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Abstract
Type 1 diabetes (T1D) is a complex disease, caused by the autoimmune destruction of the

insulin producing pancreatic beta cells, resulting in the body’s inability to produce insulin.

While great efforts have been put into understanding the genetic and environmental factors

that contribute to the etiology of the disease, the exact molecular mechanisms are still

largely unknown. T1D is a heterogeneous disease, and previous research in this field is

mainly focused on the analysis of single genes, or using traditional gene expression profil-

ing, which generally does not reveal the functional context of a gene associated with a com-

plex disorder. However, network-based analysis does take into account the interactions

between the diabetes specific genes or proteins and contributes to new knowledge about

disease modules, which in turn can be used for identification of potential new biomarkers for

T1D. In this study, we analyzed public microarray data of T1D patients and healthy controls

by applying a systems biology approach that combines network-based Weighted Gene Co-

Expression Network Analysis (WGCNA) with functional enrichment analysis. Novel co-

expression gene network modules associated with T1D were elucidated, which in turn pro-

vided a basis for the identification of potential pathways and biomarker genes that may be

involved in development of T1D.

Introduction
Type 1 diabetes (T1D) is a complex trait, which develops when the insulin producing beta cells
are destroyed resulting in a decreased production and secretion of insulin. According to
National Center for Chronic Disease Prevention and Health Promotion (CDC), diabetes is one
of the most common chronic diseases worldwide, having a prevalence of 9.3% of the popula-
tion in United States [1]. Furthermore, diabetes is also a major contributor of renal diseases,
amputation, cardiovascular disease [2,3], and has been projected to be the seventh leading
cause of deaths in 2030 [4].

T1D is a heterogeneous disease with both underlying genetic and environmental factors
that influence the development and progression of the disease [5]. Important chromosomal
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regions that have been shown to contribute to disease susceptibility are the human leukocyte
antigen (HLA) region at chromosome 6 and insulin gene region at chromosome 11 [3]. Never-
theless, only small percentage of genetically susceptible individuals progress to clinical disease,
which indicates the involvement of environmental triggers.

Previous research in this field has been primarily focused on analysis of single susceptibility
genes [6–10] or performing GenomeWide Association Studies (GWAS) to identify genetic
determinants of disease [11–15]. In addition, majority of the studies are focused on the beta
cells whereas novel findings are pointing to the importance of the immune system in the dis-
ease development [16,17]. This study is based on the public data derived from the samples
from peripheral blood mononuclear cells (PBMC), involved in innate immune activation that
may play both pathological and protective role in T1D [18]. PBMC are suitable for the assess-
ment of immunological markers in T1D children, as stated in earlier study [19].

Current studies on T1D do not take in account the interactions between the genes or pro-
teins, which are crucial for understanding molecular mechanisms underlying complex disease.
Recently, importance of network-based approaches to human disease has been highlighted
[20]. Cellular interconnectedness effects the disease progression and should be taken into
account in the identification of disease genes and pathways, which in turn, may provide new
targets for drug development.

In this study, we hypothesize that pathogenesis of T1D is reflected by the perturbation of
intercellular and intracellular networks, which may lead to identification of specific disease
modules caused by a variation in one or more of the components. We adopted a well-estab-
lished network-based approach, Weighted Gene Co-Expression Network Analysis (WGCNA)
[21] to identify modules in co-expression gene networks that may be associated with T1D. To
the best of our knowledge, this approach has not been applied in previous T1D studies. This
method, in combination with functional enrichment and network topology measures, is also
applied here to identify potential biomarkers for T1D that will aid in the understanding of the
mechanisms of T1D.

We identified co-expression modules that show significant disruption, by comparing global
co-expression network in T1D to the corresponding network derived from healthy controls.
Within the identified co-expression disease modules that were chosen for further analysis, we
found several significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways with association to T1D, such as Type I diabetes mellitus, mTOR signaling pathway etc.
Besides confirming some genes with previously known T1D involvement, such as fas cell sur-
face death receptor (FAS), interleukin 1 beta (IL1B) and interleukin 8 (IL8), we also identified
interesting candidate genes that could be further analyzed further to understand their roles in
T1D.

Materials and Methods

Affymetrix Microarray
Microarray data GSE9006 from NCBI Gene Expression Omnibus (GEO) database was col-
lected from peripheral blood mononuclear cell (PBMC) samples from 43 children with newly
diagnosed T1D and 24 healthy controls [22]. For 20 patients, one and four month follow-up
samples were also included in the analysis. The data was normalized using the global scaling
normalization method and filter was applied based on Affymetrix flag calls, according to the
same procedure as in [22]. Probe sets were selected for further analysis if present in at least
50% of samples in any group using R Bioconductor affy package [23]. After the initial filtering,
17,310 genes were left. The data set was preprocessed further by applying Significance Analysis
of Microarrays (SAM) [24] to remove genes that show no or very low changes in expression
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between healthy and disease samples, but also for the purpose of getting manageable size of the
data for WGCNA analysis. R Bioconductor package siggenes [25] that implements SAM was
used (delta = 0.296), leaving the total of 10005 genes in the final set for further analysis.

Weighted Gene Co-Expression Analysis (WGCNA)
WGCNA is a method for deriving co-expression networks [21], and it is implemented in R
WGCNA package [26]. The method for constructing network is as follows: first, a similarity
co-expression matrix was calculated with Pearson's correlation cor(i,j) for all genes, and trans-
formed to an adjacency matrix (AM) by using the soft thresholding power beta, to which co-
expression similarity is raised (se Eq 1).

aij ¼ ð0:5 � ð1þ corði; jÞÞÞb ð1Þ

where aij represents the resulting adjacency that measures the connection strengths.
We chose the power beta based on criteria of approximating scale-free topology of the net-

work, as prescribed in the original publication [26]. Power of beta = 9 was chosen based on the
scale-free topology criterion. This criterion shows that the power parameter, beta, is the lowest
integer such that the resulting network satisfies approximate scale-free topology (linear regres-
sion model fitting index R2 that should be larger than 0.8).

Then, topological overlap matrix (TOM) [27] was computed from AM, and TOM was in
turn converted into a dissimilarity TOM. Finally, hierarchical clustering was used to produce
tree (dendrogram) from dissimilarity TOM. By using dynamic tree cutting, different number
of clusters (modules) was obtained from the tree. The resulting modules contained genes that
are densely interconnected and we constructed two different networks, one using the healthy
samples and the other using the T1D samples.

WGCNA can be used for summarizing obtained modules by using concept of eigengene, and
further screening for suitable gene targets by calculating module membership (kME) measures,
also known as eigengene-based connectivity [21,26]. Eigengenes are defined as the first principal
component of the expression matrix for each module, and represent the weighted average of the
expression profile for each module. The eigengenes can be used to merge clusters with a similar
expression profile, leading to the final set of modules as a result of constructing the network.

Preservation of modules
Module preservation statistics in WGCNA was used to evaluate whether a given module
defined in reference data set (healthy network) can also be found in the test data set (disease
network). The overall significance of the preservation statistics was assessed using Zsummary Eq
(2) that combines multiple preservation statistics into a single overall measure of preservation,
which considers both aspects of density and connectivity preservation [28].

Zsummary ¼
Zdensity þ Zconnectivity

2
ð2Þ

Based on the thresholds proposed in original method proposal [28], resulting Zsummary < 2
indicates no preservation, 2< Zsummary <10 indicates weak to moderate evidence of preserva-
tion, and Zsummary >10 means strong evidence of module preservation.

Pathway enrichment of the significant modules
We performed pathway enrichment analysis of selected modules by using two different tools, a
network-based gene set enrichment analysis, EnrichNet (http://www.enrichnet.org/) [29] and
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meta-database ConcensusPathDB (http://cpdb.molgen.mpg.de/) [30]. This includes enrich-
ment in predefined pathways by, for example,—KEGG (http://www.genome.jp/) and Gene
Ontology—GO terms (http://www.geneontology.org/).

Topological analysis with betweenness centrality measure
Modules obtained fromWGCNA can be exported and analyzed with other tools. We per-
formed topological centrality analysis by using R package Igraph [31]. More specifically,
betweenness centrality (BC) of a node was used as a network topology measure [32]. BC is
defined as the number of shortest paths between every two other nodes in the module that pass
through that node Eq (3).

BCðvÞ ¼ Ss 6¼v 6¼t

sstðvÞ
sst

ð3Þ

Where V is the set of nodes, σst is the number of shortest paths between nodes s and t, and
σst(v) is the number of those paths that pass through node v.

Simply stated, it measures the relevance of a node (gene) as capable of transferring commu-
nication between the genes in the module. High values of BC indicate “high traffic nodes”, and
hereby more biologically informative nodes in a module.

Visualization and exploring modules with VisANT
Module visualization and further analysis was performed with VisANT (http://visant.bu.edu/)
software, which allows visualization and analysis of networks of biological associations and
interactions [33].

Results

Co-expression network generation with WGCNA
The details of the gene co-expression network construction with WGCNA are explained in
[21]. By applying the steps described in Materials and Methods, two different networks were
generated; one for 24 healthy samples and the other for T1D samples (43 samples, and for 20
patients there are replicates—1 month and 4 months after diagnosis). Briefly, signed network
adjacency matrices were obtained by raising the Pearson correlation matrices to a power
beta = 9 which approximates scale-free topology. The adjacencies were transformed to dissimi-
larity matrix for subsequent average linkage hierarchical clustering using flashClust R package
[34]. Resulting trees (dendrograms) are illustrated in Fig 1A (healthy samples) and Fig 1B
(T1D samples) and each leaf (vertical lines) corresponds to a specific gene. This illustration is
intended to show apparent changes in tree structures between two different networks that need
further inspection.

For further analysis, we cut the tree to generate modules (clusters) from the resulting den-
drogram. A dynamic branch cutting method called “hybrid” is used to determine modules,
which is implemented in cutreeHybrid function. Fig 2 shows resulting dendrogram for healthy
samples with different cut-off levels corresponding to different sets of modules. Modules on
the bottom of the figure are illustrated with different colors, and represent the branches of the
clustering tree, which can be split by using deepSplit argument, which allows a rough control
over sensitivity; we used following parameters: deepSplit = 1, cut height = 0.99, and minimum
module size = 27. This parameter setting resulted in 55 modules with average size 235. Finally,
module eigengenes are calculated, which provides quantitative assessments in further analysis.
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Comparing the modules between healthy and T1D networks
After generating 55 modules from network, based on healthy samples, we compared the results
with the corresponding set of modules in T1D network. Initially, visual representation was
done, to obtain a general idea of how modular structure changes between networks. In Fig 3,
the same colors that are assigned to the genes based on the module membership in healthy net-
work (Fig 3A) are applied to the corresponding genes in the T1D network (Fig 3B). Few mod-
ules are preserved, but there are considerable changes between the two networks which we
further investigated using a quantitative way of assessing module preservation.

In contrast to the idea of the original paper which proposes identifying modules with strong
evidence of preservation between reference and test network [28], we aimed to identify

Fig 1. Gene dendrogram generated with WGCNA for (A) healthy samples and (B) T1D samples. Each leaf (vertical lines) in the dendrogram
corresponds to a gene.

doi:10.1371/journal.pone.0156006.g001

Fig 2. Dendrogram denotingmodules in healthy network.Modules are illustrated with different colors obtained with different module detection
sensitivity parameter called deepSplit. Each row with colored set of modules is detected with a certain deepSplit (between 0 and 3). The number of
modules and average size are: deepSplit 0 (modules: 31, average size: 379.58) deepSplit 1 (modules: 55, average size: 235.05) deepSplit 2
(modules: 84, average size: 163.98) deepSplit 3 (modules: 105, average size: 137.3).

doi:10.1371/journal.pone.0156006.g002
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Fig 3. Visual representation of the changes in the module structure between (A) healthy network and (B) T1D
network.

doi:10.1371/journal.pone.0156006.g003

Gene Co-Expression Modules in Type 1 Diabetes

PLOS ONE | DOI:10.1371/journal.pone.0156006 June 3, 2016 6 / 18



modules that are weakly preserved between networks (see Materials and Methods). We
hypothesized that modules that are weakly preserved in T1D may highlight dysregulated path-
ways in disease that were acquired or lost when compared to a healthy network. Table 1 lists
identified modules, along with their size and Zsummary values. Modules with Zsummary< 5 are
considered to have low preservation, which is the cut-off used to select modules for further
analysis. Following modules are selected based on that criterion: Royalblue, Navajowhite, Yel-
lowgreen and Bisque. Grey and Gold modules are excluded from analysis, as these are artificial
modules containing all genes that were not assigned to any module.

Module enrichment analysis
Pathway enrichment analysis of the interesting modules was performed with Consensus-
PathDB [30] and EnrichNet [29] and results are shown for Royalblue module. Table 2 shows
functionally enriched pathways obtained from ConsensusPathDB by setting q-value< 0.05.
Results of pathway enrichment analysis obtained from EnrichNet are presented in Table 3,
where XD-score denotes significance of the enriched pathway. Findings with higher scores are
more significant than low-scoring results. Only significant hits with overlap size� 2 (genes
that are overlapping in the same pathway) were considered.

Table 1. Resultingmodules in healthy network compared to modules in T1D network.

Module name Size Zsummary Module name Size Zsummary

pink 166 36,80 mediumpurple3 61 11,77

darkgrey 87 32,74 lightyellow 113 11,35

brown 208 29,29 darkmagenta 64 10,99

purple 150 28,85 lightcyan1 60 10,96

lightgreen 118 28,03 cyan 128 10,88

darkturquoise 90 27,26 palevioletred3 31 10,56

darkred 101 27,06 green 187 10,52

blue 209 24,84 darkorange 78 10,40

ivory 55 23,61 orange 86 10,21

magenta 160 23,33 salmon4 33 9,74

red 185 21,98 thistle2 39 9,37

lightcyan 119 21,16 yellow 198 8,60

orangered4 61 20,54 sienna3 64 8,13

steelblue 73 18,98 paleturquoise 68 8,02

white 78 16,94 skyblue 77 7,89

greenyellow 150 16,72 floralwhite 55 7,46

grey60 119 16,50 darkgreen 96 7,45

tan 144 16,13 thistle1 39 7,43

darkolivegreen 64 15,35 saddlebrown 75 6,95

lightsteelblue1 61 14,34 black 180 5,68

darkslateblue 42 13,99 plum2 41 5,27

salmon 141 13,82 turquoise 269 5,10

plum1 62 13,09 bisque 42 4,97

violet 67 12,79 yellowgreen 64 3,91

brown4 45 12,69 grey 400 2,84

darkorange2 50 12,54 navajowhite 30 2,62

skyblue3 63 12,52 gold 100 2,12

midnightblue 127 12,11 royalblue 108 1,12

doi:10.1371/journal.pone.0156006.t001
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Both ConsensusPathDB and EnrichNet identified KEGG pathway “Type I diabetes melli-
tus” as functionally enriched in Royalblue module. Genes that are identified to be part of this
pathway are FAS and IL1B. Another significantly enriched pathway identified by both tools
(Tables 2 and 3) is “Graft-versus-host disease”, an immune-mediated disease that also involves
FAS and IL1B [35]. Examples of other pathways identified by ConsensusPathDB only
(Table 2) are “NOD-like receptor signaling pathway” and “Toll-like receptor signaling path-
way”. These pathways are known to be key components in the innate immune system that may
promote process leading to autoimmune diabetes [36,37].

Topological analysis with Betweenness centrality measure
Topological analysis of the modules obtained fromWGCNA was focused on the betweenness
centrality (BC) of the genes within the modules. Since this measure reflects influence over the
“information transfer” between different nodes (genes), we identified genes for which between-
ness is considerably changed between the two networks (healthy/T1D). BC values for the genes
in Royalblue module are presented in Table 4.

Using betweenness value to rank genes in the healthy network, we identified DDX52, as the
gene with highest betweenness (BChealthy = 2 658.15), suggesting that it has a central role in
information transfer in this module. However, the DDX52 gene in T1D network shows an
aberrant structure, with only one connection and BCT1D = 0. This gene is part of the DEAD
box helicases protein family [38] which functions to separate the strands of short mRNA

Table 2. Enrichment results from ConsensusPathDB.

KEGG ID Pathway Count p-value Genes

hsa04932 Non-alcoholic fatty liver disease (NAFLD) 8 2.17E-07 NDUFA4; BCL2L11; PIK3CA; FAS; IL1B; SDHB; UQCRB; CXCL8

hsa05010 Alzheimer´s disease 6 7.60E-05 NDUFA4; FAS; ADAM17; IL1B; SDHB; UQCRB

hsa05142 Chagas disease 4 9.99E-04 PIK3CA; IL1B; CXCL8; FAS

hsa04668 TNF signaling pathway 4 1.23E-03 TAB3; PIK3CA; IL1B; FAS

hsa04621 NOD-like receptor signaling pathway 3 1.84E-03 TAB3; CXCL8; IL1B

hsa05162 Measles 4 2.54E-03 RAB9A; PIK3CA; IL1B; FAS

hsa04210 Apoptosis 3 5.90E-03 PIK3CA; IL1B; FAS

hsa05164 Influenza A 4 6.57E-03 PIK3CA; IL1B; CXCL8; FAS

hsa04064 NF-kappa B signaling pathway 3 6.90E-03 TAB3; CXCL8; IL1B

hsa05016 Huntington´s disease 4 9.22E-03 NDUFA4; SDHB; UQCRB; DCTN4

hsa05143 African trypanosomiasis 2 9.25E-03 FAS; IL1B

hsa04620 Toll-like receptor signaling pathway 3 1.05E-02 PIK3CA; IL1B; CXCL8

hsa05146 Amoebiasis 3 1.13E-02 CXCL8; IL1B; PIK3CA

hsa05332 Graft-versus-host disease 2 1.33E-02 FAS; IL1B

hsa04940 Type I diabetes mellitus 2 1.45E-02 FAS; IL1B

Table shows resulting KEGG pathways enriched in Royalblue module.

doi:10.1371/journal.pone.0156006.t002

Table 3. Enrichment results from EnrichNet.

KEGG ID Description XD-score q-value Count Genes

hsa05332 Graft-versus-host disease 0.60 0.32 2 FAS; IL1B

hsa04940 Type I diabetes mellitus 0.57 0.32 2 FAS; IL1B

Table shows resulting KEGG pathways enriched in Royalblue module.

doi:10.1371/journal.pone.0156006.t003
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duplexes. Several of the proteins in this family, such as DDX3 and DDX42, are related to regu-
lation of the immune activity [39]. DDX52 has also been shown to be under-expressed in rela-
tion to the immune response in another T1D study [40]. In this study, DDX52 plays an
important topological role in the healthy network since it is in the center of one of the most
interconnected regions (Fig 4). However, in the diabetes network, DDX52 only interacts with
one direct neighbor (Fig 5). The function of DDX52 in T1D is still not known, but due to these
major differences in the topology involving this protein, it is worth investigating whether this
could be one of the factors that is aberrant at early stage at development of T1D.

NDUFA4 is a contrasting example of the gene with a large difference in BC value changing
from being low-betweenness gene in healthy to high-betweenness gene in T1D network
(Table 4). NDUFA4 encodes a subunit of the complex 1 of the mitochondrial electron trans-
port chain with NADH dehydrogenase and oxidoreductase functions. The role of this gene is
not known in T1D, but it is found to be over-expressed in T1D compared to controls and pre-
T1D patients [41].

Table 4. Betweenness centrality (BC) ranks for genes belonging to Royalblue module (in both healthy and T1D network).

Gene ID BC (healthy) Gene ID BC (healthy) Gene ID BC (T1D) Gene ID BC (T1D)

DDX52 2658.15 PAPD4 8.90 NUCKS1 1143.37 NBN 58.76

NUCKS1 2377.35 WDR61 8.36 ANKRD10-IT1 1087.81 BTF3 46.35

SNX14 1598.20 RAB9A 5.29 NDUFA4 757.67 CCNC 45.67

HNRNPH1 1186.69 BTF3 0.24 ANP32E 747.13 DCTN4 41.05

ANP32A 996.50 BORA 2.51 TNPO3 676.32 TMEFF2 40.64

ANKRD10-IT1 970.57 PEX2 0.50 TAB3 610.91 ZFX 29.52

ASB3 662.10 UGGT1 0.00 PAPD4 533.85 SNX14 29.13

IL1B 518.17 WDR48 0.00 CCRN4L 526.38 NRIP1 16.33

SMC3 334.62 PRDM1 0.00 SMC3 441.31 FAS 8.77

RUFY2 332.00 CXCL8 0.00 RIT1 433.20 PGGT1B 1.16

MRPL44 287.12 PYROXD1 0.00 HNRNPH1 385.24 TSN 0.90

TMEFF2 168.00 MED13L 0.00 EIF4B 381.40 MRPL44 0.33

SDHB 168.00 MIS18BP1 0.00 RSL24D1 358.21 HNRNPA1 0.00

UQCRB 131.03 SCAF4 0.00 SCAF4 332.77 CEP350 0.00

EIF4B 117.96 ATXN2L 0.00 ADAM17 332.43 UQCRB 0.00

PGGT1B 105.05 KCNJ14 0.00 STX2 320.00 LAPTM4B 0.00

TAB3 96.27 CCNC 0.00 PEX2 280.63 MED13L 0.00

HNRNPA1 94.58 RIMKLB 0.00 THUMPD3 277.68 RAB9A 0.00

THUMPD3 80.77 YIPF6 0.00 CXCL8 263.80 SBNO1 0.00

FAS 71.69 RIT1 0.00 RAB21 207.27 EMC7 0.00

NBN 43.12 NSG1 0.00 IL1B 185.50 CHEK1 0.00

STX2 36.15 LARP7 0.00 KCNJ14 162.00 BORA 0.00

NRIP1 32.52 BCL2L11 0.00 YIPF6 161.15 DDX52 0.00

HAUS2 27.29 ATXN7 0.00 TAF9 153.78 PYROXD1 0.00

UFM1 27.29 LAPTM4B 0.00 ATXN7 142.64 ATXN2L 0.00

NDUFA4 19.4 SLC4A4 0.00 MIS18BP1 138.98 WDR48 0.00

TPP2 18.17 CHEK1 0.00 ANP32A 126.32 RIMKLB 0.00

MTRR 16.28 ADAM17 0.00 CTSB 113.57

ANP32E 12.19 TAF9 0.00 MBTD1 108.41

RAB21 11.92 CEP350 0.00 TPP2 69.29

doi:10.1371/journal.pone.0156006.t004
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Fig 4. Royalbluemodule extracted from the healthy network.

doi:10.1371/journal.pone.0156006.g004

Fig 5. Royalblue module extracted from the T1D network.

doi:10.1371/journal.pone.0156006.g005

Gene Co-Expression Modules in Type 1 Diabetes

PLOS ONE | DOI:10.1371/journal.pone.0156006 June 3, 2016 10 / 18



Another gene with the betweenness centrality that largely deviates between healthy and
T1D network is SNX14 (sorting nexin 14). The role of this gene in T1D is not known, but there
is one previous study showing SNX14 is significantly down-regulated (FDR<0.05) in children
that progressed to T1D [42].

Betweenness centrality analysis of the rest of selected modules: Navajowhite, Yellowgreen,
and Bisque (S1–S3 Tables) revealed a number of genes with known or potential role in T1D.
The gene with the highest BC value in Navajowhite disease module is CAPRIN1 (S1 Table),
which encodes proteins involved in synaptic plasticity in neurons and cell proliferation and
migration [43]. This gene has been associated with autoimmune diseases in mouse [44], but so
far the similar role is yet to be confirmed in human autoimmune diseases. In Yellowgreen
module, SCAF11 (SIP-1) shows high BC in healthy and very low BC in T1D (S2 Table).
SCAF11 is known to be involved in Behcet´s disease [45] that has some features of autoimmu-
nity. Furthermore, another gene identified according to the same criteria is ITFG1 (or TIP),
which modulates T-cell function and has protective effect in graft-versus-host disease model
[46]. In the last module we analyzed (Bisque) there were also several interesting genes that
show large difference between BC values in healthy versus T1D module (S3 Table). IL1A or
IL-1 (BCT1D = 60.7; BChealthy = 0) is a pro-inflammatory cytokine that takes part in the “diabe-
tes type I pathway”.

Discussion
Network-based analysis provides higher level connections between molecules and their
involvement in different pathways, which is a good starting point for investigating complex dis-
eases, such as T1D. The present study focuses on co-expression module-based analysis using
WGCNA in combination with other network topology information. The results of the study
reveal biological pathways that are enriched in co-expression modules and show aberrant
structure in T1D network compared to the corresponding modules in co-expression network
of healthy controls.

Five modules were chosen for further analysis, based on the loss of preservation, as
explained in the result section. The results of the analysis of top-ranked Royalblue module will
be discussed here in detail. Lists of the enriched terms in other modules can be found in S4–S7
Tables. Functional enrichment analysis of this module was performed with EnrichNet and
ConsensusPathDB. EnrichNet utilizes information from the molecular network structure con-
necting two gene/protein sets to score distances between input set of genes and pathways in a
reference database. EnrichNet tries to overcome some limitations of the traditional over-repre-
sentation based enrichment analysis, by calculating XD-score, which is relative to the average
distance to all pathways in a reference database. The analysis resulted in several pathways and
processes with a clear connection to different mechanisms that are associated to T1D. One of
the KEGG pathways that showed enrichment was “Type I diabetes mellitus” and the analyzed
module contains two genes from this pathway—FAS and IL1B. FAS belongs to the TNF-recep-
tors superfamily and plays a major role in the programmed cell death. Apoptosis mediated by
FAS appears to be the main mechanism in T cell-mediated damage to insulin-producing beta
cells [47]. IL1B is a cytokine that serves as an important mediator in the inflammatory process
and is also part of the main mechanisms of beta cell death in diabetes [48]. Among other path-
ways that are significantly enriched (Table 2), we found “Non-alcoholic fatty liver disease
(NAFLD)”, “TNF-signaling pathway”, “NOD-like receptor signaling pathway” etc.

To further understand the interplay between significant pathways within the module and
identify which genes they have in common, we used ClueGO (http://apps.cytoscape.org/apps/
cluego/) [49]. Resulting network (Fig 6) illustrates network of six significantly enriched KEGG
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pathways along with the genes that are shared between these pathways (Fig 6A). Fig 6B illus-
trates significant KEGG pathways where bars show number of genes associated to each term.
There are three genes shared by several pathways—IL1B (six pathways), FAS (four pathways),
and CXCL8 (three pathways). This also confirms the relevance of the derived modules for iden-
tifying key players in T1D. Interestingly, analysis with VisANT confirms that these three genes
are connected in a T1D network generated from the Royalblue module, while there is no such
connection in the corresponding healthy module. CXCL8 provides the main connection
between FAS—IL1B and the main cluster (the most interconnected region) in the T1D module
(Fig 5), containing genes related to the immune system. In corresponding healthy module (Fig
4), these direct connections between CXCL8, FAS and IL1B are absent. CXCL8 (also known as
IL8) produces interleukin 8, a chemokine which plays an important role in the inflammatory
response and it is produced by many cell types [50]. In addition, high levels of interleukin 8
have been found in the saliva [51] and in the blood [38] of children with T1D. Due to the posi-
tion of this gene in the diabetes network (Fig 5) and the confirmation of its increased expres-
sion levels in diabetic patients, interleukin 8 s may play an important part in the development
of diabetes.

Another interesting gene that is part of the tightly connected cluster in T1D module (Fig 5)
is ADAM17, which encodes the tumor necrosis factor-alpha converting enzyme (TNFR).
ADAM17 plays a central role in cell regulation and thus it is related to many diseases, including
T1D [52]. Earlier studies indicated that intermembrane activity of ADAM17 is possible factor
that influences concentrations of TNFRs in blood in T1D patients [53,54].

Fig 6. Functionally enriched KEGG pathways identified by ClueGO. (A) The size of the nodes reflects significance of the term. Network includes
genes that are shared between different KEGG pathways (B) Chart represents significant KEGG pathways where bars show number of genes associated
to each term. Level of significance for terms is marked using 1) **; if the term is over-significant (p-value<0.001), 2) *; if the terms is significant (0.001<p-
value<0.05), and 2). (dot); 0.05<p-value<0.01).

doi:10.1371/journal.pone.0156006.g006
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There are other interesting genes that build the tightly interconnected cluster in Fig 5. We
found genes that are related to cancer (NBN, FAM84B), Huntington's disease (DCTN4), Par-
kinson's disease (NUCKS1), Alzheimer's disease (SMC3), amongst others. Parkinson's disease
is an autoimmune disease [55], and recent findings support the theory that Alzheimer's also
appears to have an autoimmune component to the disease [56]. Previous work on Hunting-
ton's disease showed an activation of the immune system and altered immune response before
the manifestation of clinical symptoms [57]. In summary, the part of the identified module
aberrant in T1D may give the indication of the process shared amongst the above mentioned
diseases. This result agrees with the enrichment analysis that found KEGG pathways “Alzhei-
mer´s disease” and “Huntington´s disease” functionally enriched (Table 2). Further analysis of
the dense cluster identified in the disease module (Fig 5) reveals another gene, TAB3, a part of
“NF-kappa B signaling pathway” that is associated with the activation of the immune systems,
particularly in response to external factors, such as inflammation. This pathway is found func-
tionally enriched in Royalblue module (Table 2) and it was recently proposed that this pathway
have important implications on the development of novel therapeutic strategies for T1D [58].
Since several of the genes that build the densely connected cluster in the Royalblue module are
related to the immune diseases, it is of great interest to further investigate other genes in that
cluster (i.e. ATXN7, PGGT1B, MIS18BP1) that have not been previously associated with T1D,
and may contribute to extending our knowledge about the disease.

Topological analysis based on betweenness centrality measure (BC) revealed some high-
betweenness proteins that may act as important links between different pathways. One of the
genes identified based on betweenness centrality criteria that may play a role in T1D is
NDUFA4. This finding, together with the results from the enrichment analysis, highlights
NDUFA4 as part of three significantly enriched pathways (Table 2) with potential connection
to diabetes, and identifies this gene as an interesting candidate for further investigation. One of
these pathways is “Non-alcoholic fatty liver disease (NAFLD)”, which has been linked to T1D
in children in previous studies [59,60].

Another interesting gene that shows a large difference between BC in healthy versus T1D
Bisque module (see Results) is IL1A or IL-1, a pro-inflammatory cytokine that takes part in the
“diabetes type I pathway”. The inhibition of IL-1 action has clinical efficacy in several inflam-
matory diseases including hereditary auto-inflammatory disorders and type 2 diabetes mellitus.
[61]. Due to its modulating effect on the interaction between the innate and adaptive immune
systems, IL-1 has suggested has been evaluated as a potential target in the autoimmune diabetes
mellitus [61]. This finding also confirms that the approach we propose here offers insights into
pathways and genes with known involvement in T1D and may serve as a good starting point
for identifying novel mechanisms. SH2B2 is another gene in the same module which is a part
of “insulin signaling pathway”, but its role in T1D is not known.

Apart from focusing on modules with low preservation between healthy and T1D network,
we contrasted our results by analyzing the most preserved module (Pink module), and investi-
gated which role this module may have in the disease. The resulting list of the pathways that
are enriched in Pink module with p-value<0.05 are: “HTLV-I infection”, “T cell receptor sig-
naling pathway”, and “Changas disease” (S8 Table). T cell receptor signaling pathway is related
to the immune system and known to be associated to T1D. There are two gene members in this
module that account for the enrichment in this pathway: DLG1 and NFATC3. DLG1 is
involved in signal transduction, cell proliferation, and synaptogenesis, which are important
functions that seem to be preserved when comparing heathy and disease module. Mutations in
DLG1 are known to be associated to Chrohn´s disease [62], which is an immune related dis-
ease. NFATC3 has a crucial role in the development of the immune system and T-cell
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development [63]. This finding suggests that the highly preserved module in this case encloses
functions that are important for the immune system and also shows preserved density and con-
nectivity pattern between healthy and disease module.

In summary, our results show that the application of WGCNA, along with topological anal-
ysis and functional enrichment can be used to detect modules associated with T1D in children.
Detected modules are utilized for exploratory analysis of dysregulated pathways in disease, as
exemplified by the identified pathways such as “Type I diabetes mellitus”, Non-alcoholic fatty
liver disease (NAFLD)”, “NOD-like receptor signaling pathway”. In addition, the approach we
report here may help identifying candidate genes that are likely to be associated with the dis-
ease, such as IL-1, that was found to be significantly increased in newly diagnosed T1D patients
[64]. Other identified genes that confirm the relevance of this approach are IL1B, FAS, CXCL8
etc. Previous work on network analysis in T1D was manly focused on using protein-protein
interaction (PPI) interaction networks to find candidate genes in disease [65]. While other
studies were focused on specific regions of interest for T1D, such as Major Histocompatibility
Complex (MHC) region on chromosome 6p21 [66], our study identifies global network struc-
ture that allows us to explore key pathways and candidate genes from T1D co-expression mod-
ules derived from whole transcriptome. This work highlights the importance of the systems
biology approach to study complex disease by analyzing the inherent modularity of the T1D
co-expression network. Future efforts should be made to further investigate system-level prop-
erties of the modules associated to T1D, as well as other topological properties of the genes
involved in identified modules.
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