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Abstract
Current studies investigating properties of nanoparticle-reinforced polymers have shown

that nanocomposites often exhibit improved properties compared to neat polymers. How-

ever, over two decades of research, using both experimental studies and modeling analy-

ses, has not fully elucidated the mechanistic underpinnings behind these enhancements.

Moreover, few studies have focused on developing an understanding among two or more

polymer properties affected by incorporation of nanomaterials. In our study, we investigated

the elastic and thermal properties of poly(acrylamide) hydrogels containing silica nanoparti-

cles. Both nanoparticle concentration and size affected hydrogel properties, with similar

trends in enhancements observed for elastic modulus and thermal diffusivity. We also

observed significantly lower swellability for hydrogel nanocomposites relative to neat hydro-

gels, consistent with previous work suggesting that nanoparticles can mediate pseudo

crosslinking within polymer networks. Collectively, these results indicate the ability to

develop next-generation composite materials with enhanced mechanical and thermal prop-

erties by increasing the average crosslinking density using nanoparticles.

Introduction
It is well established that the addition of nanoscopic filler particles to polymer systems can
have a large impact on their properties, even for very low weight fractions of nanoparticles
[1–3]. Specifically, as reviewed by Tjong (2006), addition of various nanofillers including car-
bon nanotubes, organoclays, and inorganic nanoparticles can significantly improve the
mechanical performances of both amorphous and semicrystalline polymer composites [2].
Improvements in polymer properties are not limited to mechanical characteristics but also
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extend to thermal and electrical properties[4–9] as well as chemical resistance [10, 11]. Fur-
thermore, similar enhancements in material properties have also been reported for elastomers
and hydrogels as well [12–18]. Literature that reviews the properties of hydrogel nanocompo-
sites are especially relevant to the scope this paper as defined by the choice of our model poly-
mer system.

Several experimental and theoretical studies support that the enhancements in polymer
properties are dependent on the polymer and nanofiller surface chemistry as well as the disper-
sion quality of the nanofillers [19–23]. Research efforts are currently focused on structure–
property relationships of polymer nanocomposites, as well as in quantifying the role of nanofil-
ler/matrix interfacial interactions on nanocomposite properties, to further shed light on the
mechanisms behind these reinforcements [24–28]. One hypothesis that has gained significant
support in recent years is that strong polymer/nanofiller interactions facilitate the formation of
non-covalent or pseudo crosslinks, and thereby contribute to enhancements in polymer prop-
erties [18, 29–33]. In this study, our initial objective was to conduct experiments in further sup-
port of the pseudo crosslinking hypothesis using synthetic polyacrylamide (pAAM) hydrogels
incorporating silica nanoparticles (SiNPs) as the model system. Both these materials have been
well characterized, are commercially available, and are routinely used in a wide variety of
industrial and scientific applications. Moreover, the degree of crosslinking has a significant
effect on hydrogel swelling properties, which allows us to interrogate the pseudo crosslinking
hypothesis. Mechanical properties of the hydrogel nanocomposites were characterized through
measurements of viscoelastic and compressive moduli. We also explored if pAAm-SiNP
hydrogels exhibited improved thermal properties, investigated using the laser flash technique,
relative to neat polyacrylamide hydrogels, as well as if there were any correlations between the
enhancements in pAAmmechanical and thermal properties afforded due to the addition of sil-
ica nanoparticles. Since the speed of heat propagation in a solid is dependent on its elastic mod-
ulus, it can be expected that any changes in elastic moduli due to the addition of nanoparticles
will lead to enhancement in the thermal transport properties of the hydrogels beyond the val-
ues anticipated by traditional effective medium theories.

Our data, obtained using silica nanoparticle–pAAm hydrogel composites as the model sys-
tem, showed significant enhancements in the elastic and compressive properties of hydrogels
upon the addition of nanoparticles, consistent with previous investigations of polymer nano-
composite mechanical properties. Furthermore, our experiments revealed decreased swellabil-
ity of pAAm nanocomposites relative to neat pAAm hydrogels, thereby demonstrating a
strong role of pseudo crosslinking mediated by polymer-nanoparticle interactions on the
observed enhancements in mechanical properties. Moreover, our results demonstrated a high
correlatability between the enhancements in mechanical and thermal properties of the pAAm-
SiNP composites, thereby suggesting that SiNP-mediated pseudo crosslinking of pAAm hydro-
gel can also lead to enhancements in its thermal properties. These results therefore indicate
that the approach of using nanofillers to improve mechanical properties may also be used to
engineer thermal properties of hydrogels.

Materials and Methods

Materials
The monomer and crosslinker solutions, acrylamide (AAm, 40% w/v) and N,N0-methylenebis
(acrylamide) (Bis, 2% w/v), as well as ammonium persulfate (APS, initiator) and N,N,N0,N0-tet-
ramethylethylenediamine (TEMED, catalyst) were purchased from Sigma Aldrich (St. Louis,
MO) and used as received. Tris-HCl buffer was obtained from Life Technologies (Carlsbad,
CA). Bindzil silica nanoparticle colloid solutions with mean particle sizes of 4, 20, and 100 nm,
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were obtained as a gift from AkzoNobel Pulp and Performance Chemicals Inc. (Marietta, GA).
(See S1 Table for physicochemical properties of the silica nanoparticles as provided by the
supplier.)

Polymerization reaction
To prepare chemically crosslinked polyacrylamide hydrogels, AAm and Bis stocks were diluted
to their desired concentrations in pH 7.2, 250 mM Tris-HCl buffer, followed by the addition of
10 μL of freshly prepared APS solution and 1 μL of TEMED to initiate the reaction. Final AAm
and Bis concentrations were 10% w/v and 0.5% w/v respectively, and final reaction volume was
1 mL. For the nanoparticle experiments, various amounts of silica nanoparticles were added
the reaction mixture before the addition of APS and TEMED. The polymerization reactions
were performed at 25°C, with minimal exposure to air as oxygen inhibits the reaction.

Rheological measurements
Rheological measurements of the pAAm gels with and without nanoparticles were carried out
using a MCR302 rotational rheometer (Anton Paar, Austria) using parallel plate geometry.
Immediately following the addition of APS and TEMED, 200 μL of the well-mixed reaction
mixture was pipetted onto the lower plate. The upper plate was lowered to the desired sample
thickness of 1 mm. Amplitude sweeps at a constant frequency of 1 Hz were carried then out to
ensure that the measurements were performed in the linear viscoelastic regimes for the hydro-
gel samples. Next, dynamic sweep tests over frequencies ranging from 0.1–100 Hz were
recorded in the linear viscoelastic regimes (strain amplitude = 0.01) to determine the shear
storage modulus, G’. The shear storage modulus relates to the elastic behavior of a viscoelastic
material and is a measure of its stiffness.

Compressive modulus measurements
For the compressive modulus measurements, we first prepared pAAm hydrogel disks using an
acrylic mold (1.6 mm thick and 6.5 mm in radius); see S1 Fig for a detailed description. Briefly,
immediately following the addition of APS and TEMED, 210 μL of the well-mixed reaction
mixture, either containing or not containing nanoparticles, was pipetted into individual molds.
After waiting for 1 hour to ensure complete gelation (gelation usually occurs within 20 min-
utes), the hydrogel discs were taken from the mold and gently wiped with tissue paper to
remove any excess water before performing the measurements. The compressive modulus
measurements were tested at room temperature under unconfined conditions using the Mach-
1 mechanical testing system (Biomomentum, Canada). The pAAm gel disks prepared using
the acrylic molds were compressed at 0.1 mm/s to 50% of sample thickness, and the compres-
sive modulus was determined by calculating the slope of the linear region of the stress-strain
curves (typically between 10–15% strain).

Measurement of the swelling properties
To study the swelling properties of the pAAm nanocomposites, the hydrogel disks prepared as
described above were wiped with tissue paper to remove any excess water, weighed and then
immersed in pH 7.2, 100 mM Tris-HCl buffer. Hydrogel samples were withdrawn from the
buffer at different time intervals and their weights were determined after first blotting excess
buffer with tissue paper; the swelling experiments were carried out for 24 hours. The swelling
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ratios at different time intervals were then calculated using the following equation:

Swelling ratio ð%Þ ¼ Wt �W0

W0

� �
� 100 ð1Þ

whereWt is the weight of pAAm gel samples at a given time interval andW0 is the initial
weight (before immersing in buffer).

Thermal diffusivity measurements
Thermal diffusivities of the hydrogel samples were performed using the commercially available
Netzsch LFA 457 Laser Flash System (Burlington, MA), based on a corrected Cape-Lehman
method [34]. Thermal diffusivity measurements can be carried out within ±3%. The pAAm
hydrogel disk samples were prepared with or without nanoparticles, as described above, and
any excess water was removed before the measurement. The surface was coated with black
graphite spray to improve signal to noise ratio.

Results

Nanoparticle mediated enhancement in hydrogel mechanical properties
We used poly(acrylamide) (pAAm) hydrogel, a linear chain polymer of repeating acrylamide
units crosslinked using N,N'-methylenebisacrylamide (Bis), incorporating commercially avail-
able amorphous silica nanoparticles (SiNPs) of various sizes, as the model system. Experimen-
tal investigations of the nanocomposite mechanical properties using rotational rheometry
revealed that the elastic modulus (G’) of pAAm-SiNP composites relative to the neat polymer
was strongly dependent on the nanoparticle concentration (Fig 1A and S2 Fig). Additionally,
we observed an upper limit to the gains in the elastic modulus due to addition of nanoparticles
(Fig 1A). We also explored the effects of nanoparticle size on the elastic modulus of pAAm-
SiNP composites using 4, 20, and 100 nm-sized SiNPs. Interestingly, these studies indicated
that the enhancements in pAAm elastic modulus afforded by the addition of SiNPs decreased
with increasing nanoparticle size (Fig 1B and S2 Fig). Similar results, i.e. decrease in polymer
nanocomposite mechanical properties for larger nanoparticles, have been reported in previous
literature [35]. Additionally, we determined the equilibrium unconfined compressive moduli

Fig 1. Viscoelastic properties of pAAm hydrogel nanocomposites. Percent relative elastic moduli of pAAm hydrogels as a function of silica nanoparticle
(a) concentration (prepared using 4 nm SiNPs) and (b) size (prepared using a final concentration of 2% w/v SiNPs). The values for relative elastic modulus
were calculated by normalizing the values for pAAm-SiNP nanocomposite gels (G’) to those for neat pAAm gels (G’0). Error bars indicate the standard
deviation of triplicate measurements.

doi:10.1371/journal.pone.0136293.g001
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of the pAAm-SiNP composites incorporating SiNPs of various concentrations and sizes to
complement the rheological analyses. The compressive moduli experiments also clearly dem-
onstrated strong dependence of the nanocomposite mechanical properties on nanoparticle size
and concentration, with similar trends as those observed for rotational rheometry experiments
(Fig 2 and S3 Fig).

Increase in average crosslinking density mediated by polymer-
nanoparticle interactions
As described earlier, previous studies have suggested that nanoparticles can act as pseudo
crosslinkers and contribute to the extent of crosslinking in the polymer network, and thereby
facilitate reinforcements in mechanical properties. Also, it has already been demonstrated that
hydrogen bonding promotes strong interactions between pAAm chains and SiNP surface [36,
37]. We therefore wished to test the hypothesis that the observed increases in elastic and com-
pressive moduli of pAAm nanocomposites relative to the neat polymer is afforded by increased
average crosslinking density mediated by pAAm-SiNP interactions. We compared the swell-
ability of pAAm-SiNP gels to neat pAAm gels; if pAAm-SiNP interactions contribute to an
increase in average polymer crosslinking density, the swellability of pAAm-SiNP gels should be
lower than that of neat pAAm gels. Fig 3 compares the swellability of neat pAAm gels and
pAAm gels incorporating various concentrations of 4 nm SiNPs. The data indicated that the
swelling for both neat pAAm and pAAm incorporating SiNPs saturates after ca. 12 hours.
Moreover, decreased swellability of pAAm nanocomposites with increasing SiNP concentra-
tion strongly suggests the role of pAAm-SiNP interactions in facilitating an increase in the
average crosslinking density of the hydrogel network, and thereby decreased swellability of
pAAm-SiNP gels relative to neat gels, as well as SiNP mediated enhancement in pAAM hydro-
gel mechanical properties.

Enhanced thermal diffusivities of the pAAm hydrogel nanocomposites
Next, we proceeded to assess the effect of the addition of nanoparticles on thermal properties
of pAAm hydrogels. Although hydrogels are not traditionally used for the analysis of thermal
properties of polymer nanocomposites, we were interested in the use of our model system as a
test of the kinetic theory:[38] thermal conductivity (k) of a solid is proportional to its sound

Fig 2. Compressive modulus of pAAM hydrogel nanocomposites. Percent relative compressive moduli
of pAAm hydrogels as a function of 4 nm silica nanoparticle concentration. The values for relative
compressive modulus were calculated by normalizing the values for pAAm-SiNP nanocomposite gels (E) to
those for neat pAAm gels (E0). Error bars indicate the standard deviation of triplicate measurements.

doi:10.1371/journal.pone.0136293.g002
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velocity (v), which is in turn proportional to the square root of the elastic modulus (E):

k ¼ rCa ¼ 1

3
CvL ð2Þ

v ¼
ffiffiffi
E
r

s
ð3Þ

where ρ is the density, C is heat capacity, α is thermal diffusivity, and Λ is the phonon mean
free path of phonon. Eqs (2) and (3) can be combined to describe the dependence of thermal
diffusivity on elastic moduli:

a /
ffiffiffi
E

p
ð4Þ

Changes in the thermal diffusivity of the polymer due to the addition of nanoparticles can
be caused by nanoparticle-mediated changes in any of the three properties (i.e. changes in
either ρ, E, or Λ). However, since we are adding a small amount of nanoparticles, changes in
density (ρ) can be relatively ignored. Further, if we assume that the phonon mean free path (Λ)
is not affected by the low volume fraction of nanoparticles, change in the thermal diffusivity of
a polymer pseudo-crosslinked using nanoparticles should be directly proportional to the
square root of the change in its elastic moduli (E). This assumption is reasonable for our sys-
tem, as the phonon mean free path of polymer chain is usually small, and the diffuse scattering
due to impurities should not significantly affect the mean free path, as described by Matthies-
sen's rule [39].

Fig 4A shows the observed relative enhancements in thermal diffusivity of pAAm hydrogel
nanocomposites as a function of the weight fraction of the silica nanoparticles. The data from
Fig 4A and S3 Fig clearly shows relative enhancements as a function of nanoparticle size; the
trends observed for enhancements in the thermal diffusivity are similar to those observed for
the mechanical properties of pAAm-SiNP composites, with a high degree of correlation
between the enhancement in thermal diffusivity and the square root of the enhancement in the

Fig 3. Swelling properties of pAAM hydrogel nanocomposites. Percent swelling ratios of pAAm
hydrogels as a function of 4 nm silica nanoparticle concentration at various time points – 2 hours (white bars),
6 hours (light grey bars), 12 hours (dark grey bars), and 24 hours (black bars). The values for swelling ratio
were calculated by normalizing the values obtained for pAAm gels either containing or not containing SiNPs
at various time points to those obtained at time = 0 min. Error bars indicate the standard deviation of triplicate
measurements.

doi:10.1371/journal.pone.0136293.g003

Mechanical and Thermal Properties of Hydrogel Nanocomposites

PLOS ONE | DOI:10.1371/journal.pone.0136293 August 24, 2015 6 / 11



elastic moduli (Fig 4B). Moreover, both mechanical and thermal reinforcements exhibited sim-
ilar saturation behaviors, with plateauing occurring near 3% SiNPs.

One should note that this is not the first attempt to relate enhancement of thermal transport
properties of polymer nanocomposites with the changes in elastic moduli. However, majority
research works so far have attempted to explain enhanced thermal conductivity using the sim-
ple effective medium theory (EMT) without full consideration of the change in the thermal
conductivity of a base medium [40]. Based on the most widely adopted EMT [41], the thermal
conductivity of composite materials can be written as:

keff ¼
kp þ 2kb þ 2ðkp � kbÞφ
kp þ 2kb � ðkp � kbÞφ

kb ð5Þ

where kb is the thermal conductivity of the base material, kp is the thermal conductivity of the
added nanoparticles, and φ is the nanoparticle volume fraction. Using Eq (2), Eq (5) can be
written as,

ðrCaÞeff ¼
ðrCaÞp þ 2ðrCaÞb þ 2½ðrCaÞp � ðrCaÞb�φ
ðrCaÞp þ 2ðrCaÞb � ½ðrCaÞp � ðrCaÞb�φ

ðrCaÞb ð6Þ

Since the product of density and heat capacity is in the same order of magnitude for most
materials, and the value does not change significantly for low concentration of nanoparticles,
Eq (6) can also be written as:

aeff ¼
ap

ðrCÞp
ðrCÞb þ 2ab þ 2 ap

ðrCÞp
ðrCÞb � ab

� �
φ

ap
ðrCÞp
ðrCÞb þ 2ab � ap

ðrCÞp
ðrCÞb � ab

� �
φ
ab ð7Þ

From Fig 4A, it is clear that the observed values of enhancement in thermal diffusivity due
the addition of nanoparticles are much larger than those calculated using the traditional EMT
(black dashed line in Fig 4A). The traditional EMT assumes that the base thermal diffusivity
does not change due to the addition of particles. Thermal diffusivity of the base material is
expected to change due to crosslinking, and therefore should be modified before applying the

Fig 4. Thermal properties of pAAM hydrogel nanocomposites. (a) Percent relative thermal diffusivities of pAAm hydrogels as a function of 4 nm silica
nanoparticle concentration (grey circles), compared to the traditional effective medium theory (solid line), and the modified effective medium theory (dashed
line). The values for relative thermal diffusivity were calculated by normalizing the values for pAAm-SiNP nanocomposite gels (α) to those for neat pAAm gels
(α0). Error bars indicate the standard deviation of triplicate measurements. (b) Correlation between percent relative enhancement in thermal diffusivities and
the square root of percent relative enhancement in the elastic moduli for pAAm-SiNP composites (prepared using 4 nm SiNPs). Relative enhancements in
thermal diffusivity and elastic modulus were calculated as previously described. Error bars indicate the standard deviation of triplicate measurements.

doi:10.1371/journal.pone.0136293.g004
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EMT. The αb terms in Eq 7 can be multiplied by the square root of enhancement ratio (r) of
elastic moduli to obtain the equation for the modified EMT:

aeff ¼
ap

ðrCÞp
ðrCÞb þ 2

ffiffi
r

p
ab þ 2 ap

ðrCÞp
ðrCÞb �

ffiffi
r

p
ab

� �
φ

ap
ðrCÞp
ðrCÞb þ 2

ffiffi
r

p
ab � ap

ðrCÞp
ðrCÞb �

ffiffi
r

p
ab

� �
φ

ffiffi
r

p
ab ð8Þ

Fig 4A also shows the modified EMT (black solid line). Although the modified EMT shows
more enhancement than the traditional EMT, it cannot still fully explain the anomalous
enhancement in the experimental results. The differences in enhancements between the experi-
mental results and the modified EMT may be attributed to the secondary enhancement in heat
capacity or mean free path due to modified phonon density of states. Further studies on pho-
non dispersion relation and change in mean free path may be needed to fully understand its
enhancement.

Conclusions
In this work, we performed experiments to further our understanding of the effects of nanopar-
ticles on hydrogel material properties. The model system, pAAM hydrogels incorporating silica
nanoparticles, was evaluated by measurements of three different polymer properties: elastic
modulus, swellability, and thermal diffusivity. Results from the experimental analyses showed
that both hydrogel mechanical and thermal properties are significantly dependent on the size
and concentration of silica nanoparticles; there also seems to be an upper limit to the gains in
polymer properties due to addition of nanoparticles. Moreover, we observed that the swellabil-
ity of pAAm-SiNP hydrogels was significantly lower than that of neat pAAm gels. Our data
also presented a strong correlation between enhancements in viscoelastic moduli and thermal
diffusivity, thus indicating that nanofiller-mediated enhancements in polymer structure can
also translate into enhancements in its thermal properties. The outcomes of these results are
two-fold. First, our data demonstrate that the addition of nanoparticles can lead to higher
hydrogel crosslinking densities, thereby lending strong support to the hypothesis that pseudo
crosslinking can significantly contribute to enhancements in mechanical properties of polymer
nanocomposites. Second, our experiments not only demonstrated correlatability between
enhancements in mechanical and thermal properties of hydrogel nanocomposites, but also
anomalous enhancements in thermal diffusivity upon the addition of nanoparticles, beyond
the values predicted by the effective medium theory, thus indicating that nanofiller-mediated
enhancements in polymer structure can also translate into enhancements in its thermal proper-
ties. Collectively, these results suggest a new direction to engineer thermal properties of
polymers.

Supporting Information
S1 Fig. Preparation of pAAm hydrogel disks. (a) Dimensions of the acrylic mold used for the
preparation of pAAm hydrogel disks. (b) In Step 1, 210 μL of the reaction mixture, either con-
taining or not containing nanoparticles, was pipetted into individual molds. A glass slide was
placed on the samples to limit exposure to oxygen, which inhibits the polymerization reaction
(Step 2). After waiting for 1 hour to ensure complete gelation, the hydrogel discs were taken
from the mold for further testing (Step 3).
(PDF)

S2 Fig. Viscoelastic properties of pAAM hydrogel nanocomposites. Representative plots
showing the dependence of the viscoelastic properties of pAAM hydrogel nanocomposites on
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silica nanoparticle (a) concentration (prepared using 4 nm nanoparticles) – 1% w/v (blue line),
2% w/v (green line), and 3% w/v (red line) and (b) size (using a final concentration of 2% w/v
nanoparticles) – 100 nm (blue line), 20 nm (green line), and 4 nm (red line). Control hydrogels
without nanoparticles is shown in grey.
(PDF)

S3 Fig. Mechanical and thermal properties of pAAM hydrogel nanocomposites. Percent rel-
ative enhancements in elastic modulus (white bars), compressive modulus (grey bars), and
thermal diffusivity (black bars) of pAAm hydrogel nanocomposites as a function of silica nano-
particle size. Relative enhancements in the various mechanical and thermal properties were cal-
culated as described in the Methods section. Error bars indicate the standard deviation of
triplicate measurements.
(PDF)

S1 Table. Properties of the silica nanoparticles as provided by the supplier AkzoNobel Pulp
and Performance Chemicals Inc. (Marietta, GA).
(PDF)

Acknowledgments
The authors would like to thank Kalpith Ramamoorthi for his guidance with the preparation of
polyacrylamide hydrogel nanocomposites, Sabrina A. Cismas for helpful suggestions in prepar-
ing the manuscript, and Nicole Morales for assistance in the preparation of figure files. We also
appreciate insightful comments and suggestions from James Thomin at Northwest Florida
State College, Niceville. Silica nanoparticles were a kind gift from AkzoNobel Pulp and Perfor-
mance Chemicals Inc.

Author Contributions
Conceived and designed the experiments: PA HL. Performed the experiments: JZ NB VOB AC
MB AZ. Analyzed the data: PA HL JZ. Contributed reagents/materials/analysis tools: PA HL.
Wrote the paper: PA HL.

References
1. Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I. Experimental trends in polymer nanocompo-

sites—a review. Mat Sci Eng A. 2005; 393(1–2):1–11.

2. Tjong SC. Structural and mechanical properties of polymer nanocomposites. Mat Sci Eng R. 2006; 53
(3–4):73–197.

3. Münstedt H, Triebel C. Elastic properties of polymer melts filled with nanoparticles. AIP Conf Proc.
2011; 1375:201–7.

4. Wong CP, Bollampally RS. Thermal conductivity, elastic modulus, and coefficient of thermal expansion
of polymer composites filled with ceramic particles for electronic packaging. J Appl Polym Sci. 1999; 74
(14):3396–403.

5. Weidenfeller B, Hofer M, Schilling FR. Thermal conductivity, thermal diffusivity, and specific heat
capacity of particle filled polypropylene. Compos Part A. 2004; 35(4):423–9.

6. Lee GW, Park M, Kim J, Lee JI, Yoon HG. Enhanced thermal conductivity of polymer composites filled
with hybrid filler. Compos Part A. 2006; 37(5):727–34.

7. SongWL, WangW, Veca LM, Kong CY, Cao MS, Wang P, et al. Polymer/carbon nanocomposites for
enhanced thermal transport properties—carbon nanotubes versus graphene sheets as nanoscale fil-
lers. J Mater Chem. 2012; 22(33):17133–9.

8. Tanaka T, Montanari GC, Mulhaupt R. Polymer nanocomposites as dielectrics and electrical insulation-
perspectives for processing technologies, material characterization and future applications. Ieee T Die-
lect El In. 2004; 11(5):763–84.

Mechanical and Thermal Properties of Hydrogel Nanocomposites

PLOS ONE | DOI:10.1371/journal.pone.0136293 August 24, 2015 9 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0136293.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0136293.s004


9. Wang Q, Zhu L. Polymer Nanocomposites for Electrical Energy Storage. J Polym Sci Pol Phys. 2011;
49(20):1421–9.

10. Huang JC, Zhu ZK, Yin J, Qian XF, Sun YY. Poly(etherimide)/montmorillonite nanocomposites pre-
pared by melt intercalation: morphology, solvent resistance properties and thermal properties. Polymer.
2001; 42(3):873–7.

11. Deka BK, Mandal M, Maji TK. Effect of Nanoparticles on Flammability, UV Resistance, Biodegradabil-
ity, and Chemical Resistance of Wood Polymer Nanocomposite. Ind Eng ChemRes. 2012; 51
(37):11881–91.

12. Zhang Q, Archer LA. Poly(ethylene oxide)/silica nanocomposites: Structure and rheology. Langmuir.
2002; 18(26):10435–42.

13. Sternstein SS, Zhu AJ. Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlin-
ear viscoelastic behavior. Macromolecules. 2002; 35(19):7262–73.

14. Gaharwar AK, Dammu SA, Canter JM, Wu CJ, Schmidt G. Highly Extensible, Tough, and Elastomeric
Nanocomposite Hydrogels from Poly(ethylene glycol) and Hydroxyapatite Nanoparticles. Biomacromo-
lecules. 2011; 12(5):1641–50. doi: 10.1021/bm200027z PMID: 21413708

15. Meera AP, Tlili R, Boudenne A, Ibos L, Poornima V, Thomas S, et al. Thermophysical and mechanical
properties of TiO2 and silica nanoparticle-filled natural rubber composites. J Elastom Plast. 2012; 44
(4):369–82.

16. Ye ZB, Qin XP, Lai NJ, Peng Q, Li X, Li CX. Synthesis and Performance of an Acrylamide Copolymer
Containing Nano-SiO2 as Enhanced Oil Recovery Chemical. J Chem NY. 2013.

17. Yang J, Han CR, Duan JF, Xu F, Sun RC. Mechanical and Viscoelastic Properties of Cellulose Nano-
crystals Reinforced Poly(ethylene glycol) Nanocomposite Hydrogels. ACS Appl Mater Inter. 2013; 5
(8):3199–207.

18. WuCJ, Wilker JJ, Schmidt G. Robust and Adhesive Hydrogels from Cross-Linked Poly(ethylene glycol)
and Silicate for Biomedical Use. Macromol Biosci. 2013; 13(1):59–66. doi: 10.1002/mabi.201200362
PMID: 23335554

19. Zhang X, Simon LC. In situ polymerization of hybrid polyethylene-alumina nanocomposites. Macromol
Mater Eng. 2005; 290(6):573–83.

20. Guo ZH, Pereira T, Choi O, Wang Y, Hahn HT. Surface functionalized alumina nanoparticle filled poly-
meric nanocomposites with enhanced mechanical properties. J Mater Chem. 2006; 16(27):2800–8.

21. Sen S, Thomin JD, Kumar SK, Keblinski P. Molecular underpinnings of the mechanical reinforcement
in polymer nanocomposites. Macromolecules. 2007; 40(11):4059–67.

22. Goren K, Chen LM, Schadler LS, Ozisik R. Influence of nanoparticle surface chemistry and size on
supercritical carbon dioxide processed nanocomposite foammorphology. J Supercrit Fluid. 2010; 51
(3):420–7.

23. Ju S, Chen M, Zhang H, Zhang Z. Dielectric properties of nanosilica/low-density polyethylene compos-
ites: The surface chemistry of nanoparticles and deep traps induced by nanoparticles. Express Polym
Lett. 2014; 8(9):682–91.

24. Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM. Model polymer nanocomposites provide an
understanding of confinement effects in real nanocomposites. Nat Mater. 2007; 6(4):278–82. PMID:
17369831

25. Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, et al. Current issues in research
on structure-property relationships in polymer nanocomposites. Polymer. 2010; 51(15):3321–43.

26. Schadler LS, Kumar SK, Benicewicz BC, Lewis SL, Harton SE. Designed interfaces in polymer nano-
composites: A fundamental viewpoint. MRS Bull. 2007; 32(4):335–40.

27. Senses E, Akcora P. An Interface-Driven Stiffening Mechanism in Polymer Nanocomposites. Macro-
molecules. 2013; 46(5):1868–74.

28. Senses E, Jiao Y, Akcora P. Modulating interfacial attraction of polymer-grafted nanoparticles in melts
under shear. Soft Matter. 2014; 10(25):4464–70 doi: 10.1039/c4sm00460d PMID: 24825448

29. Carlsson L, Rose S, Hourdet D, Marcellan A. Nano-hybrid self-crosslinked PDMA/silica hydrogels. Soft
Matter. 2010; 6(15):3619–31.

30. Kutvonen A, Rossi G, Puisto SR, Rostedt NKJ, Ala-Nissila T. Influence of nanoparticle size, loading,
and shape on the mechanical properties of polymer nanocomposites. J Chem Phys. 2012; 137(21).

31. Rose S, Prevoteau A, Elziere P, Hourdet D, Marcellan A, Leibler L. Nanoparticle solutions as adhesives
for gels and biological tissues. Nature. 2014; 505(7483):382–5. doi: 10.1038/nature12806 PMID:
24336207

32. Xia LW, Xie R, Ju XJ, WangW, Chen QM, Chu LY. Nano-structured smart hydrogels with rapid
response and high elasticity. Nat Commun. 2013; 4:2226 doi: 10.1038/ncomms3226 PMID: 23900497

Mechanical and Thermal Properties of Hydrogel Nanocomposites

PLOS ONE | DOI:10.1371/journal.pone.0136293 August 24, 2015 10 / 11

http://dx.doi.org/10.1021/bm200027z
http://www.ncbi.nlm.nih.gov/pubmed/21413708
http://dx.doi.org/10.1002/mabi.201200362
http://www.ncbi.nlm.nih.gov/pubmed/23335554
http://www.ncbi.nlm.nih.gov/pubmed/17369831
http://dx.doi.org/10.1039/c4sm00460d
http://www.ncbi.nlm.nih.gov/pubmed/24825448
http://dx.doi.org/10.1038/nature12806
http://www.ncbi.nlm.nih.gov/pubmed/24336207
http://dx.doi.org/10.1038/ncomms3226
http://www.ncbi.nlm.nih.gov/pubmed/23900497


33. Prado-Gotor R, Lopez-Perez G, Martin MJ, Cabrera-Escribano F, Franconetti A. Use of gold nanoparti-
cles as crosslink agent to form chitosan nanocapsules: Study of the direct interaction in aqueous solu-
tions. J Inorg Biochem. 2014; 135:77–85. doi: 10.1016/j.jinorgbio.2014.03.005 PMID: 24681548

34. Blumm J, Opfermann J. Improvement of the mathematical modeling of flash measurements. High
Temp-High Press. 2002; 34(5):515–21.

35. Fu SY, Feng XQ, Lauke B, Mai YW. Effects of particle size, particle/matrix interface adhesion and parti-
cle loading on mechanical properties of particulate-polymer composites. Compos Part B. 2008; 39
(6):933–61.

36. Lu XL, Mi YL. Characterization of the interfacial interaction between polyacrylamide and silicon sub-
strate by Fourier transform infrared spectroscopy. Macromolecules. 2005; 38(3):839–43.

37. Wu LL, Zeng LZ, Chen HB, Zhang CC. Effects of silica sol content on the properties of poly(acrylam-
ide)/silica composite hydrogel. Polym Bull. 2012; 68(2):309–16.

38. Ashcroft NW, Mermin ND. Solid State Physics. 1 ed. New York: Holt, Rinehart andWinston; 1976.

39. LundstromM. Fundamentals of Carrier Transport. 2 ed. Cambridge: Cambridge University Press;
2009.

40. Nielsen LE. Thermal conductivity of particulate-filled polymers. J Appl Polym Sci. 1973; 17(12):3819–
20.

41. Nan CW, Birringer R, Clarke DR, Gleiter H. Effective thermal conductivity of particulate composites with
interfacial thermal resistance. J Appl Phys. 1997; 81(10):6692–9.

Mechanical and Thermal Properties of Hydrogel Nanocomposites

PLOS ONE | DOI:10.1371/journal.pone.0136293 August 24, 2015 11 / 11

http://dx.doi.org/10.1016/j.jinorgbio.2014.03.005
http://www.ncbi.nlm.nih.gov/pubmed/24681548

