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Abstract
Nitrogen mineralization is a key biogeochemical process transforming organic nitrogen to

inorganic nitrogen in estuarine and coastal sediments. Although sedimentary nitrogen min-

eralization is an important internal driver for aquatic eutrophication, few studies have investi-

gated sedimentary nitrogen mineralization in these environments. Sediment-slurry

incubation experiments combined with 15N isotope dilution technique were conducted to

quantify the potential rates of nitrogen mineralization in surface sediments of the Yangtze

Estuary. The gross nitrogen mineralization (GNM) rates ranged from 0.02 to 5.13 mg N kg-1

d-1 in surface sediments of the study area. The GNM rates were generally higher in summer

than in winter, and the relative high rates were detected mainly at sites near the north

branch and frontal edge of this estuary. The spatial and temporal distributions of GNM rates

were observed to depend largely on temperature, salinity, sedimentary organic carbon and

nitrogen contents, and extracellular enzyme (urease and L-glutaminase) activities. The total

mineralized nitrogen in the sediments of the Yangtze Estuary was estimated to be about

6.17 × 105 t N yr-1, and approximately 37% of it was retained in the estuary. Assuming the

retained mineralized nitrogen is totally released from the sediments into the water column,

which contributed 12–15% of total dissolved inorganic nitrogen (DIN) sources in this study

area. This result indicated that the mineralization process is a significant internal nitrogen

source for the overlying water of the Yangtze Estuary, and thus may contribute to the estua-

rine and coastal eutrophication.

Introduction
Estuarine and coastal ecosystems are important transitional zones between terrestrial and ocean
ecosystems, playing a significant role in nitrogen biogeochemical cycle [1]. In recent decades,
increasing nitrogen loadings driven by human activities (e.g., nitrogen fertilizer production and
fossil fuel combustion) have greatly changed the balance of the nitrogen cycle in estuarine and
coastal environments [2], and thus caused numerous environmental issues, such as widespread
eutrophication, hypoxia and anoxia, loss of biodiversity, and increased harmful algal blooms
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[3–5]. Sediments are important sites for organic matter accumulation and nutrient cycling in
estuarine and coastal environments [6]. Nitrogen mineralization is a critical biogeochemical pro-
cess that transfers from organic nitrogen to inorganic forms by heterotrophic microorganism
and extracellular enzymes [7], for which it serves as both an energy source and as microbial
metabolites [8]. The process of sediment nitrogen mineralization is closely associated with sedi-
ment nitrogen supplying capacities and nitrogen loss, which has the important ecological mean-
ings to maintain ecosystem health [9]. However, numerous researches have reported that
nitrogen mineralization of sediments is a potential source of dissolved inorganic nitrogen (DIN)
releasing into overlying water [8, 10–12]. In oxygen-depleted zones with high organic matter,
mineralization of organic matter, which is the major source of ammonium (NH4

+-N), results in
NH4

+-N accumulation [1, 13]. Therefore, nitrogen mineralization is likely an important nitrogen
internal source and contributes to exacerbation of eutrophication in these ecosystems. Quantify-
ing the internal nitrogen mineralized from sedimentary organic matter may have potential impli-
cations for understanding the nitrogen budgets in estuarine and coastal ecosystems.

The Yangtze Estuary is located in the industrial and economic center of China. As a crucial
biogeochemical filter at the land-ocean interface, this estuary is affected strongly by anthropo-
genic nutrient inputs. Since the 1980s, the Yangtze Estuary has received substantial anthropo-
genic nitrogen from agricultural activities, domestic and industrial wastewater discharge
within the river basin [14, 15], which leads to severe eutrophication, red tides and seasonal hyp-
oxia [15, 16]. Thus, the biogeochemical cycle of N is of great concern in the Yangtze Estuary
[11, 17, 18]. In recent years, the nitrogen transformation processes, such as nitrification, deni-
trification, anammox and DNRA, have been examined [11, 17, 19, 20], however no reports
regarding sedimentary N mineralization are currently available for this area. In this study, sedi-
ment-slurry incubation experiments combined with 15N isotope dilution technique were con-
ducted to quantify the gross nitrogen mineralization (GNM) rates in the Yangtze Estuary.
Environmental factors and extracellular enzymes activities were determined to elucidate their
correlations with the GNM rates. We also determined the percentage of NH4

+-N mineralized
to reveal the potential contribution of sedimentary organic matter mineralization to the nitro-
gen budget in the overlying water of the Yangtze Estuary.

Materials and Methods

Study area
The Yangtze Estuary is located in the center of China’s coastal zone, which covers an area of
about 8500 km2. It has a typical subtropical monsoon climate, with a mean annual temperature
of about 15°C and a mean annual precipitation of about 1004 mm [21]. This estuary is subject
to a semi-diurnal tide, with a tidal range from about 2.5 to 4.6 m [22]. Although the construc-
tion of the Three-Gorge Dam and the protection of ecological environments have resulted in a
significant decrease in the flux of suspended sediment from the Yangtze River Basin in recent
years [23], a substantial amount (approximately 2 × 108 t) of suspended sediment is still trans-
ported into the estuary and its adjacent areas by the Yangtze River each year. In addition,
approximately 1.2 × 107 t of particulate organic matter associated with suspended sediment is
also carried to the estuary, of which a large portion is deposited in the study area [24]. This sug-
gests that the mineralization of sedimentary organic matter would be a potential nutrient
source for the water columns of the Yangtze Estuary.

Sediment sample collection
Field investigations were conducted in July 2013 and January 2014, respectively. Triplicate sur-
face sediments (0–5 cm) were collected from 16 sites (Fig 1) by sub-coring the box corers with
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PVC tubes. The collected sediment samples were sealed in sterile plastic bags and stored on
board at 4°C. After sediment samples were taken to the laboratory, sediment in each core was
completely homogenized under helium to produce one composite sample. One portion of the
mixed sediment was immediately incubated via slurry experiments to measure GNM rates,
while the other portion was examined for sediment physiochemical characteristics. Our studies
did not involve endangered or protected species, and collections were only made from public
access areas, no specific permits were required to collect sediment samples from these loca-
tions/activities.

Sediment-slurry incubation experiments
In this study, the GNM rates were measured by slurry incubation experiments combined with
15N isotope dilution technique [25]. Briefly, slurries were made with sediment samples and site
benthic water at a volume ratio of 1:5. The slurries were stirred by magnetic stirrer and purged

Fig 1. Study area. This figure shows the location of the Yangtze Estuary and the sampling sites.

doi:10.1371/journal.pone.0151930.g001
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by helium for approximately 30 minutes to reach an anaerobic condition, and then transferred
into 12-mL gastight borosilicate vials (Labco Exetainer) under helium condition. The slurry
bottles were subsequently placed on a shaker table (150 rpm) and pre-incubated in dark at near
in situ temperature for 12 h to achieve stable conditions. After the pre-incubation, the slurry
bottles were spiked with 15NH4

+-N (final concentration ca. 2 μg 15N g-1, final % 15N ca. 5–10%,
depending on the initial NH4

+-N contents) [17]. One half of the replicates were immediately
poisoned with 100 μL of saturated HgCl2 solution and designated as initial samples. The
remaining slurries were shaken (150 rpm) and incubated for approximately 24 h. At the end of
incubations, these remaining slurries were also poisoned with HgCl2, as described for the initial
samples. The initial and final slurry samples were extracted with 2 M KCl solutions for about 1
h, centrifuged at 4,000 rpm for 15 min, and the supernatants were decanted and filtered
through 0.22 μm poresize filter for analyses of total NH4

+-N and 15NH4
+-N concentrations.

Total NH4
+-N concentrations in extractants were determined using continuous-flow nutrient

analyzer (SAN Plus, Skalar Analytical B.V., the Netherland). Concentrations of 15NH4
+-N in

extractants were measured by a new developed Oxidation/MIMS (OX/MIMS) method [26]. In
brief, 15NH4

+-N was oxidized into dinitrogen gas with hypobromite iodine solution, and the
oxidized products (29N2 and

30N2) were determined with membrane inlet mass spectrometer
(MIMS).

The rates of GNM were calculated using the following equation [27]:

m ¼ M0 �M1

t
� logðH0M1=H1M0Þ

logðM0=M1Þ
ð1Þ

wherem (mg N kg-1 dry sediment d-1) is the rates of GNM; t (d) is the incubation time;M0 and
M1 (mg N kg-1 dry sediment) are the total NH4

+-N concentrations in the initial and final slurry
samples, respectively; H0 and H1 (mg N kg-1 dry sediment) are the 15NH4

+-N concentrations in
the initial and final slurry samples, respectively. In addition, the percentage of NH4

+-N miner-
alized per day was defined as the GNM rates divided by sediment nitrogen contents and multi-
plied by 100.

Sediment enzyme assay
Urease, L-glutaminase and L-asparaginase are important amidohydrolase responsible for
nitrogen mineralization, which have been generally used to predict nitrogen mineralization in
soils [28, 29]. The activities of these enzymes were determined using the methods from Fran-
kenberger and Tabatabai [30], Muruganandam et al. [29] and Segnini de B et al. [31] with slight
modifications. Briefly, they were assayed using 5 g of freeze-dried sediment with their respec-
tive substrate, and incubated for 24 h at 37°C. After incubation, developing agents were added
into the extracted enzyme solutions for colorimetric analyses. Absorbance in these assays was
measured using a colorimetric plate reader (SpectraMax M5 Microplate Spectrophotometer;
Molecular Devices Corporation, Sunnyvale, CA). Each assay contained substrate blank and
sample blank receiving substrate and deionized water, respectively. The linear regressions
between absorbance and standard concentrations were used to calculate the activities of these
enzymes. However, the measured L-asparaginase activities in all sediment samples were close
to the substrate and sample blank values, so only urease and L-glutaminase activities are pre-
sented in this study.

Determination of environmental parameters
After sampling, sediment temperature and bottom water salinity were measured on board with
portable electronic thermometer and YSI Model 30 salinity meter, respectively. Sediment grain
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size was measured using LS 13320 Laser grain sizer analyzer. Sediment pH was determined
with Mettler-Toledo pH meter, after sediment was mixed with CO2-free deionized water at a
volume ratio of 1:2.5 [20]. Sediment water content was quantified from the amount of weight
lost from a known amount of wet sediment that had been dried at 80°C to a constant value.
Contents of exchangeable NH4

+-N, nitrate (NO3
−N), and nitrite (NO2

−N) in sediments were
extracted with 2 M KCl and determined with continuous-flow nutrient analyzer [18]. Contents
of total sediment organic carbon (TOC) and nitrogen (TN) were measured with elementary
analyzer (VarioELIII) after removing carbonate by leaching with 0.1 M HCl [32]. These data
on sediment characteristics are provided in Supporting Information (S1 Table).

Statistical analysis
In this study, all statistical analyses were performed with the software SPSS19.0. The relation-
ships of GNM rates with environmental variables and extracellular enzyme activities were
determined by Pearson’s correlation and partial correlation analyses. One-way analysis of vari-
ance (ANOVA), followed by Tukey’s HSD test, was performed to examine whether temporal
and spatial changes in obtained data were statistically significant, and all of them met the
assumptions for parametric tests.

Results

Spatial and temporal variations of GNM rates
In the study area, the GNM rates of sediments ranged from 0.02 to 5.13 mg N kg-1 d-1 (Fig 2).
A significant seasonal variation in the GNM rates was observed (one-way ANOVA, P = 0.007).

Fig 2. GNM rates and percentages of NH4+-Nmineralized per day in surface sediments of the Yangtze Estuary. Vertical bars denote standard error of
triplicate samples.

doi:10.1371/journal.pone.0151930.g002
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In general, the GNM rates were higher in summer (0.44–5.13 mg N kg-1 d-1) than in winter
(0.02–2.26 mg N kg-1 d-1). Meanwhile, there was a remarkable spatial difference in the GNM
rates among the sampling sites (one-way ANOVA, P< 0.0001). In summer, the lowest GNM
rate was detected at site S05, while the highest GNM rate was observed at S04. In winter, the
highest GNM rate appeared at site S01, whereas the lowest GNM rate occurred at site S14.
Overall, irrespective of season relatively high rates of GNM were detected mainly at sites near
the north branch and frontal edge of this estuary.

The estimated percentage of NH4
+-N mineralized per day varied between 0.01% and 2.14%

in the study area. This percentage showed a remarkable seasonal variation (one-way ANOVA,
P = 0.008). A relatively higher percentage was observed in summer (0.03–2.14%) than in winter
(0.01–0.76%) (Fig 2). In addition, a significant spatial difference in the percentage of NH4

+-N
mineralized per day was observed among the sampling sites (one-way ANOVA, P = 0.004). In
summer, the highest percentage occurred at site S04, while the lowest percentage appeared at
site S11. In winter, the highest and lowest percentages were detected at sites S14 and S05,
respectively.

Activities of extracellular enzymes
The activities of urease ranged from 2.55 to 11.03 mg kg-1 h-1 and from 1.79 to 7.42 mg kg-1 h-1

in summer and winter, respectively (Fig 3). One-way ANOVA analyses showed that there were
remarkable spatial and seasonal differences in the urease activities in the study area (P< 0.01).
The activities of L-glutaminase varied from 0.43 to 11.12 mg kg-1 h-1 in summer and from 0.32

Fig 3. Activities of urease and L-glutaminase in surface sediments of the Yangtze Estuary. Vertical bars denote standard error of triplicate samples.

doi:10.1371/journal.pone.0151930.g003
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to 7.12 mg kg-1 h-1 in winter (Fig 3). A significant spatial difference in the L-glutaminase activi-
ties was observed among the sampling sites (one-way ANOVA, P< 0.0001). However, no sea-
sonal variation was detected for the L-glutaminase activities (one-way ANOVA, P> 0.05).
Pearson’s correlation analyses indicated that the GNM rates were observed to relate closely
with the activities of both urease and L-glutaminase (P< 0.01 in all correlations, Fig 4).

Environmental factors affecting GNM rates
Pearson correlation analyses indicated that the summer GNM rates were significantly related
with all environment factors except for sediment temperature, while the winter GNM rates
were correlated negatively with the sand, salinity and NH4

+-N but positively with sediment
water content, TN, TOC and silt (Table 1). Correlations of environmental factors with GNM
rates were also examined through partial (controlling for TOC or TN) correlation analysis. In
summer, the GNM rates were only significantly correlated with salinity (r = 0.34, P< 0.05)
after controlling for covariates with TOC via partial correlation, and there were significant rela-
tionships of the GNM rates with TOC (r = 0.30, P< 0.05), salinity (r = 0.37, P< 0.01), sand
(r = 0.38, P< 0.01) and clay (r = -0.30, P< 0.05) after controlling for TN. In winter, the GNM
rates after controlling for TOC were positively correlated with TN (r = 0.46, P< 0.01) and
salinity (r = 0.32, P< 0.05), but unrelated to other factors (P> 0.05). However, the winter
GNM rates were not significantly related with any factors (P> 0.05) (except for salinity) after
controlling for TN.

Discussion
In this study, the spatial and seasonal variations of nitrogen mineralization were examined in
surface sediments of the Yangtze Estuary, which provides new insights into microbial nitrogen
transformations in the estuarine and coastal environments. Many studies have shown that

Fig 4. Relationships between the extracellular enzymes activities (urease and L-glutaminase) and GNM rates in surface sediments of the Yangtze
Estuary.

doi:10.1371/journal.pone.0151930.g004
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sediment nitrogen mineralization is associated closely with environmental factors [7, 9, 10, 29].
Temperature is generally considered an important factor responsible for nitrogen mineraliza-
tion, because it can directly affect microbial metabolism [33]. For instance, it has been demon-
strated that GNM rates were significantly higher at 40°C than at 25 and 5°C, with a Q10

(fractional change in rate with a 10°C increase in temperature) of 6.5–11 [34]. In the present
work, the GNM rates were also observed to be higher in the warm (July) than in the cool (Janu-
ary) season, which is likely attributed to the seasonal temperature change [35]. Meanwhile, it
was observed that the percentages of NH4

+-N mineralized per day were also significantly
higher in summer than in winter (one-way ANOVA, P = 0.008). This observation further
implied the importance of temperature in regulating the seasonal variations of GNM rates in
this study area. Salinity is considered as a stressor for physiological activity of microorganisms
[36]. Previous studies have shown that salinity has a negative influence on nitrogen mineraliza-
tion [35, 37, 38]. In this study, we also observed a significantly negative correlation between the
GNM rates and salinity after controlling for TOC or TN both in summer and winter (Table 1).
The decrease of nitrogen mineralization with increasing salinity was likely because high salinity
may cause a physiological stress on bacteria involved in the nitrogen mineralization [39]. Our
sediments were collected in an interacting zone of both fresh and saline water environments,
with a salinity ranging from 0.14 to 33‰. Therefore, the fluctuation of salinity is an important
factor influencing sediment nitrogen mineralization in this study area.

Hydrodynamic conditions can regulate re-suspension and remobilization of surface sedi-
ments and thus influence the quantity and type of buried organic matter in different deposi-
tional settings of estuarine and coastal ecosystems [40]. The hydrodynamic conditions are
governed by the Yangtze River Diluted Water and two southward currents (Yellow Sea Coastal
Current and Zhe-Min Coastal Current) [41]. Two southward currents are most active during
winter, carrying water and sediments from the Yangtze River southward along the inner shelf.
In addition, the TaiwanWarm Current intensifies during summer, and thus significantly weak-
ens the southward transport of sediments along the Zhe-Min coast in summer [42]. Therefore,
the fine-grained sediments discharged by the Yangtze River is believed to be deposited first in
the estuarine region in summer and then re-suspended and remobilized southward in winter
along the Zhe-Min coast. In the study, we observed that surface sediments were generally

Table 1. Pearson’s Correlation and Partial Correlation Analyses (Controlling for TOC or TN) between GNMRates and Environmental Factors.

Parameters GNM Rates (Summer) GNM Rates (Winter)

Pearson Partial (TOC) Partial (TN) Pearson Partial (TOC) Partial (TN)

Temperature 0.21 0.13 0.14 0.21 0.16 0.19

Water content 0.49** 0.24 0.16 0.40** 0.21 0.13

Salinity -0.53** -0.34* -0.37** -0.47* -0.32* -0.29*

NH4
+-N 0.30* 0.23 0.19 -0.41** -0.28 -0.21

NO3
--N -0.41** -0.26 -0.24 -0.28 -0.08 -0.20

TN 0.46** 0.13 – 0.72** 0.46** –

TOC 0.50** – 0.30* 0.62** – 0.04

Clay 0.42** 0.21 0.38** 0.27 0.01 -0.07

Silt 0.34* 0.04 0.21 0.38** 0.16 0.14

Sand -0.40** -0.12 -0.30* -0.35* -0.11 -0.08

* Significant at P < 0.05.

** Significant at P < 0.01.

doi:10.1371/journal.pone.0151930.t001
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dominated by silt and clay in summer and by sand in winter (S1 Table). This difference implied
a seasonal shift in sediment deposition, resuspention and remobilization of sediments in the
estuarine region under the intense hydrodynamic conditions [41, 42]. In addition, we found
the significant relationships of sediment grain-size (median size) with sedimentary TOC
(r = 0.46, P< 0.01) and TN contents (r = 0.43, P< 0.01), extracellular enzymes activities
(r = 0.25, P< 0.05 for urease activities; r = 0.21, P< 0.05 for L-glutaminase activities) and
GNM rates (r = 0.37, P< 0.01) in the study area. These results showed that the hydrodynamic
conditions can alter the physicochemical characteristics of sediments, and further affect the
spatiotemporal variations of the GNM rates in the Yangtze Estuary.

Previous studies have reported that L-asparaginase, L-glutaminase and urease are the typical
amidohydrolases for soil nitrogen mineralization [28, 29]. In this study, only urease and L-glu-
taminase activities were detected in all collected sediment samples. Although the measured
activities of urease and L-glutaminase were relatively lower than those reported in other ecosys-
tems (11–98 mg N kg-1 for urease activities, and 55–142 mg N kg-1 for L-glutaminase activities)
[29, 43], these activities were strongly correlated with the GNM rates (Fig 4). These relation-
ships indicated that urease and L-glutaminase enzymes may play a significant role in shaping
the changes of GNM rates in the estuarine and coastal environments.

Nitrogen mineralization is generally carried out by heterotrophic microorganisms [44].
Thus, the organic carbon is hypothesized to play a key role in regulating the process of nitrogen
mineralization, because it serves as an energy source for heterotrophic microbial metabolism
[45]. This hypothesis is supported by the significant relationship between the GNM rates and
TOC observed in this study. Also, the partial correlation analysis further supported the impor-
tance of TOC in controlling the GNM rates in summer, The partial correlation analysis further
supported the importance of TOC affecting the GNM rates in summer, it may be likely that the
microbial activity of nitrogen mineralization was primarily inhibited by limited energy in sum-
mer because microbial metabolism increased with increasing sediment temperature [33, 34].
The nitrogen mineralization depends on TN, but not TOC in winter, this result may be attrib-
uted to that the sedimentary TOC was enough for low activity of the microorganisms, and
GNM rates strongly depended on the active fraction of organic nitrogen in this season. These
were in agreement with several studies, which have demonstrated that nitrogen application sig-
nificantly increases the microbial biomass and activities as well as accelerates nitrogen mineral-
ization rate [46, 47]. Hence, spatial and temporal variations of GNM rates in the study area
also depended on the sedimentary TOC and TN contents.

To obtain a comprehensive understanding of the GNM rates in the sediments of the Yang-
tze Estuary, the GNM rates measured in this study are compared with other ecosystems
(Table 2). The estimated GNM rates are generally lower than those reported in other ecosys-
tems, which may be attributed to the low concentrations of TOC and TN in the study area.
Interestingly, compared with TOC and TN contents in these ecosystems (S2 Table), the GNM
rates were found to increase significantly with TOC (r = 0.77, P< 0.01) and TN (r = 0.80,
P< 0.01) (Fig 5). This comparison also indicates that TOC and TN are important factors
responsible for the nitrogen mineralization in natural environments.

The total mineralized nitrogen in the sediments of the Yangtze Estuary can be estimated
using the following equation:

F ¼ a � r � S � H �m ð2Þ

where F (t N yr-1) is the total mineralized nitrogen in the sediments (F) of the Yangtze Estuary;
a is the unit conversion factor and equivalent to 3.65 × 10−6; ρ (g cm-3) is the sediment dry den-
sity, which is about 2.68 g cm-3 for this study area [17, 18]; S (m2) is the area of this study,
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Table 2. GNM Rates from the Yangtze Estuary and Other Study Areas.

Locations Sample Type GNM Rate (mg N kg-1 d-1) Authors &Year (Reference)

Lincoln University, New Zealand Grassland soil 2.50 Zaman et al. 1999a [48]

Cove mountain Farm, USA Grassland soil 6.53 Corre et al. 2002 [49]

Torup, Sweden Forest soil 3.90 Bengtsson et al. 2003 [50]

Oklahoma, USA Forest soil 2.40 Silva et al. 2005 [51]

Oklahoma, USA Agricultural soil 1.00 Silva et al. 2005 [51]

Fleming, New Zealand Grassland soil 5.87 Mishra et al. 2005 [52]

Kairanga, New zealand Grassland soil 5.12 Mishra et al. 2005 [52]

Karapoti, New Zealand Grassland soil 4.30 Mishra et al. 2005 [52]

Lismore, New Zealand Grassland soil 4.40 Mishra et al. 2005 [52]

Templeton, New Zealand Grassland soil 3.54 Mishra et al. 2005 [52]

Waikoikoi, New Zealand Grassland soil 2.91 Mishra et al. 2005 [52]

Linaria, Canada Forest soil 5.11 Cheng et al. 2012 [53]

Linaria, Canada Grassland soil 2.62 Cheng et al. 2012 [53]

Jiangsu Province, China Marsh sediment (Spartina anglica) 1.71 Jin et al. 2012 [54]

Jiangsu Province, China Marsh sediment (Phragmites australis) 1.48 Jin et al. 2012 [54]

Wanmulin Nature Reserve, China Forest soil (Castanopsis fargesii) 2.30 Zhu et al. 2013 [55]

Wanmulin Nature Reserve, China Forest soil (Altingia gralilipes) 2.29 Zhu et al. 2013 [55]

Wanmulin Nature Reserve, China Forest soil (Tsoongiodendron Odorum) 5.20 Zhu et al. 2013 [55]

Wanmulin Nature Reserve, China Forest soil (Cunninghamia Lanceolata) 3.52 Zhu et al. 2013 [55]

Scott, Canada Grassland soil 2.00 Bedard-Haughn et al. 2013 [56]

Swift Current, Canada Grassland soil 1.40 Bedard-Haughn et al. 2013 [56]

Yangtze Estuary, China Estuarine sediment 1.60 Lin et al. 2015 [This study]

doi:10.1371/journal.pone.0151930.t002

Fig 5. Relationships of GNM rates with soil TOC and TN concentrations in different ecosystems.

doi:10.1371/journal.pone.0151930.g005
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which was calculated with ArcGIS10.2 software and equivalent to approximately 8200 km2;
H (cm) is the depth of sample collection;m (mg N kg-1 d-1) is the GNM rates. The total miner-
alized nitrogen was estimated to be approximately 5.96 × 105 t N yr-1. However, it should be
noted that these GNM rates all derive from stimulated microbial communities and thus could
be lower under in situ conditions. Therefore, our calculated rates may not reflect the GNM
rates that take place in the field, but rather represent the potential activity in sediments. In
order to further assess the net mineralized nitrogen in the surface sediments, the ubiquitous
nitrogen loss (including denitrification and anammox) and microbial nitrogen assimilation
(including NH4

+-N and NO3
−N assimilation) in the sediments were taken into account [57].

The nitrogen loss was estimated to be approximately 1.92 × 105 t N yr-1 for denitrification (f1)
and 2.30 × 104 t N yr-1 for anammox (f2) [17, 58]. For microbial nitrogen assimilation (f3), it
was roughly estimated according to previous studies which reported that nitrogen uptake by
microbes removed a fraction of DIN available equivalent to 27% [59, 60]. Here, the microbial
nitrogen assimilation was approximately 1.61 × 105 t N yr-1. Therefore, the net mineralized
nitrogen (F4) can be estimated using the following equation:

F4 ¼ F � ðf 1þ f 2þ f 3Þ ð3Þ

Assuming that the net mineralized nitrogen was totally released from the sediments into the
water columns, it was approximately 2.19 × 105 t N yr-1, which accounted for 37% of the total
mineralized nitrogen. This efflux was within the range reported for other estuarine, coastal,
and adjacent offshore environments (S3 Table) [61–68]. Additionally, compared with other
DIN sources in the Yangtze Estuary (Fig 6; S4 Table) [58, 69–71], the net mineralized nitrogen
is lower than the riverine flux (F1, 7.82 × 105–1.21 × 106 t N yr-1) and oceanic input (F3,
~4.42 × 105 t N yr-1), but much higher than the aerial input flux (F2, ~1.04 × 103 t N yr-1),
which contributed 12–15% of total DIN sources (sum of F1, F2, F3, and F4) in this study area.
This result indicated that nitrogen mineralization is an important internal source of nitrogen
in the Yangtze Estuary, which may contribute to estuarine eutrophication and harmful algal
blooms.

Conclusions
The measured GNM rates in surface sediments were greater in summer than in winter, and the
higher values were appeared in the north branch and frontal edge of Yangtze Estuary. Mean-
while, GNM rates were related closely to the changes of temperature and salinity, contents of
sedimentary organic matter, and activities of extracellular enzymes (urease and L-glutaminase).

Fig 6. A schematic illustration of different DIN fluxes in the Yangtze Estuary.Data on F1, F2 and F3 are
transformed via changing area according to from Huang et al. (2006), Li (2010), Li et al. (2011), and Kim et al.
(2011) [16, 58, 68, 69].

doi:10.1371/journal.pone.0151930.g006
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Additionally, the DIN flux estimated from organic nitrogen of the sediments was approxi-
mately 5.96 × 105 t N yr-1, and approximately 37% of it was retained in the estuary. Assuming
the retained mineralized nitrogen is totally released from the sediments into the water column,
which contributed 12–15% of total DIN sources and may accelerate eutrophication in estuarine
and coastal ecosystems.
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