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Abstract

In this paper, we introduce the R package gendist that computes the probability density
function, the cumulative distribution function, the quantile function and generates random
values for several generated probability distribution models including the mixture model,
the composite model, the folded model, the skewed symmetric model and the arc tan
model. These models are extensively used in the literature and the R functions provided
here are flexible enough to accommodate various univariate distributions found in other R
packages. We also show its applications in graphing, estimation, simulation and risk
measurements.

Introduction

Various probability distribution models have been proposed in the past and the number
increases with time. Recently, in the area of actuarial loss modeling, several new models were
found to provide good fits to the loss data. For instance, mixture of Erlang distribution has
been proposed to model catastrophic loss data in the United States [1]. Mixture of exponen-
tial with peaks-over-threshold has been considered to fit Danish fire losses and medical
claims data found in Society of Actuaries (SOA) Group Medical Large Claims Database [2].
Mixture of lognormal and inverse Gaussian distribution were used to model fire insurance
portfolio in Serbia [3]. In the actuarial context, loss data are monetary losses claimed by
insureds purchasing general insurance policies such as fire and catastrophic insurances.
Many reasons in which the data is found to be crucial and recorded by insurance companies
or insurance service agencies, among others, to model their future financial obligations. In
addition to the above, various applications of mixture model can be found in the literature
for other area of studies. To name a few: a logistic mixture distribution model has been
applied on polychotomous item responses [4]; mixture of logistic has been proposed to fit
long tail distributions in analyzing network performance [5]; Rayleigh mixture model has
been studied for plaque characterization in intravascular ultrasound [6]; a finite mixture of
two Weibull distributions has been suggested to model the diameter distributions of rotated-
sigmoid, uneven-aged stands [7]; two-component mixture Weibull statistics has been used to
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estimate wind speed distributions [8]; gamma mixture models have been proposed for target
recognition [9]; Gaussian mixture model has been applied for human skin color and its appli-
cations in image and video databases [10].

Another important model receiving increasing applications in actuarial loss modeling is the
composite model. Composite model is constructed by piecing two weighted distributions
together. Such a model has been introduced initially with constant mixing weight [11]. It was
then improved by allowing flexible mixing weight [12]. Several other related composite models
have been proposed by various authors, see [13-15] and [16]. All these authors employed the
well known Danish fire insurance data to measure their model performance. Composite mod-
els have also been applied to some simulated data belong to a particular class of distribution.
Among others, a comparison study have been made on Weibull-Pareto and Lognormal-Pareto
composite models [17]. Besides, some properties, inferences and numerical illustration using
simulated data have been provided for composite exponential-Pareto models [18].

Another model that provides useful application in loss modeling is the folded model. It has
been used to model the Norwegian fire claims data [19]. An extension to this study proposed
three new folded models, namely, the folded generalized ¢ distribution, folded Gumbel distribu-
tion and folded exponential power distribution [20]. An interesting feature of this model is the
folding mechanism of a real value defined distribution into positive value distribution. Several
existing folded models found in the literature are the folded normal distribution [21], folded ¢
distribution [22], folded Cauchy distribution [23] and folded logistic distribution [24].

In addition to the above, skewed symmetric models also featured attractive properties with
respect to loss data. The skewed normal and skewed ¢ distributions have been studied in fitting
insurance claims data [25]. Later, the same author applied the two models to asset returns of
insurance companies [26]. Skewed t distribution is found to provide promising results for both
data. A variety of other skew models have been considered, among them, skewed Cauchy [27],
skewed Laplace [28], skewed logistic [29], skew reflected gamma, skew double Weibull and
skew beta-prime [30] and several skew inverse reflected distributions [31].

More recently, the arc tan model has been introduced to model Norwegian fire claims data
[32]. This new methodology has been proposed for an underlying Pareto distribution and
found to provide good fit compared to several classical distributions. Its statistical properties
also have been derived.

Beside heavily used in the actuarial field, most of the aforementioned models received vast
applications in many other areas. Motivated by this, we compile several important models into
an R package gendist for academics and public use. R is a free statistical computing and graph-
ics software downloadable from http://www.r-project.org, see [33].

Distribution models provided in the R package gendist include the mixture, the composite,
the folded, the skewed symmetric and the arc tan models. Computation functions of these
models are given for probability density function (pdf), cumulative distribution function (cdf),
quantile function (qf) and random generated values (rg).

The conventional R prefixes d, p, g and r define the pdf, cdf, qf and rg of an arbitrary distri-
bution function. For instance dexp, pexp, gexp and rexp of the stats package [33] in R
gives the pdf, cdf, qf and rg for an exponential distribution. The gendist package follows similar
rule to define all the functions related to the generated probability distribution models.

In preparing the gendist package, we have thoroughly studied the Distribution CRAN Task
View of R [34] which lists a number of available packages related to probability distributions.
None of the packages on this page has so far provide tools to work with the folded and arc tan
models discussed in this paper. Several packages are found for mixture models: mixtool [35]
provides d and r functions for finite mixture models; nor1mix [36] provides d, p and r func-
tions for a specific underlying distribution, Gaussian; GSM [37] provides d, p and r functions
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with underlying Gamma shape distribution; AdMit [38] provides d and r functions for mix-
ture of student distribution.

Only the CompLognormal package [39] is available for composite models. However, the
model is restricted to head of a lognormal distribution. In addition, the function is bound
below at zero. For skewed symmetric model, several packages are available: skewt [40], sn [41],
gamlss.dist [42] and sgt [43] provides functions d, p, g and r for variety of either skew normal
or skew student distributions; Newdistns [44] provides functions related to skew symmetric G
distribution. SkewHyperbolic [45] provides functions related to skew hyperbolic student dis-
tribution. All the distributions mentioned above plus others (including newly proposed distri-
butions) can be easily managed by the functions developed in the proposed gendist package.

The paper is structured as follows. First, we discuss in detail all the above models along
with examples on using related functions developed in the gendist package. Then, we provide
descriptions on the program structure of the package and some discussion on appropriate
usage with respect to the support of the models. We finally conclude the works carried out.
Further details of the gendist package can be found at http://CRAN.R-project.org/
package=gendist.

Generated Probability Distribution Models

Models presented here are generated with underlying parent distributions. These models are
specified by a predefined rule or structure. In what follows, we describe in detail each generated
model giving particular emphasis on related functions encompassed in the gendist package.

The mixture models

The mixture model was first considered with an underlying normal distribution to address the
decomposition issue with respect to non-normal forehead to body length attributes in a popu-
lation of female shore crabs, see [46]. In general, the pdf of the mixture model is given by

1) = > g W)

where 0 <w; <1fori=1,2,...,nare the mixing weights such that the sum of all w; equals to
one. Note that, there are n components involved in Eq (1).

The proposed mixture model in this paper is restricted to a two component distribution.
Hence, the pdf can be represented as follows:

f(x) = wgy(x) + (1 — w)g,(x) (2)

We choose mixing weight of the form w = ;- so that ¢ > 0. g1(x) and gy(x) represent the den-

sities of arbitrary parent distributions. Note, it is not necessary that the two arbitrary distribu-

tions in Eq (2) are identical. However, both must be defined on the same range dimension.
Finding cdf of the mixture model is straightforward. By direct integration, the cdf for the

two component mixture model in Eq (2) can be written as

1 ¢

G (%) + 77— G(x) (3)

F(x):m1 1_|_¢2

with Gy(x) for i = 1, 2 are arbitrary cdfs of the parent distribution.
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Explicit general expression for qf of the mixture model is not available. However, it can be
obtained numerically by solving the root, Q(u), of the following equation

wG(Q(u)) + (1 = w)G,(Q(u)) —u =0 (4)

Finally, random generated numbers for the two component mixture model can be obtained
as

x = Q(u,) (5)

where u; fori=1, 2, - - -, n are random numbers from a uniform [0, 1] distribution.

In what follows, we show an application of the cdf function of the mixture model, pmixt to
measure the closeness of two different set of measurements using P-P plot. Data used for this
purpose is the US indemnity loss data scaled by 1000 found in the copula package [47]. We
also use the actuar package [48] to illustrate several heavy tailed distributions as theoretical
measurements. Assuming pre-installation of both packages the data (S1 Data) can be obtained
and sorted as follows:

R> library (actuar)

R> library (copula)

R> data (loss)

R> x <-loss$loss/1000
R>n <-length (x)

R>xx <-seq(l, n)/(n+l)
R> x <-sort (x)

For each distribution involved, values of 0.2, 0.7 and 20 are chosen for phi (the mixing
weight component), shape and scale parameters, respectively. These values are only for illustra-
tion purposes. The P-P plots are produced by the following command:

R> par (mfrow=c (2, 2))

R> argl <-c(shape=0.7, scale=20)

R> arg2<-c(shape=0.7, scale=20)

R>plot (xx, pmixt (x, phi=0.2, specl ="“weibull”, argl,

+ spec2="1logis”, arg2), xlim=c(0,1), ylim=c (0, 1), col=2,
+ ylab ="Expected”, xlab = "“Observed”,

+ main="Mixture of Weibull-Loglogistic”)

R> abline (0, 1)

R>plot (xx, pmixt (x, phi=0.2, specl =“weibull”, argl,

+ spec2 = “pareto”, arg2), xlim=c¢(0,1), ylim=c(0,1), col=2,
+ ylab ="Expected”, xlab = "“0Observed”,
+ main="“Mixture of Weibull-Pareto”)

R>abline (0,1)
R>plot (xx, pmixt (x, phi=0.2, specl ="“weibull”, argl,

+ spec2 ="“invpareto”, arg2), x1lim=c(0,1), ylim=c(0,1), col=2,
+ ylab ="“Expected”, xlab ="“0Observed”,
+ main ="“Mixture of Weibull-Inverse Pareto”)

R> abline (0,1)
R> plot (xx, pmixt (x, phi=0.2, specl ="“weibull”, argl,

+ spec2 =“paralogis”, arg2), x1lim=c(0,1), ylim=c(0,1), col=2,
+ ylab ="“Expected”, xlab="“0Observed”,
+ main="“Mixture of Weibull-Paralogistic”)

R> abline (0,1)

Analysis of Application on Mixture Model. P-P plots are used to compare the degree of
agreement between two sets of measurements based on their cdf. Fig 1 shows the P-P plot of
the empirical data against the theoretical values of the mixture of Weibull-Loglogistic,
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Fig 1. Probability-probability plots (P-P plots) for the US indemnity loss data for several mixture models. Expected and
observed denote the theoretical and empirical data, respectively. Four models are shown including the mixture of Weibull-Logistic,
mixture of Weibull-Pareto, mixture of Weibull-Inverse Pareto and mixture of Weibull-Paralogistic models. Values of 0.2, 0.7 and 20
are chosen for the mixing weight component, shape and scale parameters. All the models show a good fit to the empirical data.

doi:10.1371/journal.pone.0156537.g001

Weibull-Pareto, Weibull-Inverse Pareto and Weibull-Paralogistic models. A small deviation of
the plots to the 45° line indicate the closeness of the empirical and theoretical probability and
vice versa. It is apparent from the P-P plots that the fits are good for all the theoretical models
proposed.

The composite models

In general, the pdf of the composite model is given by
wf! (x), if 0<x<0
x) = { (6)
I-wfy(x), if 0<x<oo

whereby w is the mixing weight, § denote the threshold and f;* (x) for i = 1, 2 are the truncated
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pdfs of the parent distribution defined by

and

f(x)

- R )

fi(x) =

respectively. Eq (6) can be made continuous and smooth by applying the continuity and differ-
entiability conditions and thus provide a closed form for w, see [12]. Furthermore, it has been
suggested that w take the form of w = - for ¢ > 0 for convenience [13]. We find this useful to

ease program writing in R for the composite model. A more comprehensive approach to imple-
ment Eq (6) which we adopt in this paper specifies the component of mixing weight, ¢, and the
threshold, 6 in term of other parameters of the model, see [15]. Further to this, we do not
restrict the composite model to bound below at zero and thus allow parent distribution defined
on real line as well as that defined for positive values to be considered for f;"(x). All other func-
tions including the cdf, qf, and rg for the composite model are developed in a similar manner.
Hence, the cdf, qf and n random generated numbers provided in gendist package can be

written as
%i <’9‘) if x<0
F(x) = _R®) (9)
—¢<1+¢ ~F,(0) ) it x>0
Qi(u(1+ ¢)F,(0) if uéﬁ
Q(u) = (10)
Q, (FZ(B) +(1—E0)) <”<1 +¢¢> - 1)) ifou> ﬁ
and
x = Q(u,) (11)
where u; with i = 1,2, ..., n are n uniform [0, 1] random numbers.

As a result, the number of parameters of the composite models equal the total number of
parameters of the two underlying parent distributions selected. For instance, if truncated expo-
nential distribution with scale parameter is chosen for f;(x) and Weibull distribution with
scale and shape parameters are chosen for f*(x), the Exponential-Weibull composite model
will consist of three parameters.

We now show the implementation of the pdf function dcomposite of the composite
model. All other functions related to the composite model follow similarly. Let f;(x) and f>(x)
denote the pdfs of Weibull and Gamma distributions, respectively. From Eq (6) (with w =

1+(*))
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the composite Weibull-Gamma model can be written as

Oy
L fe (A) if 0<x<0

if 0<x<oo

where I'(a, z) is the incomplete gamma function defined by [~ t*~'e~'dt. Suppose, a =8 =1
and 0 =1 = 2, then, the pdf values of the composite model for some values of x are computed
as follows:

R> dcomposite (1:3, specl ="“weibull”, argl=1ist (shape=1, scale=2),
spec2 =“gamma”, arg2 =1ist (shape=1, scale=2))

Output:

0.30326530.18393970.1115651

Density plots of this model can be done using curve function as below.

R> curve (dcomposite (x, specl =“weibull”, argl =1list (shape=2.5, scale=1),

+ spec2 =“gamma”, arg2 =1ist (shape=1, scale=1), initial=c(0.1, 1)),
+ xlim=c¢(0,10), xlab="x", ylab="f (x)")

R> curve (dcomposite (x, specl =“weibull”, argl =1list (shape=1.5, scale=2),
+ spec2 =“gamma”, arg2 =1ist (shape=2, scale=1), initial=c(0.1, 2)),
+ add =TRUE, col =2)

R> curve (dcomposite (x, specl =“weibull”, argl = 1list (shape=2.3, scale=2),
+ spec2 =“gamma”, arg2 =1ist (shape =2, scale=0.5),

+ initial=c¢(0.1,10)), add=TRUE, col =3)

R> curve (dcomposite (x, specl =“weibull”, argl =1list (shape=0.1, scale=2),
+ spec2 =“gamma”, arg2=1ist (shape=0.5, scale=1),

+ initial=c(0.1,10)), add=TRUE, col =4)

Analysis of Application on Composite Model. Fig 2 shows the pdf plots of the composite
Weibull-Gamma models with varying parameter values. The density shapes depend on the val-
ues of the scale and shape parameters. For the composite Weibull-Gamma model, all the four
densities exhibit unimodal distribution, that is, they have a single mode. It is also observed that
choosing lower shape parameters for both parent distributions will result in a thin and steep
distribution while having a larger value result in a thick and gradual slope. Note that the obser-
vation made here applies for composite Weibull-Gamma. Other composite models may have
different result depending on the features of the pair of the parent distributions chosen.

The folded models

Existence of folded models can be traced back to 1960s when methods were described to esti-
mate mean and variance of normal distribution based on its folded form and an application
was shown to real camber data [21]. The folded model is obtained from a transformation of
random variable by taking its absolute value. Suppose that Y is a real valued random variable
with cdf G(-) and X = |Y] a positive random variable, then the cdf for X is

F(x) = G(x) — G(—x) x>0 (13)
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Fig 2. Probability density function curves for composite Weibull-Gamma model with varying
parameters. Four composite Weibull-Gamma models with varying parameters are shown. The shapes depend
on the value of parameters chosen.

doi:10.1371/journal.pone.0156537.g002

We can then write its pdf as
flx) =g(x) +g(=x) x>0 (14)

In this case the parent distribution has a support of real values and the resulted folded distribu-
tion has x > 0.

It is obvious from Eq (13) that the quantile function may not have an explicit form. How-
ever, this may not be the case if the underlying distribution is symmetric around 0. The quan-
tile function for a folded model of this case can be obtained as follows:

Q) = ) =6 (+3) (15)

where G™'(-) is the inverse function of the underlying symmetric distribution. For an underly-
ing non-symmetric distribution (also applies to symmetric case), we can solve this numerically
using computer programs by finding root of the cdf function, that is, Q(u) is the solution of the
following equation

G(Q(u) = G(—Q(u)) —u =0 (16)
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Next, rg is obtained as follows
x, = Q(u,) (17)

where u; withi= 1,2, ..., n are n uniform [0, 1] random numbers. Note that g(-) and G(-) cor-
respond to the pdf and cdf of the parent distribution of the folded model. We implement Eqs
(13), (14), (16) and (17) in the gendist package for cdf, pdf, qf and rg of the folded model.

In what follows, we show applications of two risk measures by implementation of qf for the
folded model, gfolded. It involves computation of Value-at-Risk (VaR) and Conditional Tail
Expectation (CTE). VaR is related to the quantile function of a random variable with a specified
probability, say, a. Often it describes the risk that a loss random variable exceeds a certain
amount although it is also used outside the financial area. Let G () denote the inverse function
of G(x) for a random variable Y, then VaR at a given level of confidence, 1 — o, is given by

VaR(z) = G (1 - g) (18)

For a range of a values, this is illustrated for folded normal and folded ¢ distributions in Fig 3.
Some arbitrary values are chosen for the parameters of both models. The following commands
describe the plotting of VaR with respect to o:

VaR
2
|

0.0 0.2 0.4 0.6 0.8 1.0

o
Fig 3. Value-at-Risk for folded normal (black) and folded t (red) distributions.
doi:10.1371/journal.pone.0156537.g003
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R> curve (gqfolded (1-x/2, spec=“norm”, arg=c (mean=0.8, sd=0.9),

+ interval=c(0,100)), xlim=c(0,1), ylim=c(0,4),

+ xlab =expression(alpha), ylab="“VvVaR”)

R> curve (qfolded (1-x/2, spec="t”, arg=c(df =15), interval=c(0,100)),
+ add =TRUE, col =2)

The CTE measures the expected value of risk beyond VaR at a given probability level, .
Mathematically,

CTE(a) = i/l G;! (1 - g) do (19)

For a range of o values, this is illustrated for folded normal and folded ¢ distributions in Fig 4.
The following commands describe the plotting of CTE with respect to o

R> curve ((1/ (x)) *integrate (function (x) gfolded (1-x/2, spec = “norm”,

+ arg=c(mean=0.8, sd=0.9), interval=c(0,100)), x, 1)\ Svalue,

+ xlim=c(0,1), ylim=c(0,20), xlab=expression(alpha), ylab="CTE"”)
R> curve ((1/ (x))*integrate (function (x) gfolded (1-x/2, spec="t”,

+ arg=c(df =15), interval =c(0,100)), %, 1)\ $value, add=TRUE, col =2)

Analysis of Application on Folded Model. Fig 3 shows that for both distributions VaR
appears to be a decreasing function of the probability level a. This is a natural behavior of risk,

o
Al

15

CTE
10
|

0.0 0.2 0.4 0.6 0.8 1.0

o
Fig 4. Conditional Tail Expectation for folded normal (black) and folded t (red) distributions.
doi:10.1371/journal.pone.0156537.9004
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that is, higher VaR is found for higher level of confidence. In practice,  are commonly chosen
as 1% or 5%. In this example, folded ¢ distribution consistently show a lower VaR value than
the normal distribution. However, the actual results will depend on the parameter values for
each model. Similar to VaR, CTE for both distributions are decreasing function of the confi-
dence level, a.. This is depicted in Fig 4.

The skewed symmetric models

Azzalini proposed a new class of distributions with an underlying normal distribution [49]. In
its original form, the pdfis given by

f(x) =2¢(x)G(Ax), —o00<x< 00 (20)

where g(-) and G(-) are the pdf and cdf of the normal distribution and A is a shape parameter.
The distribution reduces to normal distribution when 4 = 0.

Further study leads to a general form of the skew symmetric distribution [50]. The new
skewed symmetric distribution has the following pdf

f(x) =2h(x)G(x), —o0<x< 00 (21)

where h(x) is a pdf symmetric at 0 and G(x) is a Lebesgue measurable function that satisfies

0 < G(x) < 1and G(x) + G(—x) =1 for z € R. In this new form, the parent distributions /(x)
and G(x) may be of different type satisfying the conditions above. In the gendist package, we
adopt Eq (21) for computer implementation of the skewed symmetric model. Several functions
for h(x) and G(x) include the normal, logistic, students t and Cauchy distributions.

General form for the cdf, qf and rg functions of the skewed symmetric models are not avail-
able. Thus, implementation of these functions in gendist are done via numerical methods. In
particular, integrate and uniroot functions are used. The cdf of skewed symmetric
model is found by

F(x) = /f 2h(y)G(y)dy, —o0 < x < 0 (22)

Solving Q(u) of the following equation leads to its qf
Q(u)
/ 2h(y)Gly)dy — 1 = 0 (23)

and rg is obtained as follows

where u; with i =1, 2, .. ., nare n uniform [0, 1] random numbers.
Some skewed symmetric models may have an explicit form. For instance, consider a skewed
Cauchy-Cauchy distribution. Its pdf, cdf and gf are given by

yl (2 tan ! G) + n) (25)
n? ()»2 + xQ)

flx) =

P(x) = (2tan"* (%) 4 7) (26)

4m?
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and
Q(u) = / tan G (2n /i — n)) (27)

respectively.

In the following illustration, we check goodness-of-fit of two theoretical distributions, the
skew Logistic-Logistic and the skew Normal-Normal distributions, to the length of rivers scaled
by 1000. The data consist of 141 observations related to major North American rivers. The
data (S2 Data) can be obtained as follows:

R> data (rivers)
R> x<-rivers/1000

Initial step involves parameter estimation using the maximum likelihood method.

R>nloglik<- function (p, specl, argl, spec2, arg2){

+tt <-1.0e20

+1if(all(p>0)){

+ tt <--sum(log(dskew(x, specl, argl, spec2, arg2)))

+}

+ return (tt)

+ 1

R> par<-nlm(function(p){ nloglik (p, specl ="1logis”, argl=1ist(scale=p[1l]),
+ spec2 ="“logis”, arg2=1ist(scale=p[2])), p=c(l,1)) Sestimate

R> par2<-nlm(function(p){ nloglik(p, specl="norm”, argl=1ist (sd=p[1]),
+ spec2 =“norm”, arg2=1ist(sd=p[ 2] ))},p=c(l,1)) Sestimate

Finally, the Q-Q plots are produced as presented in Fig 5 with the following commands:

R> ggplot (x, gskew (u, specl="1logis”, argl =1list(scale=par[l]),

+ spec2 ="1logis”, arg2=1ist (scale=par[2] ), interval=c(-10,10)),
+ x1lim=c(0,4), ylim=c(0,4), ylab="Theoretical”, xlab="“Empirical”,
+ main=“Skew Logistic-Logisticdistribution”)

R> abline (0,1)
R> ggplot (%, gskew (u, specl = “norm”, argl =1ist (sd=par2 [1l] ), spec2 = “norm”,

+ arg2=1ist (sd=par2[2] ), interval=c(-10,10)), x1im=c(0,4),
+ ylim=c(0,4), ylab="“Theoretical”, xlab="“"Empirical”,
+ main = “SkewNormal-Normal distribution”)

R> abline (0,1)

Analysis of Application on Skewed Symmetric Model. Parameter estimation is per-
formed using the maximum likelihood method which is known to have the following proper-
ties: sufficient, invariance, consistent, efficient and asymptotically normal. Estimated
parameters are then used to find the theoretical values of the quantile function. These values
are matched to the empirical values and plotted to the Q-Q plot. Goodness-of-fit is then mea-
sured by relative distance of the plots to the 45° line. Closer theoretical versus empirical plots to
the line indicate a good fit and vice versa. Majority of the plots in Fig 5 are close to the line
except for some values at the extreme ends. These are the five longest river in the North Amer-
ica. Between the two models, the skew Logistic-Logistic distribution gives a lower negative log
likelihood value, that is, a value of 57.5903. Thus it has a better goodness-of-fit to the river data
as compared to the skew Normal-Normal distribution.

The arc tan models

Arc tan model has been proposed to model a specific Norwegian insurance loss data [32]. Con-
sider parent distribution with pdf and cdf of g(x) and G(x), respectively. Then, the pdf, cdf, qf
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Fig 5. Q-Q plots of rivers data for the fitted skew logistic-logistic and skew normal-normal distributions. Empirical values are plotted against
two theoretical distributions, that is, the skew Logistic-Logistic distribution and the skew Normal-Normal distribution. Both show a close plot to the 45°

line except for several extreme values.

doi:10.1371/journal.pone.0156537.g005

and rg of the arc tan model with support [a, b] are given by

1 g (%)
i) = arctan (o) 1 + (a(1 — G(x)))* (28)

arctan (a(1 — G(x)))

Flx)=1- arctan (o) (29)
Q(u) = G (1 - é tan ((1 — u) arctan (O!))) (30)
13/20
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and
x, = Q(u,) (31)

respectively, where u; with i = 1, 2, . . ., n are n uniform [0, 1] random numbers, arctan denote
the inverse function of trigonometric tangent and G Y(-) is the inverse of G(-). Note that the
model consist of additional parameter & > 0 and the support is a < x < b where a and b take
the support of parent distribution.

Consider a Weibull distribution with pdf

,(f) ! x p-1
gx) = W, x>0 (2

In what follows, we illustrate simulation of the arc tan distribution with parent distribution Eq
(32). For simplicity, we let =2 and A = 0.5. The empirical biases and mean square errors of o
for the Weibull arc tan distribution can be obtained as follows:

1. Ten thousand sample sizes are generated by inversion of Eq (29). Each sample size is n. The
variates of the Weibull arc tan distribution can be written as

X = log (% \/_ log (tan ((1- uo)C arctan (ac)))) (33)

where U ~ U(0,1) is a variates of the uniform distribution.

2. Estimate the parameter, &; fori=1, 2, ..., 10000.

3. Bias and mean squared error are obtained using

1 10000 A
bias,(n) = 10000 ;(ai — o) (34)
and
1 10000 ) )
MSE, (1) = 15055 ;(ai — ) (35)

The above process is repeated for n = 10, 20, . . ., 1000 with & = 1.5. The following com-
mands implement the process:

R>nsim <-10000

R>nsiz <-100

R>estl <-matrix(0,nsiz,nsim)
R>mml <-matrix(0,nsiz,nsim)
R> bias <-rep(0,nsiz)

R>mse <-rep(0,nsiz)

R> ss <-rep(0,nsiz)

R>alpha <-1.5

R> for(jinl:nsiz){

+ for(iinl:nsim){

+ X <-rarctan (j*10, alpha =alpha, spec="“weibull”,
+ arg=c (shape=2, scale=0.5))

+ nlogl <-function (p, alpha, spec, arg){
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tt <-1.0e20
if(all (p>0)){
tt <--sum(log(darctan (x, alpha, spec, arqg)))
}
return (tt)

}

est <-nlm(function (p) nlogl (p, alpha=p, spec="weibull”,
arg=1list (shape=2, scale=0.5)), p=1, hessian=T)

estl([j, 1] <-est Sestimate [1]

mml[j,1] <-solve(est $hessian)[l, 1]

bias[j] <-mean (estl[j,] —alpha)

mse[]] <-mean ((estl[]j,] —alpha) " 2)

ss([7] <-mean (mml[j,] " (1/2))

Analysis of Application on Arc Tan Model. Fig 6 shows the variation of biases and mean
squared error with respect to n. The dashed line corresponds to zero biases or theoretical mean
squared errors, whichever applicable. Several observations can be made:

Fig 6. Empirical and theoretical biases and mean square errors of % versus n =10, 20, ..., 1000. Biases and mean squared errors for Weibull
arc tan models are presented for simulated data. The biases are generally positive and decreases to zero as n approaches infinity. Similarly, mean
squared errors decreases to zero as n approaches infinity.

doi:10.1371/journal.pone.0156537.9g006
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1. the biases are generally positive

2. as expected, the magnitude of bias always decreases to zero as n — oo

3. the biases are small for &

4. as expected, the mean squared errors always decrease to zero as n — 0o
5. the theoretical mean squared errors are always larger than empirical ones

Results are presented only for o = 1.5 due to reason of space. However, similar results can
be obtained for other choices of a..

An advanced example featuring empirical data related to air quality is given in the Appendix
(S1 Appendix). The subroutines provided there emphasize on calling functions from the gen-
dist package and thus avoid creating separate object running similar computation. The under-
lying concept pertaining to this idea make use of do . call which is discussed next.

Results and Discussion

In this paper, we specify the generated probability distribution models by its parent distribu-
tion, that is, the underlying function which generates new models. Codes for writing functions
in gendist package use a general construct of parent distribution of the form

do.call (paste(d, spec, sep=""), c(list(z), arg)),

do.call (paste(d, specl, sep=""), c(list(z), argl))
or

do.call (paste(d, spec2, sep=""), c(list(z), arg2)) .

As such, spec = “Weibull”, for instance, corresponds to Weibull parent distribution
andarg=1list (shape, scale) listits parameters. Similarly, for two component distri-
butions spec1 and spec2 specify the parent distributions with corresponding parameters
argl and arg?2.

The parent distribution may assume any value on real line or positive real numbers. The
suitability of the parent distributions for the models must be checked by the user. No warnings
are given for choosing inappropriate distributions. Table 1 describes a proper selection for the
parent distribution corresponding to each model with respect to its support.

Functions to compute pdf, cdf, qf and rg for all five models produced in gendist are summa-
rised in Table 2. As mentioned earlier, the input argument spec, specl and spec2 specify
the parent distribution and their corresponding parameters arg, argl and arg2. The distri-
bution can be one that is implemented in R base package, contributed R packages or one writ-
ten by a user. In any case, the parent functions must be defined with prefix d, p, gand r
attached to spec, specl and spec?2.

Table 1. Support for models in gendist package.

Models Support of parent distribution Support of generated models

Mixture Real numbers and positive real numbers Real numbers and positive real numbers
Composite Real numbers and positive real numbers Real numbers and positive real numbers
Folded Real numbers Positive real numbers

Skewed Real numbers Real numbers

Arc tan Real numbers and positive real numbers Real numbers and positive real numbers

doi:10.1371/journal.pone.0156537.1001
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Table 2. Calling sequences for mixture, composite, folded, skewed symmetric and arc tan models.

Models

Mixture

Composite

Folded

Skew
symmetric

Arc tan

Functions
f(x) in Eq (2)
F(x) in Eq (3)
Q(x) in Eq (4)

X;in Eq (5)
f(x) in Eq (6)
F(x) in Eq (9)
Q(x) in Eq (10)
X;in Eq (11)
f(x) in Eq (14)
F(x) in Eq (13)
Q(x) inin Eq
(16)

x;in Eq (17)
f(x) in Eq (21)

F(x) in Eq (22)
Q(x) in Eq (22)
X;in Eq (24)
f(x) in Eq (28)
F(x) in Eq (29)
Q(x) in Eq (30)
X; in Eq (31)

doi:10.1371/journal.pone.0156537.t002

Calling sequence
dmixt (x, phi, specl, argl, spec2, arg2, log = FALSE)
pmixt (g, phi, specl, argl, spec2, arg2, lower.tail = TRUE, log.p = FALSE)

amixt (p, phi, specl, argl, spec2, arg2, interval =c(0,100), lower.tail = TRUE, log.
p = FALSE)

rmixt (n, phi, specl, argl, spec2, arg2, interval =c(0,100))

dcomposite (x, specl, argl, spec2, arg2, initial =1, log = FALSE)

pcomposite (q, specl, argl, spec2, arg2, initial =1, lower.tail = TRUE, log.p = FALSE)
gcomposite (p, specl, argl, spec2, arg2, initial =1, lower.tail = TRUE, log.p = FALSE)
rcomposite (n, specl, argl, spec2, arg2, initial =1)

dfolded(x, spec, arg, log = FALSE)

pfolded(q, spec, arg, lower.tail = TRUE, log.p = FALSE)

gfolded (p, spec, arg, interval =c(0,100), lower.tail = TRUE, log.p = FALSE)

rfolded(n, spec, arg, interval =c(0,100))
dskew (x, specl, argl, spec2, arg2, log = FALSE)

pskew (g, specl, argl, spec2, arg2, lower.tail = TRUE, log.p = FALSE)

gskew (p, specl, argl, spec2, arg2, interval =c(1,10), lower.tail = TRUE, log.p = FALSE)
rskew (n, specl, argl, spec2, arg2, interval =c(1,10))

darctan (x, alpha, spec, arg, log = FALSE)

parctan (g, alpha, spec, arg, lower.tail = TRUE, log.p = FALSE)

garctan (p, alpha, spec, arg, lower.tail = TRUE, log.p = FALSE)

rarctan (n, alpha, spec, arqg)

It is important to note that some models may not have explicit general form for its probabil-
ity functions. Whenever this is the case, numerical methods are used. In gendist, we utilise
integrate,nlmand uniroot functions. Some of these functions, in particular, uniroot
require interval values to search for roots and they are specified by interval. nlmrequire a
starting value specified by initial.

Conclusions

In this paper, we discuss five models provided in the R package gendist, namely, the mixture
model, the composite model, the folded model, the skewed symmetric model and the arc tan
model. The functions related to these models are written in R environment and are freely
downloadable from http://www.r-project.org, see [33]. Users can easily create any specific
model by specifying the parent distributions along with their parameters. Thus, uncountable
number of distributions can be produced from the tools in the gendist package. Another
advantage is that the users have the option to write their own function to serve as the parent
distributions.

Next, we also show at least five important applications of the tools given in the gendist
package. Usefulness of these tools in graphing are shown for Q-Q plot, P-P plot, producing pdf
curves as well as to show output for some risk measures. Simulation study is provided for a spe-
cific Weibull arc tan model and produced favorable result with respect to biases and mean
squared error of the parameter estimated. Both measures decrease to zero when the number of
observations approaches infinity.
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Nevertheless, we only provide pdf, cdf, qf and rg for five common models that recently
receive applications in actuarial loss modeling. Some of the models have also been considered
in other areas while others such as arc tan model are potentially useful in areas involving
parametric framework. Many other available models can be designed in similar general form as
the gendist package and thus avoid the problem of offering separate R packages for distribu-
tional models of the same class into production of a single package that incorporates all. There-
fore, we encourage other scientists to furnish the package with additional models in their
respective field or send suggestion for further improvement. The gendist package provides a
great flexibility to work with many distributions and hopes to assist users in their respective
fields.

Supporting Information

S1 Script. Script to replicate examples. The script to replicate examples in this paper is pro-
vided in (.R) form.
R)

S1 Appendix. Appendix.
(TXT)

S1 Data. Loss data.
(TXT)

S2 Data. Rivers Data.
(TXT)

$3 Data. Air Quality Data.
(TXT)
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