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Abstract

Introduction

Phosphate binding with sevelamer can ameliorate detrimental histomorphometric changes

of bone in chronic renal insufficiency (CRI). Here we explored the effects of sevelamer-HCl

treatment on bone strength and structure in experimental CRI.

Methods

Forty-eight 8-week-old rats were assigned to surgical 5/6 nephrectomy (CRI) or renal dec-

apsulation (Sham). After 14 weeks of disease progression, the rats were allocated to

untreated and sevelamer-treated (3% in chow) groups for 9 weeks. Then the animals were

sacrificed, plasma samples collected, and femora excised for structural analysis (bio-

mechanical testing, quantitative computed tomography).

Results

Sevelamer-HCl significantly reduced blood pH, and final creatinine clearance in the CRI

groups ranged 30%-50% of that in the Sham group. Final plasma phosphate increased 2.4-

to 2.9-fold, and parathyroid hormone 13- to 21-fold in CRI rats, with no difference between

sevelamer-treated and untreated animals. In the femoral midshaft, CRI reduced cortical

bone mineral density (-3%) and breaking load (-15%) (p<0.05 for all versus Sham), while

sevelamer increased bone mineral density (+2%) and prevented the deleterious changes in

bone. In the femoral neck, CRI reduced bone mineral density (-11%) and breaking load
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(-10%), while sevelamer prevented the decrease in bone mineral density (+6%) so that

breaking load did not differ from controls.

Conclusions

In this model of stage 3–4 CRI, sevelamer-HCl treatment ameliorated the decreases in fem-

oral midshaft and neck mineral density, and restored bone strength despite prevailing aci-

dosis. Therefore, treatment with sevelamer can efficiently preserve mechanical

competence of bone in CRI.

Introduction

Efficient control of hyperphosphatemia is a cornerstone in the treatment of chronic kidney dis-
ease-mineral bone disorder (CKD-MBD) [1–5]. If dietary phosphate restriction is not suffi-
cient, the control of hyperphosphatemia in CKD patients is often accomplished by the use of
oral calcium salts as phosphate binders [6]. However, excess calcium intake may predispose to
hypercalcemia, soft-tissue calcification, and increase the risk of adynamic bone disease and
bone fragility [2–4, 7]. As an alternative approach, the non-calcium containing polymer sevela-
mer is an effective phosphate-binder [8–13].

In a 2-year study with haemodialysis patients, sevelamer treatment prevented the decrease
in trabecular bone density in thoracic vertebrae [8], while in peritoneal dialysis patients,
8-month sevelamer treatment improved skeletal changes of secondary hyperparathyroidism
[9]. In experimental chronic renal insufficiency (CRI), sevelamer treatment ameliorated the
histomorphometric changes of femoral bones in rats subjected to adenine diet-induced renal
damage [12], while in a murine model of metabolic syndrome and CRI with low bone turnover,
sevelamer treatment reversed the adynamic bone disorder in these animals [13]. However,
sevelamer hydrochloride (HCl) increases dietary acid load and this may predispose to acidosis,
with the potential to exacerbate secondary hyperparathyroidism and renal bone disease [14,
15]. For these reasons, sevelamer-HCl has been replaced by sevelamer carbonate [13]. How-
ever, at the time when our study was conducted the manufacturer could not provide sevelamer
carbonate for experimental purposes.

While sevelamer treatment has provided benefits to bone density and histology in CRI,
information about the influence of sevelamer on the mechanical competence of bone is lacking.
Since the principal task of bones is to bear skeletal loads without breaking [16, 17], we chose an
organ-level approach to explore the influences of sevelamer. Due to the divergent effects of
CRI on cortical and trabecular bone compartments [18, 19], we examined changes in three
structurally distinct femoral regions: diaphysis (essentially cortical bone), distal metaphysis
(substantial trabecular compartment), and neck (both cortical and trabecular structures) [16,
17, 19–21]. Rats were subjected to 5/6 nephrectomy, and after 14 weeks of disease progression,
treated with 3.0% sevelamer-HCl for 9 weeks, to test the hypothesis whether this phosphate
binder can beneficially influence the mechanical competence of bone.

Methods

Ethics Statement

The study design was approved by Tampere University Animal ExperimentationCommittee,
and Provincial Government of Western Finland, Department of Social Affairs and Health,

Sevelamer and Bone Fragility

PLOS ONE | DOI:10.1371/journal.pone.0163022 September 22, 2016 2 / 16

Competing Interests: The authors have declared

that no competing interests exist.



Finland. The investigation conforms to the Guide for the Care and Use of Laboratory Animals
published by the US National Institutes of Health. As high mortality rates (>80%) had been
previously observed in experiments where 5/6 nephrectomized rats were treated with sevela-
mer-HCl for 6 months [22], the Animal ExperimentationCommittee advised us to apply a pro-
tocol with premature termination of the study in individual rats when necessary (see criteria
below).

Experimental Design

Forty-eight 8-week old male Sprague-Dawley rats were subjected to surgical 5/6 nephrectomy
(n = 30) or sham-operation (renal decapsulation, n = 18) [23–26]. Postoperative pain was
relieved with 0.2 mg/kg buprenorphine (subcutaneously;Reckitt & Colman, Hull, UK) 3 times a
day during the first 3 postoperative days. The chow contained 0.9% calcium and 0.8% phosphate
(LactaminR34, AnalyCen, Sweden) during 14 weeks of disease progression. Then urine was col-
lected in metabolic cages, and plasma samples were drawn from the tail vein. The 5/6 nephrecto-
mized rats (n = 26) were randomized to two groups with equal body weights, 24-hour urine
outputs, plasma creatinines, and amounts of kidney tissue removed (Table 1, Fig 1): untreated
(CRI, n = 13) and sevelamer-treated rats (CRI+Sev, n = 13). The Sham rats (n = 18) were ran-
domized to untreated (Sham) and sevelamer-treated groups (Sham+Sev). Before the treatment,
plasma phosphate concentrations in the sham-operated vs. 5/6 nephrectomized rats were 1.32
±0.07 vs. 2.02±0.17 mmol/l, and plasma PTH 56±12 vs. 435±49 pg/ml, respectively (p<0.05 for
both). During 9 weeks of treatment, all groups continued on 0.3% calcium and 0.8% phosphate
chow (AnalyCen), and 3% sevelamer-HCl (RenaGel, Genzyme,MA, USA) was added to the
chow of CRI+Sevand Sham+Sev rats (Fig 1) [12, 27]. All rats were housed 3–4 per cage in an ani-
mal laboratory (illuminated 06:00-18:00 h, temperature + 22°C) with free access to water and
food [26].

Data Collection and Samples

During the last study week 24-hour urine was collected. At close, the rats were anaesthetized by
intraperitoneal urethane (1.3 g/kg), carotid artery was cannulated, and blood samples were
drawn [23–26]. Both femora were excised, cleaned and stored at -20°C in sealed freezer bags
[23, 24], using a procedure that preserves their mechanical properties [28, 29]. Blood samples
could not be obtained from 2 rats in the CRI and 2 rats in the CRI+Sev group.

Premature sampling. The general condition (habitual movement, breathing, signs of dis-
comfort and pain) of the study animals was assessed at least 3 times daily. Premature sampling
was applied in 5 CRI and 6 CRI+Sev rats (Fig 1) using the following predefined endpoints: 1)
fall of body weight below -2.5 standard deviations of the average weight of all CRI rats (CRI,
n = 3; CRI+Sev, n = 3), 2) loss of body weight> 100 g/week (CRI, n = 1; CRI+Sev, n = 2), and
3) deteriorated physical state (swelling, CRI, n = 1; shortness of breath, CRI+Sev, n = 1).
Importantly, average treatment lengths were similar in the CRI and CRI+Sev groups: 50.0±3.2
and 50.6±2.5 days, respectively. Renal insufficiencywas more advanced in the prematurely
sampled rats versus those gone through the whole treatment period (S1 Table).

Plasma and urine chemistry. Creatinine, urea, phosphate and calcium concentrations
were measured using standard clinical chemical methods (Cobas Integra 800 Analyzer, Roche
Diagnostics, Basel, Switzerland). Hemoglobin was measured photometrically (Technicon H�2,
Technicon Instruments Corporation, Tarrytown, NY, USA), plasma pH using an ion selective
electrode (634 pH Analyzer, Ciba CorningDiagnostics, Sudbury, UK), rat intact PTH levels
using immunoradiometric assay (Immutopics Inc. San Clemente, CA, USA), and 25OH-D2

and 1,25(OH)2D3 using radioimmunological assays (IDS Inc., Arizona, USA). Plasma
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fibroblast growth factor-23 (FGF-23) was determined using ELISA (Kinos Inc., Tokyo, Japan)
[26, 27, 30].

Bone Analyses

For measurements, the femora were thawed at room temperature and kept wrapped in saline-
soaked gauzes.

Peripheral quantitative computed tomography (pQCT). Femoral cross-sections were
analyzed using pQCT (Stratec XCT Research M, software version 5.40B, Stratec Medizintech-
nik GmbH, Birkenfeld, Germany). Both femora were scanned and the average value was used.

Diaphysis. The femora were scanned at 50% of the femur length (voxel size 0.07 x 0.07 x
0.5 mm3, scan speed 3.0 mm/sec). The cortical bone mineral density (cBMD), total bone min-
eral content (BMC), total cross-sectional area (tCSA), cortical cross-sectional area (cCSA),

Table 1. Gross clinical characteristics and laboratory findings in the study groups.

Sham n = 10 Sham+Sev n = 8 CRI n = 11–13 CRI+Sev n = 11–13

Animal weight (g)

Before treatment1 447±13 453±7 447±9 440±12

Final2 484±14 508±20 455±91§ 442±69§

Femur length (mm) 40.7±1.0 40.8±0.6 40.8±1.0 40.4±1.1

Kidney removed3 (g/kg) - - 6.37±0.12 6.31±0.13

Creatinine (μmol/l)

Before treatment1 43±5 44±4 85±6§§§ 89±6§§§

Final2 50±3 51±4 139±44§§ 264±77§§

Creatinine clearance (ml/min)4 2.0±0.2 2.1±0.2 1.1±0.1§§§ 0.6±0.2§§§

Urea (mmol/l) 6.8±0.3 7.2±0.4 26.9±8.4§§§ 45.8±11.4§§§

Phosphate (mmol/l)

Crude values 1.28±0.07 1.46±0.05 3.03±0.79§ 3.67±1.07§

Creatinine-adjusted values 2.50±0.29 2.67±0.33 3.02±0.26 1.91±0.28†

Calcium (mmol/l) 2.34±0.02 2.34±0.03 2.28±0.06 2.40±0.04

PTH (pg/ml)5 54±18 106±35 1173±351§§§ 732±314§§§

25OH-D3 (nmol/l) 57.2±3.7 45.4±4.4‡‡ 41.9±3.7§§§ 28.0±2.3§§§‡‡

1,25-(OH)2D3 (pmol/l) 422±17 151±9‡‡ 85±19§§§ 41±16§§§‡‡

FGF-23 (pg/ml)5 746±22 696±34 7377±3102§§§ 11446±8734§§§

Blood pH 7.38±0.05 7.23±0.07‡ 7.25±0.06 7.12±0.04‡

Hemoglobin (g/l) 176±3 181±2 156±5§§§ 144±9§§§

Results are mean±SE.
1Week 22
2week 31
3tissue removed in 5/6 nephrectomy
4at week 31 CRI rat number was 8 and CRI+Sev rat number was 9 during 24-hour urine collection
5statistics from log-transformed values.

PTH, parathyroid hormone; 25OH-D3, calcidiol; 1,25-(OH)2D3, calcitriol; FGF-23, fibroblast growth factor-23.
§P<0.05
§§P<0.01
§§§P<0.001 CRI main effect
‡P<0.05
‡‡P<0.01 sevelamer main effect
†P<0.05 CRI+sevelamer interaction.

doi:10.1371/journal.pone.0163022.t001
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cortical bone thickness were recorded (Fig 2). The mean square coefficients of variation
(CVrms) are 0.6% for cBMD, 0.9% for tCSA, and 1.5% for cCSA [31].

Femur neck. The femoral neck was scanned twice, repositioning the sample betweenmea-
surements. The average of tCSA, BMC, bone outside diameters, and total bone mineral appar-
ent density (vBMD; mineral content divided by volume) measurements were used. The CVrms
are 2.1% for vBMD and 3.9% for tCSA [31].

Micro-Computed Tomography (μCT)

The μCT was used for three-dimensional evaluation of trabecular bone architecture at the dis-
tal metaphysis from a 1.8 mm section (150 slices) at nominal isotropic voxel size of 12 μm
(Scanco μCT 40, Scanco Medical AG) [32]. Volume of interest included only secondary spon-
giosa. The measurements included: trabecular bone volume fraction (volume of total tissue
evaluated occupied by trabecular bone, %), trabecular thickness (μm), trabecular number (1/
mm), trabecular separation (μm), connectivity density (number of redundant connections per
unit volume, 1/mm3; detects defects in trabecular architecture), and structure model index
(quantifies the plate versus rod characteristics of trabecular bone; scale 0–3, with 0 representing
purely plate-like structures and 3 representing purely rod-like structures) [32].

Biomechanical testing. A Lloyd material testing device (LR5K, J.J. Lloyd Instruments,
Southampton, UK) was used for the three-point bending of the femoral shafts in anteropos-
terior (AP) and mediolateral (ML) directions (Fig 2) [33–35]. The right femur was tested in
AP and left femur in ML direction. When testing the breaking load (Fmax), the load was
applied to the midshaft perpendicularly to the bone axis using a brass crossbar, until failure
of the specimen. The CVrms of Fmax for three-point bending range from 3.8% (ML) to 5.0%
(AP) [35].

The proximal part of each specimenwas used for femoral neck compression test [33, 34].
Proximal femur was mounted in a fixation device [36], placed under the testing device, and
vertical load was applied to the top of the femoral head using a brass crossbar until failure
(Fmax). The CVrms of Fmax for femoral neck compression is 7.6% [34, 35].

Fig 1. The flowchart of the study. Sham, group subjected to renal decapsulation; CRI, chronic renal insufficiency group subjected

to 5/6 nephrectomy; Sev, 3.0% sevelamer-HCl in chow. Four rats were euthanized because of deteriorated general condition during

the immediate postoperative period. Small arrows during the treatment period denote premature sampling of individual rats due to

deteriorated physical state (see Methods).

doi:10.1371/journal.pone.0163022.g001
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Statistical analyses. Statistical analyses were performed using one-way and two-way anal-
yses of variance (ANOVA), and the least-significant difference test. If variable distribution was
skewed, the Kruskal-Wallis test, supported by Mann-Whitney U-test in the post-hoc analyses,
was used, and the p values were correctedwith the Bonferroni equation. Spearman correlations
were calculated, as appropriate. The results were reported as mean±SEM, and p<0.05 was con-
sidered significant.

Fig 2. The regions of interest in the femoral bone. (A) midshaft, analyses in mediolateral and anteroposterior

directions; (B) neck, analyses in mediolateral and craniocaudal directions.

doi:10.1371/journal.pone.0163022.g002
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The stresses in lower extremity bones stem from weight-bearing, bending, and torsional
loading produced by muscles [37, 38]. To eliminate the bias arising from comparisons between
groups that differ in body weight and size, all data pertaining to bone mechanical competence
were normalized by using body weight and femoral length of each rat as covariates in the analy-
ses [31, 39, 40].

Results

Systemic Effects of CRI and Sevelamer

At the initiation of therapy, creatinine levels that were measured using an enzymatic method
were about two-fold elevated in the CRI versus Sham rats, and further elevation was observed
during the treatment period (Table 1). The applied enzymatic method has been shown to fulfil
the requirements for plasma creatinine measurements in healthy and diseased rats over a
broad concentration range [41]. Experimental CRI resulted in biochemical effects correspond-
ing to stage 3 CKD [2]: creatinine clearance was reduced by ~50%, plasma creatinine was
increased 3-fold, and urea level 4-fold (Table 1). The results showed reduced hemoglobin,
hyperphosphatemia, increased plasma PTH and FGF-23, and decreased plasma 25OH-D3 and
1,25-(OH)2D3 concentrations. Plasma calcium level was not reduced, which can be attributed
to the secondary hyperparathyroidism in CRI. Although CRI resulted in lower final body
weight, no effect was observedon longitudinal bone growth, as femoral lengths were similar in
all study groups (Table 1).

Although numerically lower indices of renal functionwere observed in sevelamer-treated
versus untreated rats with CRI, final plasma creatinine (P = 0.056) and creatinine clearance
(P = 0.059) were not significantly different between the CRI vs. CRI+Sev groups (Table 1). The
correlation (Spearman) between plasma creatinine and phosphate concentrations was strong:
0.93 in all study rats, 0.87 in rats with CRI, 0.81 in the CRI group, and 0.90 in the CRI+Sev
group (p<0.001 for all). Sevelamer treatment did not influence plasma calcium, PTH, FGF-23
or blood hemoglobin levels. Unexpectedly, no difference was observed in the final plasma
phosphate levels between the CRI and CRI+Sev groups. However, given that phosphate metab-
olism is progressively impaired secondarily to reduced kidney function [4], adjustment of
phosphate levels with plasma creatinine uncovered a decrease in plasma phosphate in CRI+Sev
versus CRI group (Table 1). Similarly, the creatinine-adjusted PTH-levels in the CRI+Sev ver-
sus CRI groups were 242±194 versus 1168±177 pg/ml, respectively (P = 0.02). Of note, sevela-
mer-HCl treatment reduced plasma 25-OH-D3 and 1,25-(OH)2D3 levels and blood pH in both
Sham and CRI rats, but was without effect on plasma FGF-23 levels (Table 1).

CRI, Sevelamer, and the Femoral Diaphysis

Bone mineral density and cross-sectionalgeometry. CRI was associated with decreased
cBMD (-3.4%), while sevelamer treatment prevented the decrease in cBMD (+1.8%, P = 0.029
for the interaction, Fig 3A). Neither CRI nor sevelamer treatment influenced cortical bone
cross-sectional area (cCSA) or total bone cross-sectional area (tCSA) of the femoral midshaft
(Fig 3C and 3D). Bone mineral content (Fig 3B) and midshaft cortical thickness in the AP
direction (Fig 3E) were increased by sevelamer when all treated were compared with untreated
rats. In the ML direction, CRI was associated with reduced cortical thickness (-6.9%), while
this reduction was alleviated by sevelamer (4.2% increase, Fig 3F). Average cortical thickness
(AP and ML combined) of the femoral midshaft was not significantly lower in the CRI than
the Sham group (-4.6%, p = 0.057), but was 6.0% higher in the CRI+Sev than the CRI group
(p<0.01).

Sevelamer and Bone Fragility
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Fragility. In three-point bending, CRI was associatedwith clear bone fragility, since mid-
shaft breaking load was decreased in both directions (AP -15.5%, ML -15.1%, Fig 3G and 3H). In

Fig 3. The femoral midshaft. Effect of CRI and sevelamer-HCl treatment on (A) cortical bone mineral density (cBMD), (B) total bone mineral content

(BMC), (C) cortical bone cross-sectional area (cCSA), (D) total cross-sectional area (tCSA), (E) cortical thickness in anteroposterior AP direction, cortical

thickness in mediolateral direction, (F) breaking load in anteroposterior direction, and (G) breaking load in mediolateral directions (H). Data denotations are

mean (line) and SEM (whiskers); §P<0.05 CRI main effect; ‡P<0.05, ‡‡P<0.01 sevelamer treatment main effect; ***P<0.001 vs. Sham; ††P<0.01 vs. CRI.

doi:10.1371/journal.pone.0163022.g003
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rats with CRI, sevelamer prevented the decrease in midshaft breaking load (AP direction +24.1%,
ML direction +11.0%, P = 0.005 and P = 0.017 for the interaction, respectively, Fig 3G and 3H).

CRI, Sevelamer, and the Femoral Neck

The changes observed in the femoral neck were in good agreement with those observed in the
diaphysis. CRI was associated with decreased vBMD (-11.0%), BMC (-5.1%), increased diame-
ter in the ML direction (+3.0%), and decreased breaking load (-10.4%), while no significant
changes in the craniocaudal diameter (+6.2%, p = 0.11) and tCSA (+5.7%, p = 0.077) were
observed (Fig 4A–4F). In rats with CRI, sevelamer treatment increased vBMD (+6.0%,
P = 0.004 for the interaction). The BMC (-4.8%, p = 0.075) and breaking load (-7.1%, p = 0.14)
in the CRI+Sev group did not significantly differ from those in the Sham group.

CRI, Sevelamer, and the Distal Femoral Metaphysis

Fig 5A–5I visualize the microstructural changes (μCT) in the trabecular bone of the distal fem-
oral metaphysis. Overall, the CRI-groups displayed a decrease in trabecular bone volume frac-
tion (Fig 5J). More detailed evaluation showed a trend toward reduced trabecular thickness
(P = 0.054, Fig 5K), and a decrease in trabecular number and increase in trabecular separation
in CRI (Fig 5L–5M). Sevelamer-HCl treatment did not influence these variables, but prevented

Fig 4. The femoral neck. Effect of CRI and sevelamer-HCl treatment on (A) volumetric bone mineral density (vBMD), (B) total bone mineral content (BMC),

(C) total bone cross-sectional area (tCSA), (D) bone diameter in mediolateral (ML) direction, (E) bone diameter in craniocaudal (CC) direction, and (F)

breaking load. Data denotations are mean (line) and SEM (whiskers); §P<0.05, §§p<0.01 CRI main effect; *P<0.05, ***P<0.001 vs. Sham; †P<0.05 vs. CRI.

doi:10.1371/journal.pone.0163022.g004
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Fig 5. Trabecular bone at distal femoral metaphysis. (A) Scanned trabecular bone region inside the red cylinder; (B-E) trabecular bone structure and

(F-I) cross-sectional image in each group, blue plane in image (A) depicts the location of images (F-I); (J) trabecular bone volume fraction; (K) trabecular

thickness; (L) trabecular number; (M) trabecular separation, (N) connectivity density, (O) structural model index. Data denotations are mean (line) and SEM

(whiskers); §P<0.05, §§P<0.01 CRI main effect; *P<0.05 vs. Sham; ††P<0.01 vs. CRI.

doi:10.1371/journal.pone.0163022.g005
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the CRI-induced decrease in trabecular connectivity density (Fig 5N). No significant differ-
ences were observed in the structuralmodel index (Fig 5O).

Discussion

We explored the effects of sevelamer-HCl treatment on femoral bone strength and structure in
a model of advanced CRI. To mimic the clinical situation in renal disease, the first 14 weeks
comprised a progression period of renal insufficiencyand hyperphosphatemia, followed by a
9-week treatment period. The study protocol was successful, since characteristic plasma chem-
istry of advanced CRI was observed [23–25], and increased femoral bone fragility was detected.
The detrimental changes in bone were effectively ameliorated by sevelamer-HCl, although the
compound induced acidosis in both uremic and control rats.

Hyperphosphatemia is an essential factor for the development of CKD-MBD [1, 42], the
treatment of which has been traditionally based on the use of oral calcium salts [43, 44]. How-
ever, phosphate binding with sevelamer has been found to provide significant clinical benefits
when compared with calcium salts [8–10]. In haemodialysis patients, treatment with calcium
carbonate, but not with sevelamer, was associated with decreased trabecular bone density in
thoracic vertebrae [8]. In pediatric peritoneal dialysis patients, treatment with calcium carbon-
ate or sevelamer resulted in equivalent control of phosphate, PTH and skeletal changes of sec-
ondary hyperparathyroidism. However, serum calcium levels and calcium x phosphate
product increasedwith calcium carbonate, but not with sevelamer [9].

In rodent models of CRI, the harmful influence of hyperphosphatemia, and beneficial effect
of sevelamer, on bone histology have been previously reported [12, 13, 45]. High phosphate
intake reduced trabecular bone volume, irrespective of PTH levels, in the distal femur of 5/6
nephrectomized rats [45]. In adenine-inducedCRI, sevelamer diet decreased osteoid volume,
fibrosis volume, and cortical bone porosity in the femoral diaphysis [12]. In a murine model of
metabolic syndrome with CKD and low bone turnover, sevelamer treatment showed several
benefits: normalized serum phosphate and trabecular bone volume, increased osteoblast and
osteoid surfaces, and increased bone formation rate [13].

Prompted by the above favorable influences of sevelamer on bone density and histology,
and the fact that increased susceptibility to fractures is the most important clinical manifesta-
tion of metabolic bone disorders [1–3, 16, 19], we evaluated the functional integrity of bones
using structural strength tests [17, 20]. This study focused on three regions of rat femur: 1)
diaphysis at the midshaft, a tubular cortical bone structure, 2) neck, a tubular cortical structure
with medullary trabeculae occupying approximately 7% of total bone volume [46], and 3) distal
metaphysis which is mostly trabecular bone. In line with the above findings on bone histology,
sevelamer ameliorated the CRI-induced loss of bone mineral, but also prevented the loss of
structural strength of bones. In agreement with our previous studies [23, 24], the CRI-associ-
ated decrease in bone density was more prominent in the femoral neck (-11%) than midshaft
(-3.4%), and the differences in bone density were inversely associated with changes in cross-
sectional area in the femoral neck (sevelamer increased neck vBMD by 6% and reduced tCSA
by -7% in rats with CRI) [23].

Given the well documented phosphate-binding effect of sevelamer-HCl [8, 9, 11–13, 27],
our findings showing no differences in the crude plasma levels of phosphate and PTH between
untreated and sevelamer-treated rats with CRI call for elaboration (Table 1). The absence of
the phosphate-lowering effect can probably be attributed to the detrimental influence of sevela-
mer-HCl on the acid-base balance in rats with CRI. This influencewas not due to selection
bias, as the CRI groups were well matched: equal kidney tissue removal, and equal initial
plasma creatinine, body weight, and urine output before the treatment. Sevelamer-HCl
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administration has been previously shown to increase dietary acid load and reduce serum
bicarbonate levels [14, 15, 26]. Metabolic acidosis, in turn, enhances renal phosphate and cal-
cium excretion probably due to net efflux of phosphate and calcium from bones [14, 47].
Accordingly, acidosis has a negative influence on physiology by predisposing to hyperphospha-
temia, bone demineralization, and increased bone resorption [14, 15]. However, metabolic aci-
dosis has also been reported to enhance the renal clearance of phosphate in both humans and
5/6 nephrectomized rats [47, 48]. Thus, acidosis per se may not alone explain the lack of the
phosphate-lowering effect of sevelamer-HCl. The present results showed a numerically lower
creatinine clearance without statistical significance (P = 0.059) in sevelamer-treated versus
untreated rats with CRI. When the results were adjusted for the levels of plasma creatinine, the
lowering effect of sevelamer-HCl on plasma phosphate and PTH in rats with CRI became
apparent (Table 1). The observed strong correlation between plasma creatinine and phosphate
concentrations suggests that the numerical differences in the levels of renal function, albeit sta-
tistically insignificant,may explain the lack of the reduction of plasma crude phosphate con-
centrations in the sevelamer-HCl treated rats. At the time when the study was conducted only
sevelamer-HCl could be provided by the manufacturer for the present experimental study.

We observed reduced plasma level of 1,25(OH)2D3 after the sevelamer-HCl diet (P<0.001),
an effect that is not explained by differences in renal function, or plasma concentrations of
phosphate, PTH, and FGF-23 [27]. It is important to notice that 1,25(OH)2D3 was reduced
even in the sham-operated control rats. The plasma 25OH-D3 concentrations were also
reduced in the Sham+Sev (-20%) and CRI+Sev (-33%) groups when compared with respective
controls. One possibility for these changes is reduced chow intake in the sevelamer-HCl
groups, but unchanged weight gain does not support this notion. Sevelamer also interferes with
the absorption of fat-soluble vitamins in the gut [49, 50], and this mechanism may partially
explain the decreased plasma calcidiol in the Sham+Sev and CRI+Sev rats. However, it seems
unlikely that moderate reductions in plasma 25OH-D3 could explain the far greater reductions
in 1,25(OH)2D3 following sevelamer-HCl therapy (Sham+Sev -64%, CRI+Sev -52%). Since aci-
dosis is known to inhibit 1,25(OH)2D3 synthesis in the rat [51], reduced pH remains the most
likely explanation for the reduced plasma 1,25(OH)2D3 concentrations following sevelamer-
HCl treatment.

Although treatment with sevelamer-HCl has been reported to reduce plasma FGF-23 con-
centrations in the adenine-inducedmodel of severe CRI [27], sevelamer did not reduce plasma
FGF-23 in the present study. Previously, metabolic acidosis has been reported to directly
increase FGF-23 production in mouse bone [52]. Therefore, acidosis provides a potential
explanation for the lack of changes in plasma FGF-23 concentrations in the sevelamer-treated
rats. High FGF-23 concentration may also have a potential role in the observedbeneficial bio-
mechanical changes of bone in the sevelamer-treated rats, since FGF-23 has been reported to
influence bone mineralization independently of systemic phosphate homeostasis [53]. In dia-
lyzed pediatric patients, high levels of FGF-23 were associated with improved indices of skeletal
mineralization [54]. In adult hemodialysis patients, FGF-23 was an independent predictor of
bone mineralization, so that mineralization lag time was abnormally long in patients with
moderately elevated FGF-23 concentration (<2,000 pg/mL), but was normal in patients with
high levels of FGF-23 [55]. Although we cannot rule out the possibility that the beneficial
effects of sevelamer-HCl on bone were partially mediated via high levels of FGF-23, the finding
that plasma FGF-23 concentrations did not differ between the CRI versus CRI+Sev groups
argues against this view.

Like in the clinical setting, mortality in advanced experimental CRI is high [24, 25]. Mortal-
ity rates exceeding 80% have been reported in 5/6 nephrectomized rats that were followed for 6
months [22]. In order to avoid the complication that most severely affected rats would have
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been lost from the analysis, a protocol with predefined endpoints for premature termination
was applied. This protocol was effective, as the renal insufficiencywas clearly more advanced
in the prematurely sampled rats than in those rats that went through the whole treatment
period (S1 Table). We want to stress that the average length of the treatment period (50 days)
was equal in the untreated and sevelamer-treated rats with CRI. The present experiments did
not include analyses of bone histology, because dynamic histomorphometrywould not have
been possible in all animals, since the prematurely sampled rats would have been lost from
bone labeling. In addition, dynamic histomorphometrywould rather have reflected the 5 days
preceding the final sampling, i.e. a periodwhen the indices of renal functionwere numerically
lower in the sevelamer-treated than untreated rats with CRI. In contrast, the preserved bone
strength can be argued to more adequately reflect the influence of the whole 9-week treatment
period on bone.

In summary, the phosphate binder sevelamer-HCl effectively prevented the experimental
CRI-induced changes in femoral bone mineral density and breaking load, in spite of advanced
renal insufficiencyand acidosis. In healthy control rats, sevelamer administration was without
any major effects on bone, although plasma 25OH-D3 and 1,25-(OH)2D3 concentrations were
clearly reduced. These experimental results suggest that sevelamer treatment can efficiently
preserve the mechanical competence of bone in CRI. Importantly, the present beneficial effects
on bones were not explained by influences of sevelamer-HCl on renal function.
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