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Abstract

Objectives

To investigate fused multiparametric positron emission tomography/magnetic resonance

imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-

resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging

(DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol

([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved plan-

ning of chemo-radiation therapy (CRT).

Materials and Methods

Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were

examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete

data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement

(EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and

voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were

assessed using multiple correlation analysis.
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Results

All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-

kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUV-

max16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET iden-

tified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-

voxel analysis revealed only weak correlations between the MRI and PET parameters

(0.05–0.22), indicating that each individual parameter yields independent information and

the presence of tumor heterogeneity.

Conclusion

MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisi-

tion of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]

FMISO PET/MRI enables insights into tumor biology on multiple levels and provides infor-

mation on tumor heterogeneity, which has the potential to improve the planning of CRT.

Introduction
Chemo-radiation therapy (CRT) is the standard of care for locally advanced cervical cancer
and improves local control and survival [1]. The role of advanced imaging is steadily increasing
in the management of gynecological malignancies, both for treatment planning and response
monitoring [2–10]. Magnetic resonance imaging (MRI) and positron emission tomography
(PET) play a pivotal role in planning and monitoring the response to CRT [2–6, 11–14]. MRI
provides morphological and functional information on tumor neo-angiogenesis, perfusion,
and tissue cellularity, using multiple parameters, such as T2-weighted, contrast-enhanced
(CE), and diffusion-weighted imaging (DWI) [15–22]. PET, using the radiotracer 2-deoxy-2-
[18F]fluoro-D-glucose ([18F]FDG), provides metabolic information by depicting glycolytic
tumor activity [13, 14].

In locally advanced cervical cancer, it is known for a long time that tumor hypoxia is associ-
ated with increased resistance to CRT, thus diminishing the rate of local control as well as dis-
tant disease control [23–30]. Traditional clinical methods to determine hypoxic regions are
invasive and based on needle electrodes or tissue sampling [23, 27, 28, 31]. PET imaging
using [18F]fluoromisonidazole (1-[18F]fluoro-3-(2-nitroimidazol-1-yl)propan-2-ol or short
[18F]FMISO) can identify hypoxic tumor sub-volumes and track spatio-temporal dynamics.
Therefore it might be of considerable additional value for improved planning and monitoring
of CRT for cervix cancer [23–28, 32, 33].

To date, the potential of PET/MRI for locally advanced cervical cancer, using multiple MRI
parameters and different radiotracers in the assessment of cervical cancer, has not been explored.

We hypothesized that through the non-invasive quantitative assessment of multiple pro-
cesses relevant for cancer growth, progression and aggressiveness (tumor neo-angiogenesis and
perfusion, cellularity, glycolytic metabolic activity, tumor hypoxia) [34] hitherto unparalleled
insights into tumor biology on multiple levels could be provided by multiparametric (MP)
[18F]FDG/ [18F]FMISO PET/MRI, which can be subsequently used for treatment stratification
and intensification.

The aim of this study was to explore MPMRI and PET in patients with locally advanced cer-
vix cancer. Thus, the aim of our study was to assess whether fused MP [18F]FDG/ [18F]FMISO
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PET/MRI in cervical cancer patients is possible and facilitates information on tumor heteroge-
neity, which might improve the planning of CRT. To reach this goal, we used multiple MRI
parameters (high-resolution T2-weighted-, CE-MRI, DWI) and the combination of these
parameters with the radiotracers [18F]FDG, for the assessment of glycolytic metabolic activity,
and [18F]FMISO, for the detection of tumor hypoxia with PET.

Materials and Methods

Patients
From 05/2012 to 07/2014, sixteen consecutive patients (mean age, 51.8; range, 36–72), who
presented at the Department of Radiation Oncology for treatment, were included in this pro-
spective, single-institution feasibility study, which was approved by the institutional review
board (IRB)/ Ethics Committee of the Medical University of Vienna, Austria. All patients ful-
filled the following inclusion criteria and underwent dual tracer MP PET/MRI: 18 years or
older; histopathologically verified locally advanced cervical cancer scheduled for treatment
with CRT; not pregnant; not breastfeeding; no previous treatment; and no contraindications
for MRI or contrast agents. Written, informed consent was obtained from all patients. Exami-
nations of 11 patients were completed within a median of one week (range 2–23) and were
used for this study. The remaining patients did either not want to complete the study or treat-
ment could not be delayed for the imaging study.

Imaging
Prior to commencement of treatment all patients underwent fused PET/MRI with PET/com-
puted tomography (CT), using [18F]FDG and [18F]FMISO and MPMRI of the pelvis at 3T.

PET/CT. A hybrid PET-CT (computed tomography) (Biograph 64 TruePoint PET/CT
system, Siemens, Erlangen/Germany) was used. For [18F]FDG PET/CT, patients fasted for five
hours and blood glucose levels were<150 mg/dl (8.3mmol/l). All patients received a body-
weight-adapted injection of approximately 200-350MBq [18F]FDG and [18F]FMISO on differ-
ent days. Scanning was started after an uptake time of 60 min for [18F]FDG and 210-240min
for [18F]FMISO. For both radiotracers, a supine PET dataset of unenhanced CT scans were
recorded for attenuation correction. For [18F]FMISO, the unenhanced CT scans were obtained
as low-dose scans. The same imaging and post-recon parameters were used for both PET/CT
studies. PET images were reconstructed using the iterative TrueX algorithm, which incorpo-
rates a specific correction for the point-spread function in addition to commonly used correc-
tion factors [35, 36]. Four iterations per 21 subsets were used, with a matrix size of 168×168, a
trans-axial field of view of 605 mm (pixel size 3.6mm), and a section thickness of 5mm. Further
technical details are provided by the manufacturer [37].

MPMR Imaging. All MRI studies were performed with the patient in the supine position
using a 3T MRI (Tim-Trio, Siemens, Erlangen/Germany). A combination of an eight-channel
spine array (24 elements in eight clusters) and a two-channel body array (six elements in two
clusters) was used for signal acquisition. The MRI protocol consisted of:

1. A sagittal T2-weighted turbo spin echo (TSE) sequence: time to repetition (TR)/ echo time
(TE) 4630/89msec; field of view (FOV) 220mm; 30 slices; voxel size 0.7 x 0.6 x 3mm3, three
averages; acquisition time (TA) 5:16min).

2. A sagittal 3D slab-selective T2-weighted TSE sequence (Sampling Perfection with Applica-
tion optimized Contrasts using different flip angle Evolution, SPACE): TR/TE 1500/173ms;
FOV 300mm; 176 slices per slab; 0.9mm3 isotropic; two averages; TA 3:56min.
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3. An axial T1-weighted TSE sequence: TR/TE 675/12; FOV 280mm; 30 slices per slab; voxel
size 0.6 x 0.6 x 3mm3; 2 averages; TA 4:19min.

4. An axial diffusion-weighted 2D echo-planar imaging sequence with spectrally adiabatic
inversion recovery (SPAIR) fat suppression (TR/TE 6300/82ms; FOV 28mm; 30 slices voxel
size 1.8 x 1.5 x 5mm3; five averages; b-values 50 and 850sec/mm2 ([38, 39]; TA 3:28min.

5. An axial T1-weighted Volume Interpolated Breath-hold Examination (VIBE) sequence with
SPAIR fat suppression before, 1min and 4min after contrast agent application (TR/TE 3.38/
1.38ms; FOV 380mm; 52 slices per slab; voxel size 0.8 x 0.8 x 3mm3; one average; TA
0:53min).

Gadoteratemeglumine (Gd-DOTA;Dotarem1, Guerbet, France) was injected intravenously
as a bolus (0.1mmol/kg body weight) using a power injector at 4 ml/s, followed by a 20mL
saline flush. The total MRI examination time was ~16min.

Image Fusion
Rigid registrations for descriptive statistics. For descriptive statistics, the images were

analyzed and registered using Mirada RTx software (Mirada Medical Ltd., UK). Datasets
acquired on the same scanners, i.e. PET/CT and MPMRI data, were initially fused according
to DICOM tag information. The correlation of the anatomy on respective modalities was visu-
ally checked by the readers in consensus and adjusted if necessary utilizing the available soft-
ware options (automatic, mutual information-based, and manual rigid registration). To
achieve optimal registration fusion of [18F]FDG, [18F]FMISO, and MPMRI the registration
was performed in two steps (visualized as arrows in Fig 1). First, the CT series of the respective
PET-CT examinations were registered and the two PET series were saved in the same coordi-
nate system. Subsequently, the registration between PET and MPMRI datasets was performed
using CT and anatomic T2-weighted MR images. In both steps, the automatic and manual
rigid registration tools were used with a special focus on the cervix.

Deformable image registrations for voxel-by-voxel analysis. For voxel-by-voxel analysis
deformable image registration (DIR) was applied. In this step the uterus, cervix as well as the
different helper structures were defined on CT and projected onto [18F]FDG/ [18F]FMISO
PET/CT and axial T1-weighted MRI data. All images were resampled to the voxel size of 0.6 x
0.6 x 3mm3. Hybrid-, intensity-, and structure-based DIR were performed for MP MRI and
[18F]FDG, as well as for [18F]FMISO CT data using RayStation (ver X4.6.100, RaySearch Labo-
ratories, Sweden) (see S1 Fig). The uterus was used as the controlling structure and helper
structures were used as focus structures to limit the registration calculations to this region.

Data analysis
An experienced radiologist and an experienced nuclear medicine physician in consensus pro-
spectively evaluated MP [18F]FDG/ [18F]FMISO PET/MRI data according to the criteria listed
below:

High-resolution T2-weighted and CE-MRI. CE-MRI imaging data was assessed for
tumor morphology, and for initial and delayed enhancement kinetics. For analysis of lesion
enhancement kinetics in the early (1min) and delayed phase (5min), manually drawn region-of
interests (ROI) were placed in the most enhancing parts of a lesion and the intensity courses
were plotted against time. Initial enhancement (IE) was defined as either medium (<1.5) or
fast (>1.5), and enhancement in the delayed phase was defined as either wash-out (<-0.1), pla-
teau (>-0.1 and<0.1), or persistent (>0.1). The lower the rate the faster the wash-out (WO).
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The definitions of IE and WO are as follows;

IE ¼
IDCEearly þ IDCEnative

IDCEnative

WO ¼
IDCElate þ IDCEearly

IDCEnative

Lesion volume in cc was calculated by measuring the largest diameter of the tumor in all
three planes on the CE-MRI.

DWI. High-b-value DW images (i.e., 850s/mm2) were visually assessed for hyperintense
areas that corresponded to the morphologically visible tumor on T2-weighted and CE-MRI.
Two-dimensional ROIs were manually drawn covering the area, visually assessed, with the low-
est ADC values inside the lesion, and the mean ADC was recorded. Partial volume effects due
to normal parenchyma, suppressed fatty tissue, and areas of necrotic tissue, as identified from
the morphological and contrast-enhanced images, were avoided as far as possible.

[18F]FDG and [18F]FMISO PET. Tumor uptake was quantified by maximum standard-
ized uptake values (SUVMAX). For SUVMAX determination, the reader placed a sphere around
the lesion. This sphere encompassed the entire lesion, but excluded physiologic [18F]FDG
uptake in surrounding tissues. In addition, tumor-to-background ratio was calculated using
the gluteal muscle for [18F]FMISO and mediastinal up-take for [18F]FDG as background.

Voxel-by-voxel analysis
The voxel-by-voxel analysis of all MRI and PET parameters on the delineated cervix was per-
formed using an in-house-developed MATLAB script. Due to the lower image resolution of

Fig 1. Step-by-step illustration of the rigid registration algorithm. [18F]FMISO and [18F]FDG/ PET/CT
datasets in two separate coordinate systems (yellow and blue) are rigidly registered (CT1-CT2 registration)
and merged into one (green). Registration between the green and the red (mpMRI) coordinate system is
performed by a rigid transformation of CT2 to fit T1w MRI. The calculated transformation is applied to PET1

and PET2 to create the PET/MRI dataset (purple).

doi:10.1371/journal.pone.0155333.g001

FDG/FMISO PET/MRI of Cervical Cancer for the Non-Invasive Detection of Tumor Heterogeneity

PLOS ONE | DOI:10.1371/journal.pone.0155333 May 11, 2016 5 / 14



PET images and ADCmaps, and to compensate for potential inaccuracies of registration
between the imaging modalities, a slice-wise sliding window of 24 pixels surrounding the pixel
of interest (middle pixel) was used to calculate the average of the measured parameters in this
area. Values between the 0.5th and 99.5th percentiles were taken into consideration. Tumor-to-
background ratio maps for PET, as well as initial and delayed enhancement maps for CE-MRI,
were calculated. Fig 2 illustrates representative voxel-by-voxel correlations between pairs of
PET/MRI dataset-derived parameters.

Statistical analysis. Statistical analyses were performed using Statistical Package for the
Social Sciences (IBM SPSS Statistics 22.0). Correlations between items were investigated by
constructing a color-coded nonparametric Spearman’s rank correlation coefficient matrix. P-
values<0.05 were considered significant (a two-tailed significance test was used). Correlations
of voxel-by-voxel analysis between the imaging parameters were assessed with the nonpara-
metric Spearman’s rank correlation coefficient and by plotting a set of 10 scatter plots for each
patient, which combined each pair of investigated parameters. In PET datasets, only voxels
with a tumor-to-background ratio higher than 2, for [18F]FDG, and/or 1.4, for [18F]FMISO,
were taken into account. For all parameter pairs, the average correlation coefficients that
resulted from the patient-wise analysis were calculated using Fisher Z-transformation, and a
color-coded correlation coefficient matrix was plotted.

Results
Image registration between the various MRI sequences and PET image series was successfully
performed in all eleven patients with complete data sets. Table 1 summarizes the various quali-
tative (e.g. WO, IE) and quantitative imaging parameters (e.g. ADC, SUV) extracted.

Tumor volumes ranged from 6.2 to 440.0cm3 (mean 118.8±124.1cm3, median 87.4cm3).
There was a fast initial enhancement (IE) in five and a medium IE in six patients, followed by
either a wash-out (n = 6), a plateau (n = 3), or persistent (n = 2) enhancement. All tumors dem-
onstrated restricted diffusivity, with median ADC values of 0.80 x 10-3mm2/sec (mean 0.77,
range 0.53–0.91, SD 0.11 mm2/sec). All tumors were highly [18F]FDG-avid with a median
SUVmax of 16.2 (mean 17.7, range 11.9–25.6, SD 4.6). In all patients [18F]FMISO-avid spots
were identified within the [18F]FDG-avid lesion (see S2 Fig). With [18F]FMISO there was a
median SUVmax of 3.1 (mean 3.7, range 2.2–6.4, SD 1.4). Median [18F]FMISO tumor-to-back-
ground ratio was 2.6 (mean 2.8, range 2.0–4.6, SD 0.8).

Fig 2. Representative examples of voxel-by-voxel correlations between pairs of PET/MRI dataset-derived parameters. (A) illustrates a weak
correlation of the evaluated parameters, i.e., [18F]FMISO- and [18F]FDG-avidity. (B) shows a strong indirect correlation of the evaluated parameters, i.e.,
initial and delayed enhancement. (C), there is no correlation of the evaluated parameters, i.e., delayed enhancement and [18F]FDG-avidity.

doi:10.1371/journal.pone.0155333.g002
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Lesion-based descriptive statistics
Correlations between tumor volume, various MRI and PET parameters are summarized in Fig 3.

A statistically significant strong direct correlation was found for [18F]FDG SUVmax and
[18F]FMISO SUVmax (p = 0.04) demonstrating that metabolically active tumors present with
hypoxic areas. Furthermore a statistically significant strong direct correlation of initial
enhancement with ADC (p = 0.05) was obseeved, which likely reflects microperfusion effects
known to slightly increased ADC values in the tumor [40, 41]. There was moderate direct cor-
relation of wash-out rate with ADC indicating the tumor presenting with a wash-out have
lower ADC values. Extracellular space changes (e.g. by increased cellularity) affect both ADC
and wash-out chrarcteristcs [42]. There was a moderate indirect correlation for tumor volume
with wash-out rate and with ADC and no correlation of tumor volume with [18F]FDG SUVmax

and with [18F]FMISO SUVmax.

Voxel-by-voxel analysis
A voxel-by-voxel analysis of MPMRI and PET information was successfully performed in
eight patients. In three patients DIR was not satisfactory due to either location of the tumor
(n = 2) and too poor quality of the low-dose attenuation correction CT for [18F]FMISO. Fig 4
summarizes the respective correlations between MRI and PET parameters for these eight
patients.

Except for initial and delayed enhancement, which showed a significant strong indirect cor-
relation, i.e. tumors that show fast initial enhancement present with a wash-out, all other
correlation of MRI and PET parameters were weak, ranging from 0.05–0.22. A weak direct cor-
relation was found for [18F]FDG and [18F]FMISO SUVmax.

Discussion
MP [18F]FDG/[18F]FMISO PET/MRI facilitates the acquisition of a multitude of predictive
and prognostic imaging parameters (CE-MRI, DWI, [18F]FDG, and [18F]FMISO PET), and

Table 1. Patients’ age, histopathological diagnoses, tumor volumes, qualitative, i.e WO, IE and quantitative imaging parameters, i.e ADC, [18F]FDG
and [18F]FMISO SUVmax and [18F]FMISO TBR for all patients with complete data sets.

ID Age Histopathology Tumor Volume
(cm3)

IE WO ADC (x 10−3 mm2/
sec)

SUVmax [
18F]

FDG
SUVmax [

18F]
FMISO

[18F]FMISO
TBR

1 36 SCC 128.7 Fast Wash-out 0.82 16.1 2.8 2.5

2 58 SCC 440 Fast Wash-out 0.77 15 3.1 2.8

3 56 SCC 277.4 Medium Wash-out 0.53 25.6 6 4.6

4 36 SCC 108.4 Medium Wash-out 0.67 11.9 2.4 2.0

5 38 SCC 111.3 Medium Wash-out 0.80 21.5 2.8 2.0

6 72 SCC 87.4 Medium Wash-out 0.66 16.2 2.9 2.4

7 58 SCC 38 Fast Plateau 0.89 12.2 4.2 2.8

8 54 SCC 32.1 Fast Plateau 0.84 19.2 4.6 3.5

9 60 SCC 6.2 Fast Wash-out 0.85 23.3 3.4 2.6

10 36 SCC 25.3 Medium Persistent 0.71 12 2.2 2.0

11 66 SCC 52.1 Medium Persistent 0.91 21.4 6.4 3.8

Note: ID—patient identification number, SCC- squamous cell carcinoma, IE—initial enhancement rate, WO—wash-out rate, ADC—apparent diffusion

coefficient, SUVmax—maximum standard up-take value, [18F]FDG—[18F]Fluorodeoxyglucose, [18F]FMISO—[18F]Fluoromisonidazole, TBR—tumor-to-

background ratio.

doi:10.1371/journal.pone.0155333.t001
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each one yields independent information. MP [18F]FDG/ [18F]FMISO PET/MRI enables
insights into tumor biology on multiple levels. This technique also provides information on
tumor heterogeneity that in the future can be used for personalized cancer treatment by intro-
ducing dose-painting concepts with inhomogeneous radiation dose prescription and/or inten-
sified chemotherapy regimens [2–6, 11].

Functional imaging with MP MRI is now part of the standard imaging protocol for treat-
ment planning and prognostication for locally advanced cervical cancer [2–6, 11–14]. CE-MRI

Fig 3. Summary of correlations between tumor volumes andMRI and PET parameters for all eleven patients using descriptive statistics. Blue
indicates a direct and red an indirect (cf. legend on the right) correlation. Correlation coefficients are values dispalyed in larger font and the p-values in
smaller font below.

doi:10.1371/journal.pone.0155333.g003
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provides high-resolution anatomic information, depicts neo-angiogenesis, and quantifies the
extent of poorly perfused regions within cervical tumors [3, 15, 17, 18, 43]. Poorly perfused
tumor regions have been found to be an independent predictor of recurrence and survival [16–
20, 44]. DWI provides information about tissue cellularity, which is an important factor in
tumor response to CRT [22]. In addition, DWI has been identified as an imaging biomarker in
cervical cancer for the early monitoring of response to CRT [22, 45]. Nevertheless, valuable
information on metabolic and hypoxic tumor sub-volumes, which is pivotal for treatment
planning, especially with regard to dose-painting with CRT, is limited with MRI alone.

Fig 4. Correlations between tumor volumes, MRI, and PET parameters for eight patients using voxel-by-voxel analysis. Blue indicates a direct
and red an indirect (cf. legend on the right) correlation. Correlation coefficients are values dispalyed in larger font and the p-values in smaller font below.

doi:10.1371/journal.pone.0155333.g004
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[18F]FDG PET defines the extent of metabolically active disease, and thus, allows tailoring
radiation treatment to the individual patient [5, 6], while avoiding irradiation of normal tissue.
[18F]FDG PET facilitates the longitudinal tracking of metabolic disease during CRT, and the
respective metabolic response to CRT is predictive of long-term survival [4, 5]. Tumor hypoxia
is associated with increased resistance to ionizing radiation and various types of chemotherapy,
thus diminishing the rate of local control as well as distant disease control [23–28]. Previous
methods to measure and track tumor hypoxia comprised solely invasive assessment with nee-
dle electrodes or biopsy [23, 27, 28, 31]. However, in the past years different radiotracer such
as [18F]FMISO, [18F]Fluoroazomycinarabinofuranoside [18F]AZA or [64Cu]-diacetyl-bis
(N4-methylthiosemicarbazone) [64Cu] ATSM that can non-invasively identify such hypoxic
tumor sub-volumes, which require radiation dose-escalative have been developed. In the cur-
rent study we used the radiotracer [18F]FMISO as it is readily available in our institution and
has been already clinically validated in RT for other tumors [46]. By combining the multitude
of information from all the available different parameters, MP PET/MRI has the potential to
provide accurate predictors of radio-curability for improved treatment planning and prognos-
tication. Based on the results and feasibility of this pilot study, an on-going response assess-
ment study was initiated, based on the same MP PET/MRI protocol. Respective imaging is
performed pretreatment, during the 2nd and 5th week of CRT, as well as 3 months after treat-
ment. Results will be reported in a separate communication.

As expected in this study all tumors displayed imaging parameters concordant with cancer,
i.e. suspicious enhancement kinetics, decreased ADC values, and [18F]FDG- and [18F]FMISO-
avidity. In all patients, focal hypoxic tumor subvolumes within the gross tumor volume were
identified, which are associated with an increased radio-resistance and would require dose
escalation for optimal CRT [24, 47–49].

In descriptive lesion-based statistical analysis there was also a significant strong direct corre-
lation of [18F]FDG SUVmax with [18F]FMISO SUVmax (p = 0.04) and a moderate direct correla-
tion of wash-out rate with ADC. The latter indicates that highly metabolically active tumors
with a high cellular and microvascular density are also prone to present with hypoxic areas fur-
ther hinting at tumor aggressiveness. However, there was no correlation of tumor volume with
[18F]FDG SUVmax and with [18F]FMISO SUVmax. Thus focal tumor hypoxia can be present in
smaller tumors and is not just reserved for very big lesions having outgrown their oxygen sup-
ply. This implies that larger lesions are not necessarily the most aggressive ones with respect to
imaging biomarkers such as enhancement kinetics, ADC, glycolytic activity and tumor hyp-
oxia. Additionally, only a moderate indirect correlation for tumor volume with wash-out rate
and with ADC was determined.

Whereas in the descriptive statistics a statistically significant strong positive association of
[18F]FDG SUVmax with [18F]FMISO SUVmax (p = 0.04) and initial enhancement with ADC
(p = 0.05) was found, the voxel-by-voxel analysis revealed only weak correlations of these indi-
vidual parameters except for a significant strong negative correlation between initial and
delayed enhancement (p = 0.001). This might indicate that highly metabolically active and cel-
lular tumors are more likely to have poorly perfused hypoxic areas. The weak direct correlation
of [18F]FDG and [18F]FMISO SUVmax underlines that high glycolytic activity and tumor hyp-
oxia is present in different tumor areas and that these imaging biomarkers provide comple-
mentary information. All these findings highlight that an aggressive imaging tumor phenotype,
i.e. high cellullar and microvascular density, high glycolytic activity and focal tumor hypoxia
can already be identified in smaller tumors.

In this study all tumors showed features of an aggressive tumor type i.e. high cellullar and
microvascular density, high glycolytic activity and focal tumor hypoxia. which indicates that
patients could benefit from an intensified tailored treatment. Each individual parameter
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reports on a different aspect of tumor biology and previous studies have shown benefits for
each with regards to either treatment planning, response or prognostication. Therefore, we
believe that each parameter is necessary to identify aggressive tumors and that the combined
information of all parameters should be used for treatment planning and tracking of the spa-
tio-longitudinal dynamics to facilitate personalized treatment.

This was a pilot study and initial results are encouraging. Especially with regard to the devel-
opment of other targeted radiotracers and novel radiopharmaceuticals, MP [18F]FDG/[18F]
FMISO PET/MRI has the potential to have a significant impact on cervical cancer treatment as
a surrogate marker of CRT efficacy and drug activity at the tumor microenvironment level.
Nevertheless, this study has some limitations. The patient collective is small. More patients
agreed to participate than actually completed this study. Multimodality imaging studies are
demanding for the patients, especially if performed on two scanners. This was the main reason
why about 30% of the patient did not complete it. Performing such comprehensive imaging
with simultaneous PET/MRI scanners, which are currently being installed world-wide, will cer-
tainly increase patient compliance [50]. Furthermore, simultaneous PET/MRI will overcome
the other limitation of this study with respect to image post-processing for data correlation.
Loosing valuable patient information like in this study, where for three patients a voxel-by-
voxel analysis could not be performed, will also be avoided. Larger-scale studies, as well as con-
secutive examination during CRT, will be needed and are currently on-going to corroborate
these results and to fully elucidate the predictive and prognostic potential of MP [18F]FDG/
[18F]FMISO PET/MRI.

In conclusion, MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer is fea-
sible and provides unique complementary information on tumor biology and heterogeneity. In
addition to several established predictive and prognostic imaging parameters, MP [18F]FDG/
[18F]FMISO PET/MRI can also identify hypoxic tumor sub-volumes, which are more resistant
to radiotherapy and necessitate dose-escalation, which could further improve therapy planning
and assessment of treatment response.

Supporting Information
S1 Fig. Illustration of the deformable registration outcome. Solid (green or yellow) line
structure is the uterus and cervix as defined on the T1-weighted MRI, dashed line—as defined
on the CT. (A) CT; (B) T2-weighted MRI; (C) color-coded representation of the calculated
deformation field; (D) CT deformed to match the structure on the T1-weighted MRI.
(TIFF)

S2 Fig. Example of MP [18F]FDG/[18F]FMISO PET/MRI in a 54-year-old patient with
locally advanced cervical cancer scheduled for CRT using rigid image registration. (A) MP
[18F]FDG/[18F]FMISO PET/MRI shows a highly [18F]FDG-avid tumor of the cervix (B) with
focal areas of [18F]FMISO uptake indicative of tumor hypoxia distribution.
(TIFF)
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