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Abstract
We previously discovered carpelloid stamens when breeding cytoplasmic male sterile lines

in broccoli (Brassica oleracea var. italica). In this study, hybrids and multiple backcrosses

were produced from different cytoplasmic male sterile carpelloid stamen sources and main-

tainer lines. Carpelloid stamens caused dysplasia of the flower structure and led to hooked

or coiled siliques with poor seed setting, which were inherited in a maternal fashion. Using

four distinct carpelloid stamens and twelve distinct normal stamens from cytoplasmic male

sterile sources and one maintainer, we used 21 mitochondrial simple sequence repeat

(mtSSR) primers and 32 chloroplast SSR primers to identify a mitochondrial marker,

mtSSR2, that can differentiate between the cytoplasm of carpelloid and normal stamens.

Thereafter, mtSSR2 was used to identify another 34 broccoli accessions, with an accuracy

rate of 100%. Analysis of the polymorphic sequences revealed that the mtSSR2 open read-

ing frame of carpelloid stamen sterile sources had a deletion of 51 bases (encoding 18

amino acids) compared with normal stamen materials. The open reading frame is located in

the coding region of orf125 and orf108 of the mitochondrial genomes in Brassica crops and
had the highest similarity with Raphanus sativus and Brassica carinata. The current study

has not only identified a useful molecular marker to detect the cytoplasm of carpelloid sta-

mens during broccoli breeding, but it also provides evidence that the mitochondrial genome

is maternally inherited and provides a basis for studying the effect of the cytoplasm on

flower organ development in plants.

Introduction
Broccoli (Brassica oleracea L. var italica), sometimes referred to as Calabrese, is the most
important commercial form of Brassica [1]. Driven by its reported abundance of nutrients and
health benefits, broccoli has been well received by consumers. Its production and consumption
has risen sharply in recent years [2–10], especially in the United Kingdom. Broccoli has an
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important commercial position, with a planting area of more than 7,000 hectares and a produc-
tion value of more than £50 million (approximately US$77 million) each year [1, 11].

Broccoli displays obvious heterosis: using a cytoplasmic male sterile (CMS) line and an
inbred line to create hybrids can reduce the cost of producing hybrids and improve their purity.
However, hybrid production is difficult and produces low yields; therefore, CMS sources are
crucial in improving the yield of hybrids. The CMS sources of broccoli have mostly been trans-
ferred from cabbage, radish, and other related cruciferous species through backcrossing. How-
ever, the floral organs often show extremely complex morphological variations because of the
lack of coordination between the nucleus and cytoplasm during the transfer process [12–13].
These variations are different among varying genetic backgrounds in broccoli [14], thereby
increasing the difficulty of transferring CMS materials. We previously found that CMS lines of
broccoli obtained through some male sterile sources displayed carpelloid stamens. When we
used these lines to produce hybrids, the pods were abnormal and seed yields were very low.
These consequences dramatically limit the use value of these lines.

Carpelloid stamen phenomena have been studied in Arabidopsis thaliana and are regulated
by class B genes of the classic ABC model. If the MADS-box transcription factors APETALA3
(Ap3) or PISTILLATA (PI), which are class B genes involved in conferring identities of the sta-
men and petal, are mutated or deleted, homeotic conversions of stamens to carpels and petals
to sepals can occur [15–17]. Furthermore, the carpelloid stamen phenomenon has been
reported in B. juncea var. tumida [18], B. rapa subsp. chinensis [19–20], B. napus [21–23], B.
juncea [24], and Daucus carota sativus [25]. Thus far, carpelloid stamens caused by allo-cyto-
plasmic inheritance have not been documented in CMS lines of broccoli.

Mitochondrial and chloroplast genes are mainly inherited in a maternal pattern, with a slow
rate of mutation; therefore, mitochondrial and chloroplast DNA have been widely used in evo-
lutionary and phylogenetic studies [26–31]. The mitochondrial genome has a complicated
multipartite structure [32], whereas the structure of the chloroplast genome is more conserved
[28, 33–35]. To date, the entire mitochondrial genomes of Arabidopsis thaliana, B. napus (Nap
and Pol), B. rapa (Cam), B. oleracea, B. juncea, and B. carinata have been determined [36–39].
The complete chloroplast genomes of Arabidopsis thaliana and B. napus have also been deter-
mined [40–41]. Owing to the large number of mitochondrial and chloroplastic sequences avail-
able, more and more markers have been developed to analyze genetic diversity [42–48] and
variation of cytoplasmic [49–52] and CMS types [53–55]. However, as far as we know, mito-
chondrial and chloroplastic markers have not been used to distinguish between carpelloid and
normal stamens in broccoli. The objectives of this study were: (1) to understand the inheritance
pattern and morphological characteristics of carpelloid stamens; (2) to develop chloroplast and
mitochondrial simple sequence repeat (SSR) markers that can distinguish between CMS
sources of carpelloid and non-carpelloid stamens in broccoli; (3) to confirm the sequence fea-
tures of the polymorphic bands by cloning and sequencing; and (4) to analyze the similarity of
the genes related to carpelloid stamens.

Materials and Methods

Plant material and DNA extraction
The plant materials used in this study are detailed in Table 1. In total, 51 broccoli accessions,
including 19 CMS lines and 23 hybrids were studied. Nine high-generation maintainers were
included as references, and the backcross generations of CMS lines were continuously back-
crossed to 2014.

These accessions were grown in experimental greenhouses under standard field conditions
at the Institute of Vegetable and Flowers, Chinese Academy of Agricultural Sciences,
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Table 1. List of 51 broccoli accessions used in this study and their stamen types, identified by a PCR assay.

Code Line name Type Backcross
generations

Origin Stamens
state

B1 93219 Inbred line - Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Normal

B2 CMS0412×93219 Cytoplasmic male
sterile line

8 Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Normal

B3 CMS0413×93219 Cytoplasmic male
sterile line

8 Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Normal

B4 CMS05738×93219 Cytoplasmic male
sterile line

7 Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Normal

B5 CMS04S132×93219 Cytoplasmic male
sterile line

8 Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B6 CMS10Q688×93219 Cytoplasmic male
sterile line

2 Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B7 LvFu Hybrid - Variety introduction (Wong Ching Ho Co., Ltd., Hong
Kong, China)

Normal

B8 BT-2006 Hybrid - Variety introduction (Beijing Honor Seeds Co., Ltd.,
Beijing, China)

Normal

B9 BT-2007 Hybrid - Variety introduction (Beijing Honor Seeds Co., Ltd.,
Beijing, China)

Normal

B10 L×2J Hybrid - Variety introduction (Tianjin Kernel Vegetable
Research Institute, Tianjin, China)

Normal

B11 L×FJ Hybrid - Variety introduction (Tianjin Kernel Vegetable
Research Institute, Tianjin, China)

Normal

B12 JingYou Hybrid - Variety introduction (Wong Ching Ho Co., Ltd., Hong
Kong, China)

Normal

B13 NaiHanYouXiu Hybrid - Variety introduction (Sakata Seed Corporation,
Japan)

Normal

B14 Tie mountain Hybrid - Variety introduction (Seminis Seeds Beijing Co.,
Ltd., Beijing, China)

Normal

B15 HeHuan007 Hybrid - Variety introduction (Ho-Huan Agricultural Product
Co., Ltd., Taiwan, China)

Carpellody

B16 SaLi’Ao 55 Hybrid - Variety introduction (Syngenta China Company,
Beijing, China)

Normal

B17 NanXiu366 Hybrid - Variety introduction (Seminis Seeds Beijing Co.,
Ltd., Beijing, China)

Carpellody

B18 8554 Inbred line - Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Normal

B19 90196 Inbred line - Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Normal

B20 93213 Inbred line - Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Normal

B21 94177 Inbred line - Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Normal

B22 YN23 Inbred line - Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Normal

B23 YN36 Inbred line - Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Normal

B24 05726 Inbred line - Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Normal

B25 05732 Inbred line - Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Normal

B26 CMS0412×93219 Cytoplasmic male
sterile line

BC9 Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Normal

(Continued)
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Table 1. (Continued)

Code Line name Type Backcross
generations

Origin Stamens
state

B27 CMS0413×93219 Cytoplasmic male
sterile line

BC9 Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Normal

B28 CMS05738×93219 Cytoplasmic male
sterile line

BC8 Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Normal

B29 CMS04S132×93219 Cytoplasmic male
sterile line

BC6 Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B30 CMS04S132×93219 Cytoplasmic male
sterile line

BC7 Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B31 CMS04S132×93219 Cytoplasmic male
sterile line

BC9 Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B32 CMS04S132×YN36 Cytoplasmic male
sterile line

BC6 Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B33 CMS10QB688×93219 Cytoplasmic male
sterile line

BC3 Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B34 CMS10QB688×90196 Cytoplasmic male
sterile line

BC2 Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B35 CMS10QB688×90196 Cytoplasmic male
sterile line

BC3 Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B36 CMS10QB688×93213 Cytoplasmic male
sterile line

BC2 Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B37 CMS10QB688×93213 Cytoplasmic male
sterile line

BC3 Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B38 CMS10QB688×94177 Cytoplasmic male
sterile line

BC2 Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B39 CMS10QB688×94177 Cytoplasmic male
sterile line

BC3 Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B40 (CMS04S132×05732) ×YN23 Hybrid - Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B41 (CMS04S132×YN23) 6

×93219
hybrid - Institute of Vegetables and Flowers, Chinese

Academy of Agricultural Sciences (Beijing, China)
Carpellody

B42 (CMS04S132×YN36) 6

×93219
hybrid - Institute of Vegetables and Flowers, Chinese

Academy of Agricultural Sciences (Beijing, China)
Carpellody

B43 (CMS04S132×93219
5×YN263)×05732

Hybrid - Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B44 (CMS04S132×93219)
5×YN36×05726

Hybrid - Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B45 (CMS04S12×93219) 4 ×YN36 Hybrid - Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B46 HeHuan007×8554 Hybrid - Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B47 HeHuan007×93213 Hybrid - Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B48 HeHuan007×93219 Hybrid - Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B49 NanXiu366×8554 Hybrid - Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B50 NanXiu366×93213 Hybrid - Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

B51 NanXiu366×93219 Hybrid - Institute of Vegetables and Flowers, Chinese
Academy of Agricultural Sciences (Beijing, China)

Carpellody

Note:

‘-’ means no backcross generations.

doi:10.1371/journal.pone.0138750.t001
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Changping, Beijing, China, from 2011 to 2014. When the diameter of the main bouquet on
each plant was 8–10 cm, we pruned the bouquet, leaving three lateral balls, and then left the
plant to develop branches naturally. Plantlets at the eight to ten leaves stage were randomly
chosen from each accession for total genomic DNA isolation, using the modified hexadecyltri-
methylammonium bromide method [56].

Flowering and fruiting characteristics observation
When the plants produced flowers, pollination was performed by hand or naturally (free polli-
nation using bees in hives placed along the greenhouse, at positions corresponding to 1/8, 3/8,
5/8, and 7/8 of its length, from early flowering to the end of flowering) in 2011–2014. Flower
morphologies, the pod shapes of each material, and the grain number per pod of maintainer
93219 (B1; Table 1) and different generations of CMS line CMS0412×93219, CMS0413×93219,
CMS05738×93219, and CMS04S132×93219 (B2–B5, B26–B31; Table 1) were observed.

PCR and sequence analysis
Twenty-one pairs of primers for Brassica napusmitochondrial genome sequences (Gen Bank
GI: 112253843) and 32 pairs of primers for Arabidopsis thaliana chloroplast sequences (Gen
Bank GI: 7525012) developed by Zhang [57] were used to screen for makers that distinguished
carpelloid from normal stamens (Table 2). All primers were synthesized by Sangon Biotech
Co., Ltd (Shanghai, China).

PCR amplifications were carried out in a reaction volume of 25 μL, which contained 2 μL
(30 ng μL−1) genomic DNA, 12.5 μL Dream Taq™ Green PCRMaster Mix (Thermo Fisher Sci-
entific Inc., Waltham, MA, USA), and 1 μL of each primer (10 pmol μL−1). The following
amplification protocol was carried out in an ABI Veriti 96-well PCR thermal cycler (Applied
Biosystems, Foster City, CA, USA). Initial denaturation was performed at 94°C for 4 min; fol-
lowed by 35 cycles of denaturation at 94°C for 30 s, annealing at 55°C for 30 s, and extension at
72°C for 30 s; and a final extension at 72°C for 10 min. PCR products were analyzed on 2.0%
(w/v) agarose gels in 0.5×TBE buffer and visualized after staining with Goldview (Solarbio
Technology Co., Ltd, Beijing, China). The bands were photographed under ultraviolet light
under a Universal Hood II (Bio-Rad, Hercules, CA, USA).

For each single polymorphic locus, the cloned products were sequenced by Bo Maide Bio-
tech Co., Ltd, Beijing, China. Alignment and similarity analyses of the obtained sequences were
performed using the Align and BLAST tools, respectively, in the Universal Protein Resource
(UniProt) database.

Results

Flowering and fruiting characteristics of carpelloid stamen plants
To determine the mechanism of inheritance of the carpelloid stamen phenomenon, we carried
out crosses or successively backcrosses between maintainer lines with normal stamens (B1,
B18, B19, B20, B21; Table 1) and CMS lines with carpelloid stamens (B6, B15, B17, B29;
Table 1) materials in 2011–2014. The results showed that the offspring obtained by crossing or
backcrossing all had carpelloid stamens. Therefore, the phenomenon of CMS carpelloid sta-
mens was caused by allo-cytoplasmic inheritance in broccoli; i.e., it was mainly inherited in a
maternal pattern and the heritability rate was 100%.

The growth characteristics of maintainer 93219 (B1; Table 1) and the sixth generation to
ninth generation of CMS04S132×93219 (B5, B29, B30, B31; Table 1) plants were observed
from 2011 to 2014. The growth and morphological characteristics of the two lines were similar
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Table 2. PCR primers used in this study.

Name Forward primer 50-30 Reverse primer 50-30

ACP1 GAACGACGGGAATTGAACC GGTGGAATTTGCTACCTTTTT

ACP2 GAAAAATGCAAGCACGGTTT TACGATCCGTAGTGGGTTGC

ACP4 TACCCGTATTAGGCACTA TTTGTAAGACCACGACTG

ACP7 TGGAGAAGGTTCTTTTTCAAGC CGAACCCTCGGTACGATTAA

ACP9 AACCATAATCATAGAAATAGAG GTCGAACAAAGTAATCGG

ACP10 GTATTAAATCCGAAACTC ACTTGACATAAAACTTGG

ACP15 CGACCAATCCTTCCTAAT GAATGTTTGCTACCCTGA

ACP17 TGCACTCTTCATTCTCGTTCC GCGTTCCTTTCATTTAAGACG

ACP18 AATGAAGAGTGCAGTAGC CTAGGTTTTAGAAAGGAAA

ACP20 CTCAACCGCCATCATACT CGAAACTTAACCCTCTTT

ACP25 CCCAAACCAAAGAGTGTA GCTCGCAAGGCTCATAAC

ACP26 AGAGGACCAAGAAACCAA AACAGGCCATTCAACAAG

ACP27 GAAGAGCAAACAAGGGAT GAAGGGTTAGTCAATCAAAT

ACP29 GGCCATAGGCTGGAAAGTCT GTTTATGCATGGCGAAAAGG

ACP32 TTCATAAGCGAAGAACAA TCAGAGTAAGCAAAACAT

ACP33 AGGGATAGTAATAAGAATAG CAGATGTAAGAACGAAAA

ACP35 ATTGGCTTACTTCTTGCG GGTTTCCGGGATGTTATT

ACP38 GGTTCGTTAGCAGGTTTA GTTCCCTAGCAACACTTT

ACP39 AGACGGGTGAATAGAGTG GTTATGCTTTTCGACGAT

ACP40 GCAGAATGAGACGGGATA AGACACTTTGGGATTGCT

ACP41 GGCTCCACAATGGAATTGAC GCACATTTCAGCGTCACAAA

ACP42 CTTTCTCGATAAAGTCGGTTGA GGAAGAAGCCCGTTCAGG

ACP43 GCTGTCGTGGATGAGTGG AAGTGCTTTCTGGGTCGT

ACP44 ATTGTAGATTCTGGGAGG ATCGATGCTGTATTCATG

ACP45 TTACATTGCTTTTCTTACAG CTCGTTGGTTTAGGATTA

ACP46 CTACCATTTCACCACCAA GGACCCTATTCACCTCTT

ACP47 TGTACTTATGGGAAAGCG CTGGGTTCTTCTACTTCATT

ACP48 AGGCAAGATGATAGGATA CAAGTCAAGATGATACGG

ACP49 AATAGCTCGACGCCAGGAT TTCGGATGTGAAAGTGCC

ACP50 TCCGAGTGAATGGAAAAG GATGGAATTACAAATGGAGTAG

ACP51 TTCTTATTCACTGGTTTG GTGGAAATCTTTGTTCTA

ACP58 GCTATCCCAAGTTTCTGC TGGCTTTGATCCGTTATT

mtSSR1 CTCCCGCTTCCTCACATC GCTCCAATAAGGCGTTCC

mtSSR2 ACCAAGATTGAGCCAGAT CGTCCACTACCGAAAGAG

mtSSR3 GGCTGCTTTCTCATACCG TCCTAAATGCTGCCCTTC

mtSSR4 GATTCTAAGGGTACGGGACA ACCGACGACAAACAATAACA

mtSSR5 TATTGTTTGTCGTCGGTTAT GGTAGGCAAGTTGGTAGG

mtSSR7 CGTTAGGGGTATTTAGCA CTCTATTCCGTTTCCACA

mtSSR8 CCCGAGAAGCACTGTTGA ACGGAGTGACAAAGGAGC

mtSSR9 CGGTGAAAGAGGGCAAAG AAACAAATACCAGCTAACG

mtSSR10 GCCATTTCATTTCCTTTG ATCCTCCTTCGCCTTTCT

mtSSR22 TACTAATCGGTGACTTGCT AGTCTTTATGGATGTGCC

mtSSR46 TACTTGCTGCACTTCCTG ACAAATGCCACTTCTTCC

mtSSR48 CCTTCTGGGTTGACTTGA AGTGGTGCCCTCCTCTAA

mtSSR61 GGCGGTGGACAGAAATGG AGGGAAGCCCAACGAATG

mtSSR92 GCCGCTTTCATTGTTGTA TTCGGTTTATTAGCTCTTCC

mtSSR98 GTGCCAGATGCAACAAAG GAGGCCATAGGGAAAGTC

(Continued)
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from seed germination to plant bolting, but differences appeared from the big bud stage to
before early flowering. In maintainer 93219 plants, the buds were plump with smooth surfaces,
and the floral organs developed normally, with six stamens and opened petals (Fig 1A). In
addition, the pistils and seed pods were all erect (Fig 1D) with 12.72 ± 0.86 grains per silique.
In the different generations of CMS04S132×93219, the buds were soft with slightly wrinkled
surfaces, the flowers showed developmental abnormalities, the petals were smaller and
deformed, and three to six stamens appeared that strongly varied (Fig 1B and 1C). Interest-
ingly, the stamens mutated into carpelloid structures and pseudo pistils, which were entangled
with the pistil; some small green beads, resembling ovules, were observed inside the stamens
(Fig 1C). The carpelloid stamens adhered to the pistil, causing the pistil to bend before flower-
ing. The stamens unfolded gradually with flowering; however, most could not completely sepa-
rate from the pistil. Moreover, the plants could fruit via artificial pollination during the bud
and flowering stages. The small green beads in the stamens stopped growing and died away as
the siliques developed. The siliques were hooked or coiled (Fig 1E–1G) and were set at a rate of
80.90 ± 3.30% per plant and 6.10 ± 0.53 grains per silique. The number of siliques per plant

Table 2. (Continued)

Name Forward primer 50-30 Reverse primer 50-30

mtSSR110 CGGGTGCTTGCATCATTT TCTAGCCATTCCAGGTTT

mtSSR128 AATCCTATCCCATCCGAGTC AGCCTTTCCTTTCCCACC

mtSSR129 CTTCCCTCAGTTGGTTTG TGCCCTCTGTCCTTTATT

mtSSR133 GCTGCTCATCACTACCTG CACTACGCTCACTGAAACTA

mtSSR152 AAGAAAGAAGAGCGACAA GGGTACGGTACTAAAGGT

mtSSR156 TACTCATCAAATGGCACTC CAAAGGGAAAGAAGAAAG

doi:10.1371/journal.pone.0138750.t002

Fig 1. Morphological characteristics of flowers and siliques of maintainer 93219 and
CMS04S132×93219. A: flower of maintainer 93219, B and C: flowers of CMS04S132×93219, D: siliques of
maintainer 93219, E–G: siliques of CMS04S132×93219.

doi:10.1371/journal.pone.0138750.g001
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was much lower than the other CMS lines (B2, B3, and B4; Table 1) that had undergone free
pollination.

Identification of carpelloid stamens of broccoli CMSmaterials using
cpSSR and mtSSRmolecular markers
We first used 32 pairs of chloroplastic SSR (cpSSR) primers and 21 pairs of mitochondrial SSR
(mtSSR) primers developed by Zhang [57] (Table 2) to amplify the total genomic DNA of five
CMS lines (B2–B6; Table 1), maintainer 93219 (B1; Table 1), and 11 unequal hybrids of CMS
lines (B7–B17; Table 1), which were collected from seven countries. The results demonstrated
that all the cpSSR primers and mtSSR primers could successfully amplify a product. However,
only one mtSSR primer (mtSSR2) showed obvious polymorphisms between normal and car-
pelloid stamen materials (Fig 2). We then used the primers of mtSSR2 to screen the other 34
broccoli accessions (B17–B51; Table 1), including eight inbred lines, 14 CMS lines, and 12
CMS hybrids. The results showed that mtSSR2 could distinguish between the normal and car-
pelloid stamen materials with 100% accuracy.

Sequence features of polymorphic bands
The polymorphic bands obtained after PCR using mtSSR2 were sequenced. The amplicons
were identical in all maintainer lines (471 bp), whereas they were 420 bp in all carpelloid sta-
men materials. Analyses after aligning the polymorphic sequences from normal and carpelloid
materials indicated that the similarity of the sequences were 88.96%, with one single nucleotide
polymorphism at 100 bp (C/T), and the sequences from carpelloid stamen materials had 51
nucleotides deleted between 309 and 359 bp compared with the normal sequences (Fig 3).
Open reading frame (ORF) analysis showed that the deleted nucleotides were located between
position 102 and 152 bp in the ORF coding region of the normal sequences (Fig 4), and
encoded 18 amino acids (Fig 5). These results indicated that the polymorphism of mtSSR2
could be attributed to the fragment insertion or deletion near the SSR loci.

Analyzing similarity of genes related to carpelloid stamens
Analysis of the amino acid sequences in the ORF region demonstrated that the polymorphic
region amplified with mtSSR2 is located in the orf125 coding region of B. napus, B. juncea, B.
rapa subsp. oleifera, Eruca sativa, B. oleracea, B. oleracea var. botrytis, and B. juncea var.
tumida. It is also located in the coding region of orf108c and orf108 in B. carinata and Rapha-
nus sativus, respectively. However, the proteins were annotated as being hypothetical and as
having unknown functions. Similarity analysis of the amino acid sequences revealed that the
protein sequences related to the carpelloid stamen have the highest similarity with orf108c and
orf108 in B. carinata and Raphanus sativus, respectively (Table 3).

Fig 2. PCR amplification profiles of 17 broccoli accessions.M: marker, 1: maintainer 93219, 2:
CMS0412×932198, 3: CMS0413×932198, 4: CMS05738×932197, 5: CMS04S132×932198, 6:
CMS10Q688×932192, 7: LvFu, 8: BT-2006, 9: BT-2007, 10: L×2J, 11: L×FJ, 12: JingYou, 13: NaiHanYouXiu,
14: Tie mountain, 15: HeHuan007, 16: SaLi’Ao 55, 17: NanXiu366.

doi:10.1371/journal.pone.0138750.g002
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Discussion

Carpelloid stamen phenomenon and its inheritance pattern
In higher plants, the process of flowering is complex, involving many interactions between
genes or between genes and the environment. The carpelloid stamen phenomenon refers to sta-
men structures of the flower that are converted to carpels. It not only causes alteration of the
flower structure, but also brings about male sterility. This phenomenon is caused by floral
homeotic mutations and is controlled by nuclear genes. The B class or C class genes, such as
AP3, PI, AGL8, SHP1, SHP2, and NAPc, are involved in the regulation of this phenomenon
[15–16, 20, 23, 58–62]. The effect of the plasmon or interactions between cytoplasmic and
nuclear genes on the development of floral organs has been reported [14, 21, 25, 63]; however,
the molecular mechanisms are not clear. In this study, we confirmed that the carpelloid sta-
mens were caused by allo-cytoplasmic inheritance in CMS lines of broccoli, using hybrid and

Fig 3. Sequence alignment of mtSSR2 amplicons with the B. napusmitochondrial genome.

doi:10.1371/journal.pone.0138750.g003
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backcross methods combined with field observation for several years. Stamen carpellody was
passed on in a maternal inheritance fashion. Furthermore, the phenotypic features of the car-
pelloid stamen materials were similar to the carpellody of stamens in B. napus and B. rapa
obtained from the mutation of nuclear genes: the flowers showed dysplasia, the petals were
smaller and deformed, the stamens were seriously deformed, the pistil was deviated, and the
stamens were entangled with the pistil [20, 23]. The siliques were erect and the seed setting and
combining ability performed well in CMS carpelloid stamen materials of B. napus and B. rapa.
In contrast, the siliques were hooked or coiled, with few grains per silique observed in this
study, which would reduce the utility of CMS lines in hybrid seed production practice in broc-
coli. Therefore, the occurrence of carpelloid stamens should be avoided in broccoli breeding.

Maternal inheritance and application of the organelle SSRmarkers
Chloroplasts and mitochondria are mainly inherited uniparentally in seeded plants [64]. The
chloroplast genome is usually maternally inherited in most angiosperm species, including cru-
ciferous crops, such as cabbage, broccoli, and cauliflower [47, 65], although it can also be

Fig 4. ORF sequence alignment of mtSSR2 amplicons with the B. napusmitochondrial genome.

doi:10.1371/journal.pone.0138750.g004

Fig 5. Amino acid sequences of ORFs of mtSSR2 amplicons and the B. napusmitochondrial genome.

doi:10.1371/journal.pone.0138750.g005
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paternally [66–67] or biparentally inherited [68–69]. Mitochondrial DNA is maternally inher-
ited or passed via paternal transmission [67]. However, mitochondrial inheritance in broccoli
has not been documented so far, perhaps because no polymorphisms have been found. In our
study, mtSSR2 could be detected in carpelloid stamen materials for four successive backcross
generations and there was no sequence variation in the mitochondrial PCR products studied.
Our results provide evidence not only that the mitochondrial genome is maternally and stably
inherited in broccoli, but also that broccoli mtDNA has advantages for evolutionary studies.

The main advantage of organelle genomes is that no recombination can occur between two
alleles, because there is only one allele per cell and per organism [69]. Furthermore, organelle
DNA can be easily obtained because it exists in many copies in each cell. Based on organelle
genomes’ inheritance patterns and characteristics, organelle SSR markers have been used
widely with total genomic DNA. Kaundun and Matsumoto [70] used cpSSR markers to analyze
the variation of heterologous nuclear and chloroplast DNA in tea (Camellia sinensis). Zhang
et al. [47] studied the inheritance of the cabbage chloroplast and assessed subspecies diversity
of B. oleracea using cpSSR primers. Cheng et al. [71] distinguished somatic hybrids in citrus
using cpSSR primers. Moreover, cpSSR markers have also been used in neotropical orchids
[72] and cruciferous crops [42, 44, 48, 55]. For mitochondrial SSR markers, Wang et al. [55]
used mtSSR primers to distinguish allo-cytoplasmic inheritance in cabbage. To the best of our
knowledge, the identification of carpelloid and normal stamens using cpSSR or mtSSR in broc-
coli, as well as other species, has not been reported. In this study, mtSSR2 could accurately dis-
tinguish carpelloid from normal stamen materials with the same polymorphic products as
reported in cabbage, which can distinguish OguCMSR1-2, OguCMSHY, and NigCMS (420 bp)
from pol CMS and OguCMSR3 (471 bp) [55]. The polymorphic band amplified in CMS carpel-
loid stamen materials was 420 bp, which suggests that the original CMS source came from
OguCMSHY, OguCMSR1-2, or NigCMS and was transferred to broccoli. Alignment analysis of
the sequences showed that the deleted sequences in broccoli were not at the same location as in
cabbage. This will benefit the selection of CMS types and backcross breeding in broccoli; more-
over, it will also provide a basis for evolutionary studies in crucifers.

Furthermore, the sequences of the products were located in orf108 or orf125 coding regions
of mitochondrial genomes in many Brassica species. Compared with the maintainers, the car-
pelloid stamen materials showed a deletion of 51 nucleotides, suggesting that the deletion of
mitochondrial nucleotides could explain the carpelloid stamen phenotype. Thus, it is likely
that orf108 or orf125 encodes genes involved in the development of floral organs. Our findings

Table 3. Sequence identity between amplified products of mtSSR2 in broccoli CMS normal and carpelloid stamenmaterials and the corresponding
sequences ofB. juncea, B. rapa, Eruca sativa, B. oleracea, B. oleracea var. botrytis, B. juncea var. tumida, B. napus, B. carinata, and Raphanus
sativus cytoplasmic genomes.

Entry Organism Protein name Sequence identity (normal stamen) Sequence identity (carpelloid stamen)

G4XYV8 B. juncea Orf125 100% 79.5%

G4XYB0 B. rapa subsp. oleifera Orf125 100% 79.5%

A0A088BGJ2 Eruca sativa Orf125 100% 79.5%

G4XYC4 B. oleracea Orf125 100% 79.5%

A0A068BCT7 B. oleracea var. botrytis Orf125 100% 79.5%

A0A023VX75 B. juncea var. tumida Orf125 100% 79.5%

Q6YSR6 B. napus ORF125 100% 79.5%

G4XYQ4 B. carinata Orf108c 80.7% 98.6%

R4I1C8 Raphanus sativus Orf108 80.7% 98.6%

doi:10.1371/journal.pone.0138750.t003
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provide an important reference for further study on the molecular mechanism of the interac-
tion between the nucleus and cytoplasm in floral organ development.

In conclusion, we have identified a useful molecular marker to detect the cytoplasm of car-
pelloid stamens in broccoli. The results of our study are valuable for improving the efficiency
of broccoli breeding and also for forming a solid basis for further study of the molecular mech-
anisms underlying the CMS carpelloid stamen phenomenon.
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