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Abstract
Natural plant populations are often adapted to their local climate and environmental condi-

tions, and populations of forest trees offer some of the best examples of this pattern. How-

ever, little empirical work has focused on the relative contribution of single-locus versus

multilocus effects to the genetic architecture of local adaptation in plants/forest trees. Here,

we employ eastern white pine (Pinus strobus) to test the hypothesis that it is the inter-genic

effects that primarily drive climate-induced local adaptation. The genetic structure of 29

range-wide natural populations of eastern white pine was determined in relation to local cli-

matic factors using both a reference set of SSR markers, and SNPs located in candidate

genes putatively involved in adaptive response to climate. Comparisons were made

between marker sets using standard single-locus outlier analysis, single-locus and multilo-

cus environment association analyses and a novel implementation of Population Graphs.

Magnitudes of population structure were similar between the two marker sets. Outlier loci

consistent with diversifying selection were rare for both SNPs and SSRs. However, genetic

distances based on the multilocus among population covariances (cGD) were significantly

more correlated to climate, even after correcting for spatial effects, for SNPs as compared

to SSRs. Coalescent simulations confirmed that the differences in mutation rates between

SSRs and SNPs did not affect the topologies of the Population Graphs, and hence values

of cGD and their correlations with associated climate variables. We conclude that the multi-

locus covariances among populations primarily reflect adaptation to local climate and envi-

ronment in eastern white pine. This result highlights the complexity of the genetic

architecture of adaptive traits, as well as the need to consider multilocus effects in studies of

local adaptation.
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Introduction
Natural plant populations are often adapted to their local climate and environmental condi-
tions [1,2]. Populations of forest trees offer some of the best examples of this pattern, with over
a century of observation and experimentation documenting this phenomenon [3]. For exam-
ple, common garden and provenance test studies have demonstrated repeatedly that forest
trees exhibit strong geographic variation for fitness-related phenotypes, which is often corre-
lated with environmental variables measured in the source populations [4]. Such patterns are
expected for populations that are adapted to their local environments [5]. The loci comprising
the genetic architecture underlying local adaptation for forest trees, however, are largely
unknown [3]. This dearth of knowledge stems partly from the complexity of the underlying
genetic architecture of local adaptation in forest trees relative to the types of statistical methods
used to document local adaptation from genetic data. Specifically, statistical methods used to
detect loci as contributing to the genetic architecture of local adaptation often focus on single-
locus effects, whereas the underlying genetic architecture of local adaptation for forest trees
likely involves the among-population component of intergenic linkage disequilibrium [6–11].

Some of the best examples of local adaptation for forest tree populations are found for quan-
titative traits as opposed to simple Mendelian traits, e.g. [12], reviewed in [10]. Quantitative
traits with strong relationships to various fitness components, such as date of bud set or bud
flush cf. [13], are expected to be polygenic in forest trees [14]. There are two ways for diversify-
ing natural selection to produce locally adapted phenotypes based on polygenic traits—small
allele frequency changes that result in the build-up of excessive multilocus covariances among
populations and large allele frequency changes eventually resulting in fixation of the most ben-
eficial allele at each of the loci in each of the populations [6–10]. Although the relative contri-
bution of the two processes depends on the genetic architecture of the phenotypic trait and its
relationship to fitness, the demographic history of the populations, the type and strength of
selection, and timing for the onset of selection [8,15], the among-population component of
multilocus covariance can become the main driving force of adaptive genetic differentiation
when a phenotypic trait is controlled by several genes [8,10,16]. In these cases, genetic differen-
tiation at each of the causative loci is closer to the overall level of neutral differentiation [10].
This results in a large discrepancy between differentiation of fitness-related phenotypic traits
and the allelic differentiation at the loci controlling these traits.

The most commonly used method of identifying loci as contributing to local adaptation
among natural plant populations, especially forest trees, is the detection of single-locus outliers,
such as those based on FST [17–19] or those based on single-locus effects in relation to the over-
all variance-covariance structures among populations [20–22], which are often conducted
using scans of candidate genes. Outliers detected by these methods typically have large, or at
least the largest among the loci surveyed, allele frequency differences among sampled popula-
tions. Many causative loci, therefore, are unlikely to be detected using scans for FST outliers,
since the conditions for large allele frequency differences to arise among populations of forest
trees may be rare [23]. For example, Ma et al. [24], using SNPs from 25 candidate genes
involved in the photoperiodic pathway and circadian clock in Populus tremula, noted that
none of the four SNPs showing significant allele-frequency clines with latitude or the six SNPs
associated with growth cessation were FST outliers. Additionally, epistatic selection was found
to be strong at fine spatial scales in Fagus sylvatica, whereas FST outliers within candidate genes
were rare [25].

Pioneering empirical work in deer mice (Peromyscus maniculatus) used patterns of linkage
disequilibrium to document the important role of intergenic covariance to local adaptation
[26]. It is the among-population component of these intergenic covariances that is the relevant
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quantity [6], and, as shown for deer mice, this component can be extensive and can be used to
identify putatively causative genes and gene regions. Limited examples are also available for
forest trees, although most studies searched for these patterns only among loci identified using
single-locus tests, e.g. [24]. This approach, however, ignores loci not labeled as outliers,
although under many selection regimes and demographic models it is the covariances among
these unremarkable loci that affect differentiation among populations for fitness-related quan-
titative traits [27]. Alternatively, the use of genetic marker data as multilocus genotypic vectors
implicitly captures these interlocus covariances, so that it may be more fruitful to begin with a
multilocus analysis prior to investigation of single-locus effects [6,28,29].

Local adaptation among forest tree populations has been extensively documented despite
recent divergences among populations and extensive gene flow [3,29–31]. Climate is likely the
main driver of these patterns across many species [4,32,33]. A multitude of scans for FST outli-
ers, however, have resulted in relatively limited lists of putatively causal genes [10]. Here we
address this disconnect using a comparison between markers located within candidate genes
putatively responsive to climate factors and a set of reference genetic markers genotyped for a
range-wide sample comprised of 29 eastern white pine (Pinus strobus L.) populations.

Eastern white pine provides an ideal experimental organism for studying genetic architec-
ture of local adaptation. It is a wide-ranging conifer species that inhabits diverse forested eco-
systems across North America, with a range spanning the temperate forests of the southern
Appalachian Mountains to the boreal forests north of the Great Lakes [34] (Fig 1). Its wide geo-
graphical range results in populations inhabiting highly diverse climate and environmental
conditions (Fig 1). The range establishment of this species is recent, especially in terms of Ne

generations [32], so that selective pressures imposed by this climate disparity have had rela-
tively a small number of generations to shape allele frequencies. Despite this recent coloniza-
tion, a multitude of studies have documented differences among populations for adaptive traits
at multiple spatial scales [35–39].

Most of the previous studies on molecular genetic diversity and population genetic structure
of eastern white covered small geographic areas in Ontario [40–42], Michigan [43] and Wis-
consin [44], as well as for a limited number of populations from different parts of Canada
[45,46]. These studies were conducted using allozymes and SSRs primarily to examine the
genetic effects of harvesting or questions of central-marginal population dynamics. Most
recently, range-wide genetic diversity has been examined in this species based on nuclear and
chloroplast genetic markers [47,48]. Low magnitudes of genetic structure were observed for

Fig 1. The distribution of eastern white pine in relation to sampled populations. The shaded area
represents the natural range of eastern white pine.

doi:10.1371/journal.pone.0158691.g001
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eastern white pine populations from Canada for both allozyme (FST = 0.061) [45] and micro-
satellite (FST = 0.084, 0.104) [46,47] markers. However, genetic architecture of local adaptation
is poorly understood in this species.

Our goal was to assess the relative contributions of single-locus versus multilocus effects to
climate adaptation for datasets of realistic sizes. First, we establish that allele frequencies at sin-
gle nucleotide polymorphisms (SNPs) within a set of candidate genes are overly correlated to
bioclimatic variables relative to putatively neutral microsatellites (SSRs). We then establish that
this result is driven by differences between putatively selective and neutral marker types in the
pattern of conditional covariances in allele frequencies across populations rather than enrich-
ment of allele frequency outliers within the candidate gene SNPs.

Materials and Methods

Ethics statement—Field sampling
The studied eastern white pine populations are located on public lands in Canada and USA,
which are not designated as protected areas. The field sampling was done in consultation with
the representatives of the agencies that manage public forests. Therefore, no specific permis-
sion was required for field sampling from the studied locations. Our study did not involve an
endangered species.

Populations and sampling
A total of 29 eastern white pine populations from throughout its range were sampled (Table 1;
Fig 1). The populations were sampled along the south to north transect spanning in latitude
from 35.62° to 46.32° in the east and 49.05° in the west, and in the east-west direction ranging
from longitude of 63.61°W to 94.27°W. This sampling scheme covers diverse climate condi-
tions with south to north gradient in temperature and east to west gradient in precipitation
(Fig 1), and variation in photoperiod regimes to which eastern white pine has to adapt over its
natural range. All of the sampled populations were located in natural forests. Fifty mature trees
were sampled randomly from each population. Since selection alters allele frequencies, accurate
estimates of allele frequencies are essential to detect signals of selection. An adequate sample
size is required for reliable estimation of allele frequencies. Therefore, we chose to have a large
sample size per population. The sampled trees within a population were separated by 30 m to
minimize the chance of sampling siblings. We collected needles from each of the sampled
mature trees. Each needle sample was stored in a sealed plastic bag, with a 5 g silica desiccant
pack, at -20°C pending DNA extraction. Total genomic DNA was extracted from needle tissues
of individual sampled trees using a modified CTAB method [49].

Climate data
Climate data were retrieved from the WorldClim global climate layers (v. 1.4 release 3) [50].
We chose to focus on the 19 bioclimatic variables, which are functions of seasonal tempera-
ture and precipitation variables, due to their common use to model species distribution pat-
terns [51]. The relevant climate grids were obtained from the WorldClim website (http://
www.worldclim.org/current) at a resolution of 30 seconds (~1 km resolution) from which the
19 bioclimatic variables were extracted using the geographical coordinates of each population
and the raster library of R [52]. Each of the bioclimatic variables was mean-centered and stan-
dardized prior to use in downstream analysis. For single-locus analyses, all 19 bioclimatic vari-
ables were reduced into a set of principal components (PCs). For multilocus analyses, the 19
centered and standardized bioclimatic variables were then trimmed based on their pairwise
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correlations, so that only bioclimatic variables with Pearson correlation coefficients (r) in the
range -0.80< r< 0.80 were retained. This resulted in retention of nine bioclimatic variables
(bioclim): bioclim1 (annual mean temperature), bioclim2 (mean diurnal temperature range),
bioclim4 (temperature seasonality), bioclim8 (mean temperature of the wettest quarter), bio-
clim10 (mean temperature of warmest quarter), bioclim13 (precipitation of the wettest
month), bioclim14 (precipitation of the driest month), bioclim15 (precipitation seasonality),
and bioclim18 (precipitation of the warmest quarter).

Genetic data
Two types of genetic markers were used—SSRs and SNPs. All 50 sampled trees per population
were genotyped for 12 nuclear SSRs (S1 Table) [41,53] as described in [47] and S1 Text,
whereas 22 randomly selected trees from 50 sampled trees per population were genotyped for
SNPs in climate-related candidate genes. The details on SSR markers and their reference
sequences, primers, GenBank accession numbers and BAC annotations are provided in S1
Table.

Table 1. Populations of eastern white pine (Pinus strobus) sampled for this study and their geographic coordinates. Bioclimatic data are given by
population in the associated data file (S10 Table) for this study.

Population Population ID Longitude Latitude

New Brunswick—Canaan River NBCI -65.59 46.15

New Brunswick—Chipman Road NBCR -65.93 46.32

New Brunswick—Odell Park NBOP -66.66 45.96

New Brunswick—Paper Mill Hill NBPH -65.30 45.79

Massachusetts—Stockbridge MASB -73.29 42.26

Maine- Baxter State Park MEBP -68.64 45.67

Maine—Etna Brook MEEB -69.16 44.79

New Hampshire—Deerfield NHDF -71.26 43.11

New York—Pacama Catskills NYCM -74.17 41.95

Nova Scotia—Dory Mills Lake NSDL -64.41 44.50

Nova Scotia—Lake Rossignol NSRL -65.14 44.27

Nova Scotia—Saint Margret's Bay NSMB -63.87 44.64

Nova Scotia—Uniacke NSUM -63.61 44.95

Minnesota—Boot Lake MNBL -93.13 45.33

Ontario—Crow Lake ONCL -94.27 49.08

Ontario—French River ONFR -80.28 46.05

Ontario—Goulais River ONGR -84.22 46.75

Ontario—High Falls ONHF -78.08 44.60

Ontario—Muskoka ONML -79.66 45.02

Ontario—Whitefish Reserve ONMF -81.72 46.09

Ontario—Renfrew County ONRC -77.40 45.66

Ontario—Timiskaming ONTO -79.48 47.13

Ontario—Wolf Lake ONWL -80.65 46.84

Quebec—Cap Tourmente PQCT -70.80 47.08

Quebec—Lac Phillip PQLP -75.91 45.56

Quebec—Saint Renyold PQSR -71.01 46.01

Quebec—Saint Stanilis PQSS -72.29 46.64

Virginia—Bennett Springs VASB -80.02 37.38

North Carolina—Asheville NCAV -82.53 35.62

doi:10.1371/journal.pone.0158691.t001
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We used data for 44 SNPs in 25 candidate genes putatively involved in the adaptive response
to cold and drought stresses, photoperiodic response, phenology, growth, development, and
maintenance of biological processes, cellular integrity and functions under stress conditions
caused by climate factors (Table 2; S2 and S3 Tables) and [54,55]. These genes and SNPs were
selected from screening 96 candidate genes. We selected expressed sequence tags (ESTs) for 96
candidate genes putatively involved in responses to cold (temperature), photoperiod, and
drought (precipitation) as well as genes affecting phenology, growth and development, and

Table 2. A summary of SNPs, candidate genes and their biological functions from functional analysis of homologues in model plant Arabidopsis
or other plants. The details on these candidate genes, including EST loci, GenBank and TreeGenes database ID, and references for the identification of bio-
logical functions are provided in S2 Table.

SNP ID Candidate gene Climate-responsive biological gene function

RPSS03_05 Chaperonin-60 alpha subunit Plastid division and organization; protein folding; senescence; growth and
development

RPSS04_02, RPSS04_03 Ankyrin repeat containing protein Molecular chaperon; plant cellular metabolism; growth and development; regulation
of defense response

RPSS05_01, RPSS05_04,
RPSS05_05

Malate dehydrogenase—peroxisomal Oxidoreduction; carbohydrate metabolic process; chlorophyll biosynthetic process;
response to light stimulus; regulation of plant-type hypersensitive response;
growth; signal transduction

RPSS06_03 Peroxidase Response to oxidative stress, and abiotic and biotic stresses

RPSS08_01, RPSS08_03 Caffeoyl-CoA 3-O-methyltransferase Lignin and flavonoid biosynthesis; abiotic and biotic stress responses and defense

RPSS12_01, RPSS12_03 NADH dehydrogenase subunit 7 Oxidoreductase activities; cellular respiration

RPSS14_03, RPSS14_06 Multidrug resistance associated protein
1

ABC transmembrane transport; cell membrane integrity; abiotic stress response;
oxido-reductase activities

RPSS16_01, RPSS16_03 Potassium-dependent sodium-calcium
exchanger-like protein

Cation and transmembrane transport; cell membrane integrity; plant nutrition;
growth and development; signal transduction

RPSS19_02, RPSS19_03,
RPSS19_04, RPSS19_06

Photosystem II cp47 chlorophyll
apoprotein

Photosynthesis; chlorophyll binding; growth and phenology

RPSS28_04, RPSS28_06 Elongation factor 2 like protein Freezing tolerance and cold acclimation; heat tolerance; molecular chaperone

RPSS30_01, RPSS30_02 Metallothionein-like protein (MT-like) Response to osmotic and other abiotic stresses; oxidative damage control; cellular
homeostasis; leaf senescence

RPSS31_01, RPSS31_02 Oxygen evolving complex 33 kda
photosystem II protein

Photosynthesis, cold and other abiotic and biotic stress response; cellular cation
homeostasis; morphogenesis

RPSS32_03 Calcium-dependent protein kinase Regulation of stomatal movement, transport, osmotic stress, salt stress, and anion
channel activity

RPSS33_01 MYB transcription factor Regulation of development, metabolism and response to abiotic and biotic stresses

RPSS36_05 Dehydrin Drought, cold and freezing stress tolerance

RPSS47_04 Permease Plastid development; plant growth; mineral nutrition; transport of biochemical, such
as auxins, ions and metals; protection from oxidative stress; abiotic stress
tolerance

RPSS61_02, RPSS61_03,
RPSS61_05, RPSS61_06

Glutathione S-transferase Response to environment; detoxification; protection from oxidative damage

RPSS62_01, RPSS62_02 Cinnamate 4-hydroxylase Lignin and flavonoid biosynthesis; abiotic and biotic stress responses and defense

RPSS66_04 Heat shock protein Abiotic stress response and protection of plants; molecular chaperons

RPSS71_02 ADP/ATP translocator or adenine
nucleotide translocator (ANT)

Maintenance of mitochondria function and integrity; photosynthesis and respiration;
nucleotide transport; growth and development; response to stress; regulation of
programmed cell death and plant-type hypersensitive response

RPSS77_04 MYB transcription factor Regulation of development, metabolism and response to abiotic and biotic stresses

RPSS86_01, RPSS86_02,
RPSS86_04, RPSS86_06

Chlorophyll a/b-binding protein type 1
(CABBP1)

Photosynthesis; response to light and its intensity; light harvesting, regulation of
stomatal conductance; drought stress response

RPSS87_05 Metallothionein-like protein (MT-like) Response to osmotic and other abiotic stresses; oxidative damage control; cellular
homeostasis; water transport

RPSS96_02 Thiazolebiosynthetic enzyme (TBE) Response to cold, DNA damage stimulus and light; starch biosynthetic process

doi:10.1371/journal.pone.0158691.t002
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maintaining cellular integrity and functions under stress conditions from the existing publica-
tions, conifer EST databases, and GenBank [54–56]. Selection of EST contigs from the Tree-
Genes database [56] was based on their functional annotations as determined using BLAST
tools. The EST sequences of the candidate genes were compared against the NCBI Arabidopsis
protein database using BLASTx. Putative homologs of the candidate genes have been previously
demonstrated to be functionally involved in the adaptive responses to climate factors in the
model plant, Arabidopsis (see S2 Table for 25 candidate genes used in the final dataset). And
SNPs in some of them have been found to be associated with cold hardiness, climate-related
adaptive genetic differentiation or co-located with cold hardiness QTL in conifers [54,55,57].

Primers for 72 candidate genes yielded PCR amplicons in eastern white pine. We identified
SNPs in these 72 unique ESTs in a discovery panel of 32 eastern white pine samples represent-
ing populations from the entire range of the species using an EcoTilling approach [58] based
on the SNiPer Eco-Mix Kit (Frontier Genomics, Auke Bay, Alaska, USA). Polymorphic frag-
ments were sequenced by Beckman Coulter Genomics (Danvers, Massachusetts, USA). The
resulting sequences were quality trimmed using a PHRED threshold score of 20 and aligned.
Overall, 184 SNPs in 55 genes were identified. Of these, 155 SNPs in 45 genes, which had a
minimum flanking region of 60 bp and met the criteria of multiplex genotyping assay, were
used for genotyping. SNP genotypes were determined using the Illumina GoldenGate platform
(Illumina, San Diego, CA, USA) as carried out by the Laboratoire Yohan Bossé at the Institut
Universitaire de Cardiologie et de Pneumologie de Québec (Québec, PQ, Canada). The SNP
arrays were imaged using the Illumina BeadArray technology and analyzed using BeadStudio
(v. 3.1.3.0). SNP loci were filtered for those that had call rates greater than 80% and a minor
allele frequency greater than 1%. One hundred forty-one SNPs in 45 genes met the first crite-
rion. And 44 SNPs in 25 genes (Table 2; S2 and S3 Tables) met both of these criteria and, thus,
were used in data analysis.

Population genetic analysis
Genetic diversity of the sampled populations was quantified for each dataset (i.e. SSRs and
SNPs) using standard statistics (effective number of alleles: AE, observed heterozygosity:HO,
expected heterozygosity:HE), andWright’s fixation index (FIS) was calculated from these values.
These parameters were estimated for each locus in each population. Averages across loci within
populations were used to represent the overall multilocus patterns. Correlations involving mul-
tilocus averages within populations were assessed using Pearson correlations, the significance of
which were assessed via permutation of population identifiers (n = 9,999) at α = 0.05.

Genetic structure among the sampled populations was estimated to test the hypothesis that it
differs between reference (i.e. SSRs) and putatively functional candidate gene (i.e. SNPs) marker
sets. We focused specifically on both aspects of genetic structure: its magnitude [59,60] and its
shape [61]. Patterns of population structure were thus analyzed using two approaches: (1) sum-
mary statistics to assess its magnitude (e.g. FST) and (2) Population Graphs to assess its shape.

We used the hierfstat library in R to estimate multilocus values of FST for each dataset [62].
Bootstrapping over loci (n = 10,000) was used to construct 95% confidence intervals for each
estimate. We tested a null model of no differences in the magnitude of genetic structure
between marker sets using the 95% bootstrap confidence intervals for the multilocus estimates
for each marker type. For comparison, we also estimated GST’ using the gstudio library in R.
This approach accounts for differences in heterozygosities between marker types [63].

Outliers with respect to the magnitude of FST were identified using BayeScan ver. 2.1. Sepa-
rate analyses were conducted for each marker type. This approach partitions the observed val-
ues of FST into effects of populations shared across all loci and effects of loci shared across all
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populations using logistic regression [18]. When the effect of a locus shared across all popula-
tions deviates significantly from 0 (i.e. FDR q-value< 0.10), the locus is labeled as an outlier.
BayeScan implements the logistic regression model in a Bayesian framework, with model
parameters estimated via Markov Chain Monte Carlo (MCMC). Point estimates for parame-
ters are given as the mean of their posterior distributions. We used the default MCMC settings
for BayeScan (i.e. 20 pilot runs each of length of 5,000 steps, a burn-in of 50,000 steps followed
by an additional 50,000 steps thinned every 10 steps). Multiple MCMC analyses (n = 3) were
conducted for four different prior weights on the null model (10:1, 100:1, 1000:1, and 10000:1)
to check for convergence. The proportion of outliers for each marker type at each prior weight
was compared using a Z-test and α = 0.05.

The Population Graph approach begins by partitioning multilocus genetic variation into
components of within- and among-population genetic variance using standard methods
[64,65]. The among-population genetic variance component is comprised of the set of pairwise
multilocus covariances, derived from distances [61], in allele frequencies among all populations.
The Population Graph approach uses quantities derived from these covariances (i.e. pairwise
partial correlations; see [61]) to define the minimal set that is needed to explain the among-pop-
ulation component of genetic variation. Specifically, each pairwise partial correlation coefficient
is tested statistically as being significantly different from zero. From the set of pairwise partial
correlations that were significant, the topology of a Population Graph is defined and the condi-
tional genetic distances (cGDs) are computed as the shortest path between pairs of populations
on this topology [65–67]. Values for cGD are estimated conditional on the Population Graph
topology (i.e. as Type III sums of squares are for linear models), so that they highlight edges of
the graph that cannot be explained using the remaining edges. Simulation and empirical work
have shown that the topology of a Population Graph is sensitive to standard demographic pro-
cesses, such as gene flow and range expansions [65,66]. This is largely because these processes
also create unique patterns in the multilocus covariances among populations.

A separate Population Graph was estimated for each dataset. Differences in the topology of
genetic structure between datasets was tested using distance congruence as employed in the
test_congruence function in the popgraph library of R, which represents a Mantel test between
a matrix of cGD values derived from each Population Graph. If a significant correlation (i.e.,
r 6¼ 0) is detected then the two Population Graphs share more similarities than by chance.

Environmental association analysis
Single-locus environmental association analysis. For comparison, we also conducted a

simple, single-locus environmental association analysis. We used square root arcsine trans-
formed allele frequencies within the 29 populations to correlate with the 19 bioclimatic vari-
ables. Specifically, for each SNP, each of the top three principal components (PCs) from the
principal components analysis (PCA) of the 19 bioclimatic variables were correlated with the
residuals of the transformed population allele frequencies. The top three PCs were chosen
because they had eigenvalues greater than 1.0 and collectively explained 88.9% of the total vari-
ance. Correlation was assessed using Spearman rank correlations, the significance of which was
assessed using large-sample approximations as employed in the cor.test function of R. Latitude
and longitude and their nonlinear transformations were used to control for spatial autocorrela-
tion and demographic history, as done similarly for the multilocus analyses, with the residuals
of the population allele frequencies produced via regressing these quantities on the square root
arcsine transformed allele frequencies and taking the residuals. Multiple tests were accounted
for using the false discovery rate of [68], with a q-value of 0.05 taken as the significance thresh-
old. All analyses were conducted using R.
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Multilocus environmental association analyses. We used Redundancy Analysis (RDA)
to explore the linear relationship between allele frequencies and climate for each dataset, as
well as to partition the overall variance in allele frequencies across loci to effects explained by
climate, geography, and their interaction [69]. In this analysis, a matrix of arcsine-square root
transformed allele frequencies within populations was the response variable, while the climate
and geographical variables for each population were the predictors. For SSRs, the matrix corre-
sponding to the arcsine-square root transformed frequency in each population of each allele at
each locus was used as the response. For geographical variables, centered values of latitude and
longitude along with their non-linear transformations were used to account for spatial effects
[69]. The optimal set of geographical predictors was found for each molecular marker dataset
using the ordistep function with the default settings in the vegan library of R, which is a step-
wise model-building algorithm suitable for constrained ordination. Both unconditional and
conditional RDA models were fit to each type of molecular data and variance partitioning of
the effects of climate, geography, and the interaction of climate and geography was conducted
using these results (see [69]). Statistical significance of the model and each axis was tested
using a permutation-based (n = 9,999 permutations) analysis of variance (ANOVA) following
[69]. All analysis was conducted using the vegan package in R.

We also tested the relationship of cGD to climate and geography using multiple regression
on distance matrices (MRM) [70] as carried out in the ecodist library of R. Pairwise Euclidean
distances were used to represent climate variation and were calculated using the nine centered
and standardized bioclimatic variables. Geography was represented as either distance (km) as
calculated using the rdist function in the fields library in R or as Euclidean distances of the geo-
graphical variables used in the RDA. The same models as those used for the RDA were fit using
MRM, with the conditional models based on the residuals in the response matrices calculated
using a custom R script. Separate analyses were performed for each dataset.

Simulations to assess the effect of mutation rate differences on climate
correlations
We used a coalescent simulation approach as employed in the programms [71] to assess the
effect of mutation rate differences between marker types on structure of the Population Graphs
and hence their correlations with an associated climate variable. We focused on a 10 popula-
tion system in which neighbouring populations oriented along a one-dimensional landscape
shared migrants at a rate of 2Nem = 2.5. All other connections among populations were set to
2Nem = 0.0. From each population, 10 diploid individuals were sampled. The global effective
population size (Ne) was set to 10,000 for each marker type, with SNP data simulated assuming
a mutation rate of 1.0 x 10−9 per site/generation and SSR data simulated assuming a mutation
rate of 1.0 x 10−3 or 1.0 x 10−5 per site/generation using the infinite allele model. Simulation of
SSR data followed the algorithm of [72]. To test the effect of mutation rate differences on the
structure of Population Graphs, we simulated 1,000 multilocus datasets of each marker type
with the number of loci in each dataset matching those of each observed dataset (SNPs: 44;
SSRs: 12). For each simulated dataset for each marker type, we estimated a Population Graph
using the approach described for the empirical data. We tested for congruence between Popu-
lation Graphs of each marker type for each replicated simulation using the test_congruence
function in the popgraph library of R. The set of Mantel correlation coefficients describing con-
gruence in each case was used as the null distribution against which the observed value was
compared. If mutation rate explained the difference in the observed data then we would expect
the observed Mantel correlation coefficient to be explained as a likely outcome of simulated
null distribution. We discarded simulated Population Graphs containing disjunct groups of
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populations, which produce matrices of cGD values, upon which the congruence test is based,
containing undefined values. This was sensible because the observed Population Graphs did
not contain disjunct groups of populations.

Results

Genetic diversity
Magnitudes of genetic diversity, and the inbreeding coefficient (FIS), were different between the
marker types (Table 3; S4 and S5 Tables). SSRs had higher heterozygosities (HO andHE),
higher AE values, and a larger deficit of observed heterozygotes relative to SNPs (i.e. FIS > 0).
Differences between marker types were significant for averages taken across loci and popula-
tions (Table 3; S4 and S5 Tables).

Measures of genetic diversity were correlated across populations between marker types (HE:
r = 0.485, P = 0.0028; AE: r = 0.546, P = 0.0001). Genetic diversity illustrated geographical trends
for each marker type, withHE and AE inversely correlated with latitude (SSRs:HE, r = -0.485,
P = 0.0044; AE, r = -0.548, P = 0.0034; SNPs:HE: r = -0.414, P = 0.0066; AE: r = -0.496,
P = 0.0019) and positively correlated with longitude (SSRs:HE, r = 0.341, P = 0.0383; AE,
r = 0.469, P = 0.0070; SNPs:HE: r = 0.155, P = 0.2148; AE: r = 0.117, P = 0.2766) (S5 Fig). As
such,HE and AE decreased from south to north and increased from east to west, although the
correlations with longitude for SNPs were not statistically significant. Correlations of FIS were
also observed with latitude (SSRs: r = -0.427, P = 0.0058; SNPs: r = 0.437, P = 0.0046) and longi-
tude (SSRs: r = -0.404, P = 0.0162; SNPs: r = -0.013, P = 0.4604), although the correlation of FIS
with longitude was not significantly different from 0 for SNPs. Given that FIS was positive on
average within populations for SSRs, this translated into FIS decreasing towards 0 from south to
north for SSRs. Given that FIS was negative on average within populations for SNPs, FIS
increased towards 0 from south to north for SNPs.

Genetic structure
Allele frequencies across the range of eastern white pine were structured for both marker types
(Table 4; S6 and S7 Tables). Multilocus values for FST were significantly greater than 0 for both
SSRs (FST = 0.113) and SNPs (FST = 0.136). The 95% bootstrap confidence intervals for each
estimate, however, revealed that the magnitude of this statistic did not differ between the
marker types (SSRs: 0.079–0.139; SNPs: 0.100–0.148). When differences in heterozygosities
were accounted for between marker types, however, SSRs (GST’ = 0.391, 95% CI: 0.326–0.458)
were significantly more structured than SNPs (GST’ = 0.033, 95% CI: 0.002–0.067).

Table 3. Summary of overall genetic diversity and inbreeding coefficient for eachmarker set. Values in parentheses represent the 95% bootstrap con-
fidence intervals for the average across populations (n = 10,000 replicates across populations). AE = effective number of alleles per locus;HO = observed het-
erozygosity; HE = expected heterozygosity; FIS = within-population inbreeding coefficient; FST = inter-population genetic differentiation;GST’ = inter-
population genetic differentiation independent of heterozygosity differences.

Parameter SSR SNP

(loci = 12) (loci = 44)

AE 4.93 (4.67 – 5.19) 1.33 (1.31 – 1.36)

HO 0.67 (0.65 – 0.70) 0.26 (0.24 – 0.28)

HE 0.74 (0.72 – 0.75) 0.20 (0.18 – 0.21)

FIS 0.09 (0.05 – 0.12) -0.17 (-0.20 – -0.13)

FST 0.113 (0.079 – 0.139) 0.136 (0.100 – 0.148)

GST’ 0.391 (0.079 – 0.139) 0.033 (0.002 – 0.067)

doi:10.1371/journal.pone.0158691.t003
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The BayeScan analysis resulted in two and five of the loci being identified as outliers for
SNPs, and SSRs, respectively (Table 4). In the case for SNPs, the only outlier SNP (RPSS14_03),
which was consistent with diversifying selection, had an observed value of FST that was approxi-
mately two-fold larger than the average, whereas the outlier SNP (RPSS61_05) which was con-
sistent with stabilizing selection had an observed FST that was approximately four-fold smaller
than the average. These SNPs, however, only exhibited significant estimates for locus effects
when the prior odds of the neutral model were set to 1000:1 or less (Table 4). All five SSR loci
identified as outliers had estimates of FST that were approximately two- to five-fold less than the

Table 4. Summary of the BayeScan results for FST outliers. Values in parentheses are 95% credible intervals. Results are listed for a range of prior
weights on the null model.

Locus FST Locus effect (α) q-value ESS (α)

SNP

RPSS14_03 0.287

10:1 0.266 1.030 (0.504 – 1.582) 0.0005 4184.33

100:1 0.267 1.053 (0.509 – 1.621) 0.0042 4560.31

1000:1 0.247 0.892 (0.001 – 1.544) 0.0813 4302.19

10000:1 0.160 0.225 (0.000 – 1.345) 0.4918 3014.35

RPSS61_05 0.043

10:1 0.038 -1.465 (-2.381 – -0.664) < 0.0001 4011.22

100:1 0.038 -1.445 (-2.339 – -0.654) 0.0002 4042.03

1000:1 0.039 -1.445 (-2.325 – -0.595) 0.0074 4546.29

10000:1 0.055 -1.213 (-2.335 – 0.000) 0.1928 1094.88

SSR

RPS12 0.026

10:1 0.024 -2.163 (-2.401 – -1.948) < 0.0001 406.67

100:1 0.023 -2.148 (-2.364 – -1.939) < 0.0001 600.09

1000:1 0.024 -2.058 (-2.267 – -1.844) < 0.0001 486.80

10000:1 0.024 -2.039 (-2.237 – -1.837) < 0.0001 839.50

RPS20 0.083

10:1 0.076 -0.934 (-1.143 – -0.740) < 0.0001 422.65

100:1 0.075 -0.918 (-1.107 – -0.729) < 0.0001 445.42

1000:1 0.075 -0.835 (-1.014 – -0.661) < 0.0001 416.77

10000:1 0.076 -0.813 (-0.989 – -0.650) < 0.0001 453.21

RPS25 0.082

10:1 0.071 -1.003 (-1.235 – -0.786) < 0.0001 420.07

100:1 0.072 -0.980 (-1.201 – -0.758) < 0.0001 576.26

1000:1 0.072 -0.883 (-1.095 – -0.666) < 0.0001 627.75

10000:1 0.072 -0.862 (-1.052 – -0.666) < 0.0001 367.68

RPS39 0.063

10:1 0.067 -1.063 (-1.315 – -0.811) < 0.0001 436.23

100:1 0.067 -1.057 (-1.311 – -0.802) < 0.0001 533.67

1000:1 0.067 -0.975 (-1.239 – -0.719) < 0.0001 585.90

10000:1 0.066 -0.949 (-1.185 – -0.707) < 0.0001 487.01

RPS50 0.039

10:1 0.043 -1.540 (-1.773 – -1.326) < 0.0001 388.13

100:1 0.044 -1.514 (-1.729 – -1.298) < 0.0001 357.42

1000:1 0.043 -1.443 (-1.665 – -1.233) < 0.0001 389.85

10000:1 0.044 -1.403 (-1.614 – -1.189) < 0.0001 278.99

doi:10.1371/journal.pone.0158691.t004
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average, which was consistent with stabilizing selection. These five loci were outliers for all val-
ues of the prior odds placed on the neutral model. More information about convergence and
specific results from the BayeScan analysis are given in S1 Text and S1–S4 Figs. The proportion
of outliers at prior odds of 1000:1 or less differed between marker types when considering all
outliers (1000:1 odds: Z = -2.9697, P = 0.0031), but not when considering only outliers consis-
tent with diversifying selection (1000:1 odds: Z = 1.2727, P = 0.2031).

Inspection of the Population Graph for each marker type revealed strong geographical
trends (Fig 2). Significant covariances among populations were common along the south-to-
north axis of the Atlantic seaboard and the east-to-west axis across the top of the Great Lakes

Fig 2. The geographical basis of Population Graphs differs betweenmarker types. Except for panel (C),
nodes are scaled proportional to the within-population genetic variance (σ2

W). (A) The Population Graph for
the 12 SSR loci. (B) The Population Graph for the 44 SNP loci. (C) The consensus Population Graph for
SSRs and SNPs.

doi:10.1371/journal.pone.0158691.g002
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for both marker types. Differences between Population Graphs based on each marker type
were largely apparent for the cluster of northern populations, which appeared to be more con-
nected for the SSRs than for the SNPs, and for the degree of connectivity between the Atlantic
seaboard and the populations north of the Great Lakes, which were more connected for the
SSRs. Despite these differences, however, there was a significant correlation between the cGDs
from two marker types (r = 0.132, P = 0.0070), although summary statistics of Population
Graph topologies for each marker type revealed many differences (S8 Table). Inspection of the
congruence Population Graph revealed that this correlation was driven largely by each of the
aforementioned major geographical axes (Fig 2C). The shape of the congruence Population
Graph mirrors that for a hypothesized phylogeographical model for eastern white pine involv-
ing numerous south-to-north corridors of expansion from a southern refugium after the Last
Glacial Maximum [47].

Environmental (climate) association analysis
Single-locus associations. Correlations between transformed allele frequencies within

populations and climate were apparent. A total of 21 SNP-climate PC combinations survived
multiple test corrections when geography was ignored. When the effect of geography was
removed, this dropped to a total of 2 SNP-climate PC combinations. These correlations were
between SNP RPSS28_05 and climate PC1 (ρ = 0.66256; p = 0.00013; q = 0.01733) and SNP
RPSS62_01 and climate PC3 (ρ = 0.62167; p = 0.00042; q = 0.02789). Climate PC1 explained
53.2% of the variance in the original climate data, whereas climate PC3 explained 9.5% of this
variance. The putative homolog of the contig containing RPSS28_05 is an elongation factor
like protein, whereas that for the contig containing RPSS62_01 is cinnamate 4-hydroxylase.
Inclusion of nonlinear transformations and cross products of geographical variables, however,
removed these 2 significant correlations [69]. These patterns remained unchanged if the
reduced set of bioclimatic variables (see Materials and Methods) were used.

Multilocus associations. Climate and geography were differentially important in structur-
ing genetic diversity across marker types (Table 5; Fig 3). Geography was more important in
structuring genetic diversity for SNPs as opposed to SSRs. This was evident in two ways. First,
only two of the nine possible geographical variables were selected for SSRs, while five were
selected for SNPs during the model selection of geographical variables using RDA. Second, the
RDA model using these variables was not statistically significant for SSRs (Table 5). Climate
was also differentially important across marker types, with more of the variance in allele fre-
quencies for SNPs accounted for by climate (SNPs: R2

adj = 0.442; SSRs: R2
adj = 0.040). After

accounting for the influence on climate by geographical variables, this effect disappeared, with

Table 5. RDA and pRDA results by molecular marker type reveal differential effects of climate and geography acrossmarker types. Bolded values
are those with P-values < 0.05.

SSR SNP

Effect R2
adj F (df1,df2) P R2

adj F (df1,df2) P

Geographya 0.02242 1.0713 (9,19) 0.073 0.28883 2.2635 (9,19) 0.012

Climate 0.04020 1.1303 (9,19) 0.003 0.44247 3.4690 (9,19) 0.001

Geography +Climate 0.06635 1.1809 (11,17) 0.001 0.38958 2.2765 (14,14) 0.008

Geography|Climate 0.02615 1.2661 (2,17) 0.051 -0.05288 0.6708 (5,15) 0.815

Climate|Geography 0.04697 1.1453 (9,17) 0.006 0.09217 1.3859 (9,14) 0.153

aGeographical variables were those selected from the original set of nine variables defined following [69] using the ordistep function in the vegan library of R.

For SSRs, these were: longitude and longitude3. For SNPs, these were: longitude, latitude2, longitude x latitude, longitude2 x latitude, and longitude3.

doi:10.1371/journal.pone.0158691.t005
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the pRDA model describing the effects of climate conditional on geography not being statisti-
cally significant for SNPs (F9,14 = 1.386, P = 0.153; Table 5). The same pRDA model, however,
was statistically significant for SSRs, although the proportion of variance accounted for by this
model was small (R2

adj = 0.047; Table 5).

Fig 3. Triplots of RDA solutions illustrate differential effects of climate and geography acrossmarker
sets. The specific RDAmodel is one that includes both climate and geography (i.e. the third model in
Table 5). Points represent populations, crosses represent SNPs or SSR alleles, and arrows represent
geographical (gray) or climate (black) variables. (A) RDAmodel with climate and geography for SSRs. Both
of the illustrated axes were statistically significant (P < 0.05), as were axes 3 and 4. (B) RDAmodel with
climate and geography for SNPs. Both of the illustrated axes were statistically significant (P < 0.05).
Abbreviations: BC, bioclimatic variable; Lat, latitude; Lon, longitude; PVEC, percent constrained variance
explained; PVER, percent raw variance explained.

doi:10.1371/journal.pone.0158691.g003
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These patterns were also evident in how variance was partitioned among effects due to cli-
mate, geography, and the joint action of climate and geography for each marker type (Fig 4).
The total amount of variance explained by geography and climate was much larger for SNPs
than for SSRs (i.e., R2adj for SNPs was two to 14-fold higher depending on the model, see
Table 5). The partitioning of this explainable variance, moreover, differed strongly between
marker types, with climate independent of geography explaining 79.36% of the variance for
SSRs, while only 39.14% for SNPs. Considering the confounded effects of climate and geogra-
phy, however, revealed that 50.34% of the effects observed for SNPs was due to this confound-
ing, while it was only 1.15% for SSRs. This is consistent with the statistically non-significant
effect of climate conditional on geography for SNPs (Table 5).

We further explored these patterns using MRM where the response matrix was constructed
from values of cGD and the predictor matrices were constructed from Euclidean distances
based on climate variables and those geographical variables used in the RDA. In this case, none
of the MRMmodels were statistically significant for SSRs, while four of the five models were
statistically significant for SNPs (Table 6). The relative magnitude difference between explain-
able variance (i.e., R2) for SSRs versus that for SNPs, however, was similar to that observed for
RDA. For example, the R2 derived from a MRMmodel of climate predicting cGD for SNPs was
approximately 14-fold larger than the same model for SSRs, whereas the same comparison for
RDA models resulted in an approximately 11-fold increase in explanatory power.

Fig 4. Variance partitioning by type of analysis for eachmarker set reveals differential effects of
climate, geography, and the confounding of climate and geography. For the RDA analyses, partitioning
was carried out using the inertia (i.e. variance), so the illustrated percentages are for R2 and not R2

adj.
Abbreviations: MRM, multiple regression on distance matrices; RDA, redundancy analysis.

doi:10.1371/journal.pone.0158691.g004
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Partitioning the variance among effects due to climate, geography, and the confounded
effects of climate and geography revealed large differences relative to the analysis based on RDA
(Fig 4). In this analysis, the confounded effects of climate and geography accounted for 75.54%
of the explainable variance for SSRs, while climate independent of geography accounted for
only 5.40%. Patterns of explainable variance for SNPs were similar to those based on RDA, with
the largest fraction of explainable variance attributable to the confounded effects of climate and
geography (61.79%). As with the RDA analyses, however, climate accounted for a significantly
larger fraction of the total variance in cGD for SNPs relative to SSRs (Table 6).

Coalescent simulations confirmed that the observed differences in topologies for the Popu-
lation Graphs, and hence values of cGD, between marker types was not explainable by differ-
ences in mutation rate. The observed correlation between Population Graphs based on each
dataset (r = 0.132) was not a likely outcome in simulations along a one-dimensional stepping
stone model for a difference in mutation rates between marker types of 1.0 x 104 (P< 0.001) or
1 x 106 (P = 0.001). This value was too small compared to those simulated under a neutral,
one-dimensional stepping stone model. Under a null model of no correlation between popula-
tion structure and climate, both marker sets yielded slightly positive correlations on average
(Mantel r: 0.024 to 0.028). The distribution of differences between marker types, however, was
centered on zero (Fig 5A). The same form of result was observed when there was a true correla-
tion between population structure and climate. Both marker sets slightly overestimated the
true correlation (Mantel r: 0.456 to 0.461), but the expected difference between marker types
was again centered on zero (Fig 5B). These two results confirm that mutation rate, at least in
the way we modeled it, does not affect climate correlations. In both cases, moreover, the
observed difference between marker types exceeded that expected under the null model (Fig 5).

Discussion
Populations of forest trees offer some of the best examples of local adaptation for plants to
their environment [3]. Here we have employed eastern white pine to test the hypothesis that it
is the multilocus covariances among populations that differentiate putatively adaptive loci
from those reflecting primarily neutral processes [73]. Specifically, we have shown using multi-
variate methods that a set of 44 SNPs located in candidate genes involved in adaptive responses
to climate have cGD values that are overly correlated to climate relative to a reference set of
SSRs. Similarities between marker sets, moreover, followed those expected due to models of the
Pleistocene phylogeography for eastern white pine [47]. The differences in mutation rates
between SSRs and SNPs likely did not affect the topologies of the Population Graphs, and
hence values of cGD and their correlations with associated climate variables.

Table 6. MRM analyses using cGD as the responsematrix reveal that the SNP data are overly correlated to climate and climate conditional on
geography. Differences in R2 values between marker types are significant using a permutation approach.

SSR SNP

Effect R2 F P βgeography βclimate R2 F P βgeography βclimate

Geographya 0.018 7.432 0.139 0.0004 — 0.130 60.439 0.001 0.0004 —

Climate 0.013 5.131 0.149 — 0.4562 0.172 83.746 0.001 — 0.7523

Geography+Climatea 0.028 5.765 0.069 0.0024 -0.1540 0.185 45.836 0.001 0.0010 0.4955

Geography|Climatea 0.005 2.174 0.454 0.0002 — 0.020 8.059 0.055 0.0002 —

Climate|Geographya 0.002 0.593 0.659 — 0.1545 0.051 21.818 0.001 — 0.3833

aGeographical distances were based on Euclidean distances derived from those geographical variables used in the RDA (see Table 5).

doi:10.1371/journal.pone.0158691.t006
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Genetic diversity and demography
Genetic diversity for SSRs was substantially higher than that for SNPs. This is consistent with
the much higher mutation rates for SSRs [74] than those for biallelic SNPs located within puta-
tively functional genes [75]. Observed levels of genetic diversity for eastern white pine were
larger than those reported in much earlier studies, especially for the SSRs [41,43,44,46], and are
most likely due to the large sample sizes and extensive geographical breadth of our sampling
scheme. Regardless of the difference in magnitude, however, patterns of genetic diversity across
populations were positively correlated between two marker types. The process driving this cor-
relation is most likely the common demographic history underlying all loci in the genome of
eastern white pine [76].

Genetic diversity (AE and HE) decreased from south to north and increased from east to
west for both marker types. This geographical pattern is consistent with the postglacial migra-
tion of eastern white pine from a southern refugium [32,47]. The consensus Population Graph
confirmed that this re-colonization likely involved numerous geographical paths and/or multi-
ple re-colonization events [47]. Local genetic bottlenecks in the founding populations were also
likely associated with these re-colonization events, which are evidenced by the south-to-north
and east-to-west trends for patterns of genetic diversity. These trends were also apparent for
FIS, which was due to the differing strength of geographical influence on HO versus HE (see S1
Text File; S5 Fig). As such, populations across the range of eastern white pine are likely not at
any form of equilibrium (e.g. migration-drift-selection equilibrium), although many of the
commonly employed methods to identify components of the genetic architecture underlying
local adaptation assume some form of equilibrium.

It is well established that the mating system, such as inbreeding, normally affects all loci and
alleles in the same way, whereas selection does not affect all loci and alleles. Thus, significant
heterogeneity in inbreeding coefficients (FIS) between loci may reflect the evidence of selection
[77], and the extent of differences in FIS may reflect the differences in the intensity of selection.

Fig 5. Null distributions for the difference betweenMantel correlations for SNPs and SSRs under a
simple, one-dimensional stepping-stonemodel of population structure illustrate the non-effect of
mutation rate differences in producing environmental correlations. Vertical red lines mark the observed
difference from the main text. (A) A null model of no true environmental correlations. (B). A null model of a true
environmental correlation (r = 0.40). Only the differences between marker sets are illustrated, because
estimates from each set separately were largely unbiased (bias < 0.15), with the positive biases explainable
by use of 19 bioclimate variables in the simulations that were independent, whereas in reality these are highly
correlated.

doi:10.1371/journal.pone.0158691.g005

Genetic Architecture of Local Adaptation to Climate

PLOS ONE | DOI:10.1371/journal.pone.0158691 July 7, 2016 17 / 26



In our study, we consistently observed significantly higher FIS values for SSR than for SNP
markers for the studied populations with most populations showing deficiency of heterozy-
gotes for SSR markers and excess of heterozygotes for SNP markers (S4 and S5 Tables). The
SSR markers are considered to be putatively neutral whereas the SNP markers were from can-
didate genes putatively involved in adaptive response to climatic conditions. As such, the SSR-
based FIS values may reflect the signatures of mating system and the SNP-SSR FIS differences as
signatures of natural selection. The differences between the SNP and SSR based FIS values
showed a geographical trend decreasing from south to north and from east to west. The FIS dif-
ferences showed a significantly negative correlation with latitude (r = -0.547, p = 0.0002), and
non-significant negative correlation with longitude (r = -0.235, p = 0.292). These results may
reflect the geographic pattern of differences in the intensity of selection along the climate gradi-
ent. However, these inferences need to be confirmed through experimentation.

Genetic architecture of local adaptation to climate
Eastern white pine established its current range recently, at least in terms of 4Ne generations
[32]. As such, local selection pressures in the northern portion of its range are relatively novel
and recent. In this case, it is expected that the first responses to diversifying selection should
be the build-up of excessive multilocus covariances among populations and among loci [6–
10]. This was confirmed here, as signals of associations with climate were apparent in multilo-
cus (i.e. multivariate) analyses, but not necessarily in single-locus analyses. Analysis of FST
outliers identified only a single marginal case (i.e. RPSS14_03 was only an outlier for prior
odds of 1000:1 or less for the neutral model) consistent with diversifying selection for SNPs.
Since climate and genetic variation are structured spatially, FST outliers are a reasonable
approximation to single-locus effects, so that these effects are indeed rare within our data.
This SNP was located in a putative ABC-transporter (putative homolog of AT3G21250;
BLASTx: identity: 72%, coverage: 95%, e-value: 4e-62), which is a member of a gene family
that has been implicated in a variety of stress responses in model plants [78]. The point, how-
ever, is that FST outliers were not the major signal in our data despite the genes from which
SNPs were derived being candidates for functional responses to climate-related factors. Even
if they were, there are numerous ways with which to be an outlier, not all of which are consis-
tent with climate-mediated selection pressures [79]. It was thus the correlations between the
multilocus covariances among populations, as assessed through the use of multilocus analyses
(RDA and MRM with cGD), and climate that were the outliers. As shown for Drosophila, this
is also consistent with interactions among quantitative trait loci without strong, single-locus
effects [27,80], although these were not examined explicitly here. It is likely, therefore, that
this type of response will be that to future climate change, as the pace of climate change will be
fast relative to the generation time of most forest trees [10,33,81].

Climate and geography were strongly confounded for the RDA and MRM analyses,
although the magnitude of this confounding varied by marker type. For the SNP data, the
strongest signals of correlation between genetic variation and climate came from the analysis
using cGD. Values for cGD are estimated conditional on the Population Graph topology, so
that they highlight edges of the graph that cannot be explained using the remaining edges. This
is why the set of cGD values can be considered as the shape of genetic variation underlying
magnitude-based statistics such as FST. As such, these edges often are most sensitive to demo-
graphic processes underlying the observed data [61]. In the case of expansions from refugia,
these processes are structured spatially, so that it is unsurprising that the correlation structure
differed between RDA and MRM based on cGD. In essence, analysis using cGD values
highlighted the spatial components of this demographic history, which themselves are

Genetic Architecture of Local Adaptation to Climate

PLOS ONE | DOI:10.1371/journal.pone.0158691 July 7, 2016 18 / 26



confounded with climate gradients most likely affecting fitness differences among trees as they
colonized novel environments during expansions out of Pleistocene refugia.

Our results are consistent with theoretical predictions that the loci contributing to local
adaptation are remarkable because of correlated and subtle allele frequency differences among
populations (i.e. have elevated levels of among population covariance in allele frequencies) and
not large, single-locus effects [6–11], yet are at odds with recent empirical work searching for
single-locus outliers within and among populations of forest trees (e.g. [79,82,83], but see [24,
84–86] for examples of multilocus approaches to the study of adaptation in trees). This implies
that important and ecologically relevant genetic patterns may be missed due to the focus on
single loci. The relative magnitude of how much is missed, however, depends upon a number
of biological (e.g. trait architecture, patterns of linkage disequilibrium) and statistical (e.g. satu-
ration of the genome, sample sizes) attributes of the study system. Some of this disconnect may
be remedied by using genomic prediction methods [87], cf. [84,88] to rank genotypes as more
or less suited for particular environments and the focus on quantitative genetic prediction
from common garden data, e.g. [89]. Foundational questions about the genetic architecture of
locally adapted phenotypes, however, will need to consider both multilocus and single-locus
effects [29], although the identity of the specific loci contributing to local adaptation may
remain difficult to establish [90].

Caveats
There are several caveats to our explanations and choices of analysis. First, the observation that
climate and geography were more confounded for SNP relative to SSR data could be artifactual.
An alternate explanation is that mutation rate differences between these two types of markers
confounded the spatial signal in the SSR data (see [91]). Use of a control set of SNPs would
have alleviated this concern, but since these data were not available we used simulations to
assess the impact of mutation rate variation on patterns of cGD. Coalescent simulations could
not account for differences as large as those for the observed Population Graph topologies. For
example, assuming a one-dimensional stepping stone model, the average congruence between
markers with mutation rate differences on the order of 1.0 x 106 was r = 0.864 (95% CI: 0.324–
0.991). The observed value for the SNP and SSR data was r = 0.132. Although additional mod-
els of population structure and demographic processes need to be examined, it is clear that
mutation rate difference is not likely the driver of the observed patterns (see also [92] for a sim-
ilar consideration of null alleles and cGD values). The reason is that the mutation rate in the
simulations is random and not spatially autocorrelated. If this assumption of the simulations,
however, is violated in eastern white pine then our conclusion that the mutation rate difference
between marker types had no effect is incorrect. Future simulations should thus investigate
how demography (e.g. bottlenecks in spatially proximal populations) could introduce spatial
autocorrelation in the effective mutation rate and confound inferences using cGD.

Second, we assumed that the multilocus analysis we conducted implicitly modeled the
among-population component of intergenic covariances [6]. We analyzed several SNPs located
at the same gene locus. If the observed multilocus covariances were driven largely by physical
linkage among non-causative loci, then we would expect that the levels of intragenic linkage
disequilibrium would be larger than the levels of intergenic linkage disequilibrium. The oppo-
site pattern, however, was observed for both r2 and D’ (S6 Fig), so that the largest values of each
statistic were observed only among SNPs located in different genes and not among SNPs
located within the same gene.

Third, we assumed that our candidate genes do in fact underlie locally adapted traits in east-
ern white pine. Our focal genes have protein products with functional responses to climate
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factors for model plants (see Table 2; S2 Table). Protein products from these candidate genes
are potentially involved in responses to cold (temperature), drought (precipitation), and sea-
sonal photoperiod (daylight length), as well as underlie growth, development and phenological
traits in model plant species (see S2 Table). The south to north gradient in temperature and
photoperiod, as well as the east to west gradient in precipitation (Fig 1), are the dominant cli-
mate factors to which eastern white pine has had to adapt over its natural range.

Conclusions and future directions
Forest tree species are clearly adapted to their local environments, a conclusion supported by a
wealth of experimental data [3,4,29,88]. We have presented data that illustrate differences in the
multilocus covariances among populations between climate-responsive candidate genes and a
reference set of SSRs in eastern white pine. Extrapolation of this result to other tree species, con-
sidering that their life history is similar to eastern white pine, implies that future work should
consider multilocus effects [27], an idea that greatly predates the genomic revolution for non-
model species [6,28] and references therein. Future work is also needed to rigorously establish
the utility of Population Graphs and other multivariate methods to the study of local adaptation
[93], as other data-intensive methods are available for genome-wide inferences, e.g. [90,94]. The
key for use of many of these methods to study signals of selection, including cGD, is the ability
to create focal sets of genes with which to perform hypothesis tests. For example, we used candi-
date genes based on homology with known plant proteins in model species. Other approaches
could include loci linked to phenotypes through phenotype-genotype associations or those cor-
related with environmental variables. Further work, moreover, could focus on the ability to
search the space of possible focal sets of loci sampled from a large experimental set (e.g. tran-
scriptome or genome-wide SNPs) without the need of additional information to classify loci as
being interesting. Studies within natural populations, especially when combined with the wealth
of genetic associations discovered in experimental plantings, highlight forest trees as an unparal-
leled system with which to study the genetic architecture of locally adapted traits in plants.

Supporting Information
S1 Fig. Trace plots for the log-likelihood of the MCMC runs from BayeScan for the three
replicates for a given prior odds (1000:1) of the null model for both SNPs (top panels) and
SSRs (bottom panels). Colors denote independent runs (black, red, blue). The green line in
each plot gives the average across the chain. Note that the scale on the x-axis is the generation
divided by 10, which was the thinning interval.
(PDF)

S2 Fig. Effective sample size estimates for the log-likelihood (lnL) for all 24 independent
runs of the MCMC sampler for each data set. (A) SNPs. (B) SSRs. Note that the uncorrected
sample size from the posterior distribution was n = 5,000. The difference between the ESS pic-
tured 5,000 is the correction due to autocorrelation along the Markov chain.
(PDF)

S3 Fig. Posterior distribution of the log-likelihood from a model with prior odds of the
null model of 1000:1 for SNPs (A) and SSRs (B).
(PDF)

S4 Fig. Summaries of pairwise Kolmogorov-Smirnov tests for posterior distributions of the
log-likelihood for SNPs (A) and SSRs (B). The lower triangular is pictured in all plots, with
the three runs for a prior odds of the null model of 10:1 at the bottom and the three runs for a
prior odds of the null model of 10000:1 at the top. The diagonal has been omitted in all plots.
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Note that the test statistic is illustrated in the left panel and the corresponding P-value in the
right panel. Only P-values for tests involving comparisons between runs with different prior
odds for the null model were significant (α = 0.05).
(PDF)

S5 Fig. The relationship between geography (latitude and longitude) and two estimates of
heterozygosity for SNPs (A, B) and SSRs (C, D). Red color denotes estimates for observed
heterozygosity, while black color denotes estimates for expected heterozygosity.
(PDF)

S6 Fig. Distributions of linkage disequilibrium statistics for intergenic versus intragenic
comparisons. (A) r2. (B) |D’|.
(PDF)

S1 Table. Microsatellite markers for eastern white pine. Shown is the reference sequence for
each marker. Primers are listed in Table 1 of Echt et al. (1996). The column entitled BAC gives
the GenBank accession for the loblolly pine Bacterial Artificial Chromosome (BAC) to which
the reference sequence for the SSR was assigned using results from BLASTn.
(DOCX)

S2 Table. Expressed sequence tag (EST) loci (RPSS), annotations and the number of SNPs
assayed in eastern white pine. EST sequences were obtained from GenBank, the TreeGenes
database (Wegrzyn et al., 2008), and published articles (TreeSNP, Pavy et al., 2008). Num-
bers after SNP names denote different SNPs derived from the same amplicon. Biological
functions of the candidate genes (ESTs) listed are based on the functions reported from func-
tional analysis of homologues in model plant Arabidopsis or other plants. Also SNP in the
homolog of RPSS96 was reported to be co-located with the QTL for cold hardiness in Doug-
las-fir (Wheeler et al., 2005).
(DOCX)

S3 Table. Flanking sequences of targeted SNPs in eastern white pine. The two alleles at each
focal SNP are located between parentheses.
(DOCX)

S4 Table. Genetic diversity statistics, and fixation index for eastern white populations for
the SSRs.
(DOCX)

S5 Table. Genetic diversity statistics, and fixation index for eastern white pine populations
for the SNPs.
(DOCX)

S6 Table. Hierarchical F-statistics by locus for the SSRs ordered from largest to smallest.
Negative values are effectively zero. The fraction of FST due to climate group (CG) was esti-
mated using the variance components obtained from hierfstat (i.e. σCG

2/(σCG
2 + σPOP

2)).
(DOCX)

S7 Table. Hierarchical F-statistics by locus for the SNPs ordered from largest to smallest.
Negative values are effectively zero. The fraction of FST due to climate group (CG) was esti-
mated using the variance components (σ2) obtained from hierfstat (i.e. σCG

2/(σCG
2 + σPOP

2)).
(DOCX)

S8 Table. Attributes for the Population Graphs resulting from each marker set.
(DOCX)
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S9 Table. Individual trees microsatellite genotype data.
(PDF)

S10 Table. Bioclimatic factors data for the locations of the sampled eastern white pine pop-
ulations.
(PDF)

S1 Text. Supplemental text and references.
(DOCX)
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