 can pro-
mote prolonged MAPK signaling downstream of VEGFR2 in the presence of matrix-associated
VEGF. Likewise, although the absolute change in MAPK stimulation is modest in the presence
of both Ang-1 and fibronectin (~1.6 fold), the relative level is consistent with that observed for
matrix-boundVEGF stimulation of MAPK by VEGFR2 and α5ß1 reported by Chen et al. (~1.7
fold) [25].

To further clarify the role of α5ß1 in this process, we repeated the assay using either control
or α5-silenced endothelial cells as described above. Once again, we observe an increase in
MAPK phosphorylation when control cells (shControl) expressing a scrambled shRNA con-
struct are stimulated with both Ang-1 and fibronectin. Alternatively, when α5 protein levels are
substantially decreased,we fail to observe an increase in MAPK activation following Ang-1
and fibronectin addition (See Fig 5D). Therefore, under these conditions, α5ß1 activation is
required to stimulate MAPK signaling in response to Ang-1 and fibronectin.

Finally, to identify the functional significance of our activity assays, we followed endothelial
cell adhesion in the presence and absence of fibronectin, Ang-1, or the combination of the two
ligands. Interestingly, we find that although adhesion is unaffected in the presence of either
ligand alone, the combination of fibronectin and Ang-1 significantly increases the number of
adherent cells at 30 minutes. Indeed, under experimental conditions comparable to the afore-
mentioned activity assay, cells were allowed to adhere to PBS treated or fibronectin coated
wells in the presence or absence of Ang-1. As revealed in S5 Fig, the combination of the two
ligands leads to a significant increase in adhesion compared to the PBS control, which is not
achieved by either Ang-1 or fibronectin alone. Importantly, the requirement for integrin is
clear, as endothelial cells silenced for α5 no longer demonstrate a similar increase in adhesion
under the same experimental conditions. Collectively, our data suggests a cooperative signaling
event coordinated by the Tie2 and integrin α5ß1 signaling axis that promotes rapid cellular
adhesion and activation of the MAPK pathway, a response that was not seen with either ligand
alone.

Discussion

The phenotypes of the integrin αV and α5 null mice overlap substantially with those of the Tie2
and Ang-1 knockouts, suggesting that the two cooperate in vivo. Yet, compensation within the
integrin family has prompted conflicting reports of their role in Tie signaling. Thus, to clarify
the role of Tie/integrin receptor function, we utilized a combination of biochemical assays with
purified protein components in conjunction with more complex cellular experiments.We
reveal that the Tie receptors (both Tie1 and Tie2) constitutively associate with the endothelial
integrins αVß3 and α5ß1. Although the Tie2/αVß3 complex has been loosely characterized pre-
viously, this is the first demonstration of a cell membrane partner for Tie1, aside from the
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recently describedTie1/Tie2 complex [11]. It is tempting to speculate that the ability of Tie1 to
bind integrin receptors may provide an attractive explanation for the phenotype of the Tie1
null mouse, which perishes primarily from edema and hemorrhaging. Specifically, we would
hypothesize that Tie1 is tethered to the basement membrane through interactions with the
integrin molecules at sites of endothelial quiescence, providing additional stability to the endo-
thelial cell. This would explain Tie1’s important role in endothelial integrity and response to
alterations in shear stress [44–46]. The novel finding that Tie1 can couple with integrin mole-
cules could, therefore, have significant implications for future therapies.

We further demonstrate that Tie/integrin recognition occurs readily in the presence or
absence of the Tie2 ligands Ang-1 or Ang-2, and occurs through their respective extracellular
domains, specificallywithin the three Ig and three EGF domains of the Tie’s. Furthermore, we
reveal that Tie2/integrin interactions, but not those of Tie1/integrin, are specifically regulated
by the ECM component fibronectin.However, Tie1 and Tie2 interactions with the integrins
are mutually exclusive, suggesting that under certain conditions, integrin-Tie recognitionmay
displace the inhibitory co-receptor Tie1 from the Tie1/Tie2 complex. Indeed, a dynamic equi-
librium on the endothelial cell surface may dictate the formation of discrete membrane micro-
domains containing distinct Tie2 signaling complexes. Despite our detailed analysis with αVß3

and α5ß1 integrins and fibronectin, it remains unclear if additional integrin heterodimers or
ECM components also associate with Tie signaling proteins. Therefore, it is interesting to spec-
ulate that the potential for different integrin homodimers to associate with Tie receptors,
would also enable distinct ECM components to selectively modulate specific signaling cas-
cades. Thus, in light of the observation that only Tie2-integrin recognition is sensitive to, and
significantly strengthened by, the integrin ligand fibronectin, one might predict that ECM
components within the basal membrane, or in the nascent ECM observedby migratory endo-
thelial cells during angiogenesis, for example, would greatly influence the equilibrium of Tie2
found in complex with either Tie1 or integrins. In this regard, it should be noted that several
aspects of our complex mirror the well-characterizedVEGFR2 interaction with integrin mole-
cules, which is stabilized by the αVß3 ligand, vitronectin. Furthermore, both Tie2 and VEGFR2
receptors display enhanced signaling potential in the presence of both integrins and matrix-
associated Ang-1 or VEGF, respectively [21–25]. Mechanistically, the altered signaling charac-
teristics may be a reflection of integrin-induced localization and recruitment of downstream
signaling effectors.

Interestingly, previous studies concluded that Tie2 localization within the endothelial cell
plasma membrane is critical for determining its unique signaling characteristics [47,48]. For
example, in confluent endothelial cells in culture, Tie2 primarily promotes cell survival and
vessel quiescence through Akt activation. Alternatively, Tie2 activation within sparse cells, or
those lacking significant cell-cell contacts, predominantly enhances cellular proliferation and
migration through stimulation of the MAPK signaling cascade. Though the exact molecular
mechanisms behind this phenomenon were previously unknown, these observations can be
collectively explained by our findings.

We also analyzed the binding of purified angiopoietin ligands to the integrins αVß3 and
α5ß1. The angiopoietins have been shown to have biological effects on cell types other than
endothelial cells including breast cancer cells, cardiomyocytes, and neurons [34–36, 38, 40].
Ang-1 was shown to impact cardiomyocytes and neurons, cell types that lack the primary
angiopoietin receptor Tie2, while Ang-2 was demonstrated to have metastatic effects in breast
cancer cells through ß1 integrin. The ability of the angiopoietins to interact with another ubiq-
uitous receptor type significantly increases the scope of this ligands function. Both Angiopoie-
tin-1 and -2 have been previously implicated as potential binding partners, however in our
assay, the receptor binding domain of Ang-1, but not that of Ang-2, binds directly to the
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integrin moleculesαVß3 and α5ß1 in the absence of other protein components using pure pro-
tein IPs and gel filtration analysis. Interestingly, Ang-1 lacks a canonical integrin recognition
RGD sequence suggesting that a novel interface is likely employed. In agreement, we find that
fibronectin binding does not compete, nor facilitate Ang-1/integrin association.

We were surprised to observe that Ang-1/integrin association did not appear to significantly
stabilize the Tie2 / integrin complex (Figs 1A and 3B), though it also didn’t interfere with Tie2
binding. The amino-terminus of each integrin subunit mediates heterodimer formation to cre-
ate the “head” domain responsible for association with the extracellularmatrix component
ligand. Functional regulation of the integrins is controlled by large conformational changes in
the extracellular domain, which may form either a significantly bent inactive conformation in
which 2000Å2 of surface area is buried, or a significantly more solvent exposed and extended
conformation. The extended conformation may itself also exist with either a “closed” head con-
formation similar to that in the inactive bent conformation, or an “open” head conformation
that allows for ligand ligation [49–52]. Since integrin-ligand recognition induces extension of
the receptor, and fibronectin binding regulates Tie2/integrin association, we might predict that
Tie2 preferentially recognizes the extended and activated conformation. However, in light of
the observation that Tie1 and Tie2 compete for binding, and Tie1/integrin association is not
regulated by ligands, it would appear more likely that fibronectin stabilizes the Tie2/integrin
complex by actively binding both integrin and Tie2. Our hypothesis is supported by the obser-
vation that recombinant fibronectin spanning only the 9th and 10th fibronectin type-III
repeats efficiently binds α5ß1 and induces receptor extension, but unlike the full-length protein,
does not enhance Tie2/integrin association.

Finally, as mentioned earlier, several previous studies have documented specific interactions
betweenAng-2 and various integrin heterodimers [34–36, 38, 40]. Unfortunately, we were not
able to establish direct binding betweenAng-2 and either αVß3 or α5ß1 in our pure protein
assays. However, it should be noted that for our binding assays, we utilized the fibrinogen-like
receptor-binding domain of the angiopoietin ligands, Ang-1 and -2, which are significantly eas-
ier to express and purify than the full-length ligands. Thus, it should be noted that for Ang-2,
we are unable to rule out the possibility that specific interactions with integrin receptors may
occur outside the fibrinogen-like domain. In this regard, Hakanpaa et al. recently reported an
interaction between the amino-terminal region of Ang-2 and the integrin ß1 subunit [53]. Sim-
ilarly, studies in HUVEC’s show an interaction betweenAng-2 and αVß3, α5ß1, and αVß5, uti-
lizing the full-length protein [10]. Thus, while Ang-1 uses the fibrinogen-like domain for
integrin association, Ang-2 may alternatively utilize the amino-terminal coiled-coil domain.
Additional studies will be required to assess if the Ang-2 interactions are also direct, and indeed
utilize the amino-terminal coiled-coil domain as proposed.

To incorporate the physical interactions and signaling data presented, in addition to previ-
ously reported data highlighting the spatial and temporal regulation of Tie2, we propose the
following model (Fig 6). In a quiescent endothelium, Tie2 primarily localizes to cell-cell con-
tacts where Ang-1 can act as a bridge to associate Tie2 molecules in trans and increase the sta-
bility of endothelial cell junctions, as shown previously [47,48]. From these Tie2 clusters at cell
junctions, Ang-1 promotes pro-survival signaling through Akt and its downstream effectors.
Alternatively, Tie1 is known to play an important role in shear stress and is up-regulated at vas-
cular branch-points where there is increased force exerted on the endothelial cells by turbu-
lence and non-laminar flow. Thus, at cell-extracellularmatrix contact points in the resting
endothelium, Tie1 and integrin receptors likely form a complex that strengthens the integrity
of the wall to the basement membrane. Additionally, Tie1 knockout mice exhibit increased
hemorrhaging and edema, a phenotype that has not been well understood in the field. Cross-
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talk between integrins and Tie1 could explain this distinct phenotype due to decreased adhe-
sion to the surrounding extracellularmatrix.

During vessel branching, post stimulation with VEGF and Ang-2, endothelial cells detach,
reduce cell junction contacts and begin to migrate. Under these conditions, we postulate that
Tie2 is redistributed following dissolution of the endothelial cell-cell contacts, where it is able
to associate with the integrins contacting extracellularmatrix. With Ang-1 attached to extracel-
lular matrix components through its free cysteine, Tie2 and the integrins coordinately signal
through MAPK to promote migration and proliferation of branching vascular endothelial cells.

Fig 6. Proposed model of Integrin Tie2 cooperative signaling in endothelial cell regulation. (A) Based on

previous studies, it is known that Ang-1 clusters Tie2 at cell-cell junctions in endothelial cells while providing pro-

survival signals through the AKT and Survivin signal transduction pathway [30,46,47]. Alternatively, Tie1 may

associate with integrins, including either αVß3 or α5ß1, which are preferentially localized at the cell interface with

the basement membrane containing extracellular matrix components. A link between Tie1 and the extracellular

matrix could explain a role for Tie1 in vessel integrity and sheer stress that has previously been described [43–45].

(B) When Tie2 is not at junctions, it is likely capable of associating with integrins. Activation of integrin-associated

Tie2 via Ang-1 and fibronectin may enrich signaling through MAPK to further facilitate endothelial cell migration

and proliferation.

doi:10.1371/journal.pone.0163732.g006
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Materials and Methods

Cell culture and manipulation

HEK293, HEK293t, and EA.hy926 cells (ATCC) were cultured in Dulbecco’s Modified Eagles
Medium (Invitrogen) with 10% Fetal Bovine Serum (Gemini Bio-Products), 100 U/mL Penicil-
lin and 100 μg/mL Streptomycin (Gibco Life Technologies). Transfections were performed
when cells reached 80–90% confluence using Lipofectamine 2000 (Invitrogen) according to
manufacturers instructions either in 6-well dishes for immunoprecipitations (Greiner) or 35
mm glass bottom culture dishes for imaging analysis (MatTek). Equimolar concentrations of
plasmid vectors were used for transfections when necessary. Telomerase-immortalized micro-
vascular endothelial (TIME) cells (ATCC) were grown in Endothelial Basal Media-2 (EBM-2)
supplemented with the Endothelial Growth Media-2 (EGM-2) Microvascular (MV) Single-
Quot kits (Lonza).

Lentiviral-mediated protein silencing

HEK293t cells were transfectedwith the pGipz control vector or the pGipz shRNAmir contain-
ing plasmids targeting α5 (clone number 133433) or αV (clone number 133468) using the
Arrest-In lipid transfection reagent (ThermoScientific) in serum and antibiotic free media.
After three hours of incubation, DMEM containing 10% FBS, 100 U/mL Penicillin and 100 μg/
mL Streptomycin was added. After an additional 48 hours the virus was harvested from the
media following clarification by centrifugation at 3000 rpm for 20 minutes. The viral superna-
tant was directly added to ~80% confluent TIME cells and incubated for 48 hours. Transduced
cells were selected using 1 μg/mL of puromycin (Invitrogen) until the cells were 100% GFP pos-
itive. Protein levels were checked by western blot using antibodies to α5 (1: 1000 dilution, Cat.
4705, Cell Signaling),αv (1:1000 dilution, Cat. 4711, Cell Signaling) and Actin proteins (1:5000
dilution, A2228, Sigma Aldrich).

Co-immunoprecipitation

6-well dishes (Greiner) were treated overnight with either PBS (Invitrogen) or 5 μg/mL fibro-
nectin (R&D systems) diluted in PBS as indicated. For immunoprecipitations of endogenous
protein, EA.hy 926 cells were grown on treated dishes until confluent, starved in serum free
media for 4 hours and treated with vehicle, Ang-1 or Ang-2 (R&D) at 500 ng/mL for 30 min-
utes at 37 degrees Celsius. Cells were rinsedwith cold PBS and scraped from the plates in 1%
NP-40 lysis buffer (20 mM Hepes pH 7.4, 150 mM NaCl, 1 mM EDTA, and 1% NP-40 supple-
mented with PhosStop and Complete (Roche)). Lysates were incubated on ice for 10 minutes
and spun at 15k rpm for 5 minutes. Clarified lysate (0.5 mg) was incubated with 25 μL of Pro-
tein-A beads in 20 mM Hepes pH 7.4, 150 mM NaCl, 0.1% TritonX-100 buffer (HBST) for 1
hour alone. The supernatant was transferred to fresh beads and incubated with 2 μg of Tie2
C20 antibody (sc-324 Santa Cruz) or control overnight at 4 degrees Celsius while rotating.
Beads were washed twice with HBST and once with HBS before addition of 1x SDS dyes and
resolution on a 10% SDS polyacrylamide gel. Protein was transferred to nitrocellulose and
immunoblotted using an anti-αV antibody (1:1000 dilution, Cat. 4711, Cell Signaling).

HEK293 transfected cell lysates were immunoprecipitated in a similar manner with 1 mg of
lysate, 2 μg Flag antibody (Syd Labs) or IgG control, and 25 μL of Protein-A beads overnight.
Anti-GFP (1:5000 dilution, Cat. MMS-118R, Covance), anti-HA (1:5000 dilution) (12CA5),
anti-myc (1:5000 dilution) (9E10) and anti-Flag antibodies were used for immunoblotting.

Pure protein immunoprecipitations were incubated overnight with all proteins at 2.5 μg/mL
unless specifically indicated in the figure (α5ß1 = 12.5nM, Tie2(1–4)-Fc = 33nM, Tie1(1–4)-
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Fc = 33nM, Tie2 full ectodomain = 24nM, Ang1-RBD-Fc = 50nM, Ang2-RBD-Fc = 50nM) in
1 mL of HBST buffer and 25 μL of ProteinA beads. Beads were washed as previously described
and protein was separated via 10% SDS-PAGE run at a constant 200V. Protein was transferred
to polyvinylidene fluoride (PVDF) at 25V, in some cases visualizedwith Ponceau S stain,
blocked for one hour in 5% (w/v) evaporated milk in TBST, and immunoblotted overnight
with antibodies against Tie2 (AB33) (1:1000 dilution, Cat. 4224, Cell Signaling), ß1 (1:1000
dilution, Cat. 4706, Cell Signaling), or ß3 (1:1000 dilution, Cat. 4702, Cell Signaling).

Protein purification

Integrin expression constructs were reproduced based on the work of Mehta et al and Xiong et al
[52,54]. Human ß1 (residues 1–728) (TrueORF gold cDNA construct RC203818 (Origene Tech-
nologies, inc.)) and human ß3 (residues 1–718) (TrueORF gold cDNA construct RC201151 (Ori-
gene Technologies, inc.)) were amplified and integrated into a pCDNA3.1(+)-Fc neo containing
backbone by overlap PCR introducing a thrombin cleavage site at the C-terminus of the protein
and before an Fc fragment. Human α5 (residues 1–995) and human αV (residues 1–987) were
similarly cloned into a pCDNA3.1(+)-Fc hygromycin backbone. Single cell cloned stable lines for
the Fc-tagged α integrin constructs were created in HEK293 cells using 150 mg/mL Hygromycin
B (Invitrogen) for selection.The appropriate ß-Fc construct was then transfected into these stable
cells using Lipofectamine 2000 and selected for using 0.5 mg/mL G418 sulfate (Gemini Bio-Prod-
ucts). The angiopoietin receptor binding domains, Tie1 (1–4) (residues 1–445) and Tie2 (1–4)
(residues 1–452) were purified as previously described [55]. Tie2 Full ectodomain (1–729) was
similarly cloned with a TEV protease site replacing the Thrombin cleavage site. Briefly, stable cell
lines were grown in roller-bottle culture and secreted protein was purified from the media using
a packed Protein-A sepharose column on an Akta Purifier FPLC system (GE). Pure Fc-tagged
protein was then cleaved overnight at room temperature using 2 U/mg Thrombin (Novagen) or
a 1:300 ratio of purifiedTEV to target protein and separated from the Fc tag using a HiTrap Pro-
tein- A HP column (GE Healthcare). Any minor contaminates were removed via size exclusion
chromatography (Superdex 200 10/300) (GE Healthcare).

Complex formation by gel filtration chromatography

5μM purifiedα5ß1 was incubated with 10μM purifiedAng1-RBD for 1 hour on ice. Excess
ligand was used to force all integrin protein into a complex. 250μM DTSSP was added to the
complex and incubated on ice for 2 hours. The reaction was quenched with 50mM Tris pH 8
for 15 minutes before filtering and running on a Superdex200 10/300 column. The individual
protein runs were treated in a similar manner.

Surface plasmon resonance experiments

The binding interactions betweenTies and α5ß1 were analyzed in real-time by surface plasmon
resonance (SPR) spectroscopy using ProteOn XPR36 instrument (Bio-Rad, CA, USA). Pro-
teOn GLC sensor chip was air initialized and PBST (PBS x1, 0.005% Tween) buffer was flushed
through the instrument prior to binding measurements. Recombinant human Tie1 (rhTie1)
extracellular domain and recombinant human Tie2 (rhTie2) were immobilized on the surface
of a GLC sensor chip (Bio-Rad) using the amine coupling reagents sulfo-NHS (0.1M N-hydro-
xysuccinimide) and EDC (0.4M 1-ethyl-3-(3-dimethylaminopropyl) -carbodiimide,Bio-Rad).
rhTie1 and rhTie2 (2 μg both) in 10 mM sodium acetate pH 5.0 were flowed over the activated
surfaces of the GLC sensor chip channels at a flow rate of 30 μL/min until the target immobili-
zation levels of 4750 RU and 6400 RU respectively were reached. BSA (3 μg) in 10 mM sodium
acetate pH 4.5 was then flowed over additional activated surfaces of a control GLC sensor chip
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channel at a flow rate of 30 μL/min until the target immobilization levels of 4946 RU was
reached. After protein immobilization, chip surface was treated with 1M ethanolamine-HCl at
pH 8.5 in order to deactivate the excess of reactive esters. All binding experiments were per-
formed at 25 degrees Celsius in degassed integrin binding buffer (IBB, 20 mM Tris, 100 mM
NaCl, 1 mM MnCl2, 2 mM CaCl2 pH 7.5). α5ß1 integrin at a concentration of 3 μM was flowed
over the surface-immobilized rhTie1 and rhTie2 at a flow rate of 60 μL/min for 3 minutes and
the binding interactions were monitored. Following association, the dissociations of the various
ligand-receptor complexes were monitored for 5 minutes. Each sensogram run was normalized
by subtracting the BSA channel run and the blank analyte run (at zero concentration).

Molecular imaging

Live cell FRET assays were based on earlier work [11]. Images were taken 24–48 hours post
transfection of HEK293 cells using a Zeiss ObserverZ.1 incubated wide- field microscope with
a 63X glycerin Plan Neofluar DIC optic with a 1.3 NA for sensitized emission data. The CFP
variant, mTurquoise, (kind gift of J. Goedhart)with a higher intensity and single exponential
decay was used as a donor fluorophore in our sensitized emission and FLIM FRET based prox-
imity experiments [56]. mTurquoise was excited by LED (Colibri) at 430 nm through a filter
cube containing a dichroic beamsplitter for eCFP and eYFP (Chroma 89002bs) and either an
emission filter specific for CFP control measurements (ET470/24m) or YFP (ET535/30m) for
FRET measurements. YFP variants were excited at 505 nm by LED and imaged through the
YFP beamsplitter and emission filter described above for direct excitation controls. All sensi-
tized emission measurements were obtained using the same exposure time for all images within
an experiment, generally between 500–800 ms. Sensitized emission data was analyzed using the
PFRET ImageJ plugin in addition to the contrast EP plugin for final FRET image acquisition
[57]. Statistical analysis and graphing was performed in JMP Pro 11. For fluorescence lifetime
measurements, a Zeiss 510 Meta with a mode locked 80 MHz Ti:Sapphire laser and Becker and
Hickl TCSPC fluorescence lifetime instrument was used. FLIM-FRETmeasurements were
obtained using the Becker and Hickl SPC- 130 software in FiFo mode with 10% laser power.
Decay matrix calculation and analysis was performed in SPC-Image.

Acceptor photobleaching experiments were conducted on transfected cells as described
above. Briefly, imaging was conducted on a Zeiss 710 with a 63x oil immersion objective using
1Au. All images were taken using constant laser power between all images within one experi-
ment. Similarly, the gain was set and held constant within one experiment. Regions of interest
within the field of view were photobleached using 100% 514nm laser power for two complete
scans. Images of both donor (440 nm laser) and acceptor (514 nm laser) channels were col-
lected pre and post photobleaching. Bleached samples depict the percent change in donor sig-
nal within an ROI following at least 50% bleaching of the acceptor molecule. Unbleached
samples are internal controls measuring the percent change in donor fluorophore intensity
ROI values in regions of the field of view that were not subjected to intense acceptor laser scan-
ning. Unbleached measurements were collected to control for cell movement or variation of
donor intensity levels not induced by acceptor bleaching. Images were background corrected
and analyzed using FIJI and the FRETcalc plugin v5.0 to measure changes in donor intensity
within regions of interest [58]. Statistical analysis and graphing was performed in JMP Pro 11.

Tie2 Activation Assays

6-well plates were treated with either PBS or 10 μg/mL fibronectin overnight at 4 degrees Cel-
sius. TIME cells were trypsinized (Invitrogen), quenched with full media, and spun at 1000
rpm for five minutes. Pelleted cells were resuspended in serum free media and incubated at 37
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degrees Celsius with shaking for 1 hour. Serum free media was added to either PBS or fibronec-
tin treated dishes, with vehicle, Ang-1 at 500 ng/mL or Ang-2 at 500ng/mL. Suspended cells
were distributed equally in the wells and allowed to incubate at 37 degrees Celsius for 15 min-
utes (Fig 5), 30 minutes or 1 hour (S5C Fig). Cells were washed in cold PBS and lysed as
describedpreviously. 50 μg of cell lysate was resolved via SDS-PAGE and immunoblotted for
total Akt (1:1000 dilution, Cat. 9272, Cell Signaling),MAPK (1:1000 dilution, Cat. 4695, Cell
Signaling), and FAK (1:1000 dilution, Cat. 3285, Cell Signaling) or specific phosphorylated res-
idues (1:1000 dilution, threonine 308 of Akt (Cat. 4056), threonine 202 and tyrosine 204 of
MAPK (Cat. 4695), or tyrosine 397 of FAK (Cat. 3283, Cell Signaling). Densitometrywas per-
formed using gel analysis software (Fiji) and statistically analyzed with JMP Pro 11.

Adhesion Assay

96-well plates were coated with either PBS or 10 μg/mL fibronectin overnight at 4 degrees Cel-
sius. TIME cells (shControl or shα5) were trypsinized, quenched with full media, and spun at
300�g for three minutes. Pelleted cells were resuspended in serum free media and incubated at
37 degrees Celsius with shaking for 1 hour. 100μL of serum free media containing 10,000 cells
with vehicle or Ang-1 at 500 ng/mL was added to either PBS or fibronectin treated dishes. Cells
were allowed to adhere in a 37 degree Celsius inbubator for 30 minutes. Wells were washed
twice with PBS and fixed with cold methanol for 10 minutes. After fixation, wells were washed
three times with PBS and stained with 0.5% Crystal Violet in 20% Methanol. Adherent cells
were counted under 5x magnification.

Supporting Information

S1 Fig. Coomassie stained SDS-Page gels of purified integrin, angiopoietins, and Tie recep-
tors.
(TIF)

S2 Fig. Pure Protein Immunoprecipitation of Tie1 and integrin α5ß1 in the presence of
fibronectin. Fibronectin (5μg/mL) does not influence the association of Tie1 (33nM) and
integrin α5ß1 (10nM). Full-length and recombinant (9–10) fibronectin were tested for their
ability to modulate Tie1/integrin interactions. Unlike Tie2, association betweenTie1 and integ-
rins is not sensitive to fibronectin. The same procedure used in Fig 2 was employed here.
(TIF)

S3 Fig. FRET Analysis of α5ß1/Tie2 and α5ß1/Tie1 interactions including all controls. (A)
FLIM-FRETmeasurements were conducted on the same transfections used for sensitized emis-
sion measurements. Lifetime values described are the peak values of the fast component after
the slow components were fixed to donor alone control. Tie2-mTQ alone: 3.09 ns; Tie2-Plexi-
nA1-YFP: 3.00 ns; Tie2-mTQ/Tie1-sYFP2: 2.39 ns; Tie2- mTQ/α5-YFP/ß1 -mCherry:2.55 ns;
Tie2- mTQ/α5-YFP/ß1-mCherry in the presence of 5 μg/mL fibronectin: 2.5 ns. Images and
decay matrix analysis was performed in SPCImage. (B) Jablonski diagram describing lifetime
values as related to Fluorescence Resonance Energy Transfer. (C) Graphical representation of
acceptor photobleaching FRET experiments between Tie1-mTQ and α5-YFP, as well as a nega-
tive control (PlexinA1-YFP/Tie2-mTQ) and positive control (Tie2-mTQ/ Tie1-sYFP2).
Bleached samples depict the percent change in donor signal following at least 50% bleaching of
the acceptor molecule. Unbleached samples are internal controls measuring the percent change
in donor fluorophore intensity ROI values in regions of the field of view that were not subjected
to intense acceptor laser scanning to control for cell movement or variation not induced by
acceptor bleaching. The white arrow indicates one bleached ROI while the red arrow indicates
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a control ROI outside of the bleached region. Tie1 and α5ß1 show significant FRET (11.0%+/-
1.3%) above the negative control value (3.4% +/- 1.8%) indicating that Tie1 and α5ß1 interact
directly at the cell surface in living cells. The positive control value of Tie1-sYFP2 and
Tie2-mTQ using this method is 16.8% +/- 1.1%. Error bars represent the standard error of
n>3 over three independent experiments. � represents student t-test values p<0.01. (B) Images
representing one sample of the positive control Tie1-sYFP2 and Tie2-mTQ.
(TIF)

S4 Fig. Downstream signalingmediators of Tie and integrin activation followed over time.
(A) A time-course of Akt and FAK activation following plating on mock-treated, or fibronectin
treated dishes. Although Akt activation remains stable across all time points tested, levels of p-
FAK consistently increases with fibronectin treatment. (B) Vehicle, 500 ng/mL Ang-1, or 500
ng/mL Ang-2 stimulation of control TIME cells or TIME cells knocked down for α5 (knock-
down verified in Fig 5E). Akt T308 phosphorylation levels and total Akt levels were monitored
by western blot. Decreasing the level of α5 protein did not significantly affect Ang-1 initiated
Akt signaling. (C) Serum starved telomerase-immortalizedendothelial cells (TIMEs) were
plated on control treated or fibronectin treated dishes with vehicle stimulation, 500 ng/mL
Ang-1, or 500 ng/mL Ang-2. MAPK activation was monitored over 60 minutes following plat-
ing. At 30 minutes post-plating, fibronectin increases p-MAPK levels; at 15 minutes, only the
combination of fibronectin and Ang-1 significantly increase p-MAPK levels.
(TIF)

S5 Fig. Fibronectin and Ang-1 increase adhesion in serum starvedTelomerase Immortal-
izedMicrovascularEndothelialCells. shControl and shα5 TIME cells were serum starved for
1 hour in suspension before plating on tissue culture treated 96 well plates for 30 minutes at 37
degrees. The combination of 10 μg/mL fibronectin and 500 ng/mL Ang-1 significantly
increased adhesion over PBS treated wells under these conditions (Student’s t-test; p<0.05).
Conditions were completed in triplicate with at least two independent experiments.
(TIF)

S6 Fig. Unmanipulated images for Fig 1.
(TIF)

S7 Fig. Unmanipulated images for Fig 2.
(TIF)

S8 Fig. Unmanipulated images for Fig 3.
(TIF)

S9 Fig. Unmanipulated images for Fig 5.
(TIF)

S10 Fig. Unmanipulated images for supplemental images.
(TIF)
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