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Abstract
Astragalus species are medicinal plants that are used in the world for years. Some Astrag-
alus species are known for selenium accumulation and tolerance and one of them is

Astragalus chrysochlorus, a secondary selenium accumulator. In this study, we employed

Illumina deep sequencing technology for the first time to de novo assemble A. chryso-
chlorus transcriptome and identify the differentially expressed genes after selenate treat-

ment. Totally, 59,656 unigenes were annotated with different databases and 53,960

unigenes were detected in NR database. Transcriptome in A. chrysochlorus is closer to
Glycine max than other plant species with 43,1 percentage of similarity. Annotated uni-

genes were also used for gene ontology enrichment and pathway enrichment analysis.

The most significant genes and pathways were ABC transporters, plant pathogen interac-

tion, biosynthesis of secondary metabolites and carbohydrate metabolism. Our results will

help to enlighten the selenium accumulation and tolerance mechanisms, respectively in

plants.

Introduction
Astragalus species have hepatoprotective, antioxidative, immunostimulative and antiviral
properties and because of these properties they are being consumed in the world [1]. These
properties also led to efforts to illuminate chemical contents of Astragalus plants and they have
gained economical and medicinal values [2, 3]. Astragalus genus is a member of Leguminosae
and also is famous for accumulation of high levels of selenium [4, 5]. Astragalus bisulcatus is a
well-studied plant that accumulates selenium in high level as well as 0.65% in its tissues [6].
Among the Astragalus species, the Turkish endemic A. chrysochlorus has been proved to be
one of secondary selenium accumulators [7]. In our previous study, SMT (selenocysteine
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methyltransferase) which is known to be an essential enzyme in Se (selenium) metabolism, has
been isolated from A. chrysochlorus [8]. Additionally, the potential roles of microRNAs (miR-
NAs) in selenium stimuli were investigated in A. chrysochlorus [9].

It is known that most plants can not tolerate high levels of selenium. However, some plants
can tolerate high concentrations and accumulate Se. Thus, it could be toxic for most of the
plants. Selenium is known to be taken into cells by sulphate transporters because it resembles
sulfur (S) and therefore it is metabolized in sulfur-related pathways. For bioremediation and
biofortification studies, it is of necessity to know the details of accumulation of high levels of
selenium and underlying mechanism. Se transportation and accumulation has become the
focus of interest recently [10–14]. There is the necessity of new approaches that will enlighten
the mechanisms underlying Se tolerance and accumulation. Identification of the genes and
their expression profiling will help us to understand the mechanisms. Next generation
sequencing is one of the strategies that could be used to investigate the transcriptome of a non-
model plant in a certain condition. RNA-seq technologies provide a fast and cheaper solution
to study the genetic information that organisms contain and this method is functional in non-
model plant species when the genome information is unavailable, and the RNA-seq deals with
the coding regions not the whole genome [15]. Currently, there is no report on deep sequenc-
ing assembly and genome-wide expression profile in A. chrysochlorus. This limits the applica-
tion of A. chrysochlorus in biomedical field as well as the genetic improvement of this plant
species for agricultural and medical purpose.

In this study, we aimed to identify essential genes and their expression under Se treatment.
The RNA-seq was done to assemble de novo and annotate the transcriptome of Astragalus
chrysochlorus. Bioinformatic tools were applied to investigate the pathways and genes that
were expressed under Se treatment for better understanding Se tolerance and accumulation.

Materials and Methods

Plant material and culturing conditions
The callus cultures of Astragalus chrysochlorus used in this study were established and main-
tained as long-term previously [16]. Callus tissues were subcultured every three weeks. For sele-
nium treatment, 21-day-old callus tissues were grown on MS medium supplemented with 5
mg/L sodium selenate for 3 weeks. Tissue culture tests were done using a growth chamber with
fluorescent light illumination (ca. 1400 mol -2 ms -1) over a 16/8 day and night at 25± 2°C.
Control and selenium treatments were triplicated in five individual culture dishes, and each
dish contained nine callus tissues. After 21 days, callus tissues were harvested and immediately
frozen in liquid nitrogen and then stored in -80°C for RNA extraction.

RNA Isolation
Total RNA was extracted using Qiagen total RNA isolation system (RNeasy Plant Mini Kit,
74904, Qiagen) according to the manufacturer's protocol. RNAs quality and quantity were
checked using a Nanodrop 2000 spectrophotometer (Nanodrop Technologies, USA). Total
RNA was then used for library preparation and sequencing using Illumina HiSeq 2000
sequencing.

Library Preparation and Sequencing
mRNA isolation, fragmentation, adapter ligation, cDNA library construction and sequencing
were done by Beijing Genome Institute (BGI) (Shenzhen, China). Briefly, after checking the
RNA quality and quantity, the mRNA was isolated using magnetic beads, then mRNAs were
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fragmented using fragmentation buffer. These fragments were used as templates for cDNA
synthesis. Single nucleotide A (adenine) was added to obtain short fragments. Adapters were
ligated to short fragments, then PCR was performed. Illumina HiSeq 2000 was used to
sequence the libraries.

Sequencing Analysis
After the deep sequencing, raw reads with low quality were first eliminated. Transcriptome
assembly of short reads were done by Trinity program (release-20130225, http://trinityrnaseq.
sourceforge.net/) [17] operating with three individual modules (Inchworm, Chrysalis and But-
terfly). These three softwares were run consecutively. The parameters for Trinity were—seq-
Type fq—min_contig_length 100,—min_glue 3—group_pairs_distance 250 and—
path_reinforcement_distance 85—min_kmer_cov 3. The contigs that were obtained, joined
together to get scaffolds. Then, the Gene Indices Clustering Tools (TGICL, version 2.1) [18]
were used to form unigenes and Phrap (Release 23.0) (http://www.phrap.org/) was used to
assemble scaffolds to cluster the scaffolds [19]. After all, assembled transcriptome sequences of
Astragalus chrysochlorus were obtained. The unigenes were subjected to blastx alignment
(evalue< 0.00001) in NR, Swiss-Prot, KEGG and COG databases. The results from these alig-
ments were used to decide the direction of sequences. Lastly, the sequences which do not be
aligned to any database were subjected to ESTScan [20]. For function annotation, Blast was
used (v2.2.26+x64-linux) against NT (NCBI nucleotide database, release-20130408), NR (non-
redundant protein sequence database, release-20130408), KEGG (Kyoto Encyclopedia of
Genes and Genomes, Release 63.0), Swiss-Prot (release-2013_03) and COG (Clusters of Ortho-
logous Groups, release-20090331) databases. To determine the unigene GO annotation, NR
annotation was used. Blast2GO (http://www.blast2go.com/b2ghome, release 2012-08-01)[21]
program was run to get the gene ontology. Expression profiling of unigenes were done. The
reads were mapped to reference transcriptome by SOAP (Release 2.21, http://soap.genomics.
org.cn/soapaligner.html), using the parameters “-m 0-x 500-s 40-l 35-v 5-r 1”. FPKM (Frag-
ments Per kb per Million reads) method was done. With this method, it is possible to eliminate
the effect of different gene length. Thus, it is possible to compare the expression level of a gene
in different samples. RPKM was calculated according to the unigenes length and read number
mapped to this gene [22]. Statistical analysis was done to compare different libraries. False dis-
covery rate (FDR) was calculated to specify the p-value threshold in expression analysis. If the
FDR is smaller and the fold change is bigger, it means that the expression difference between
the two samples is bigger. The criteria were used as FDR�0.001 and fold change (Se treated/
not treated)� 1 or� -1. Lastly, GO and KEGG pathway analysis were done for the differen-
tially expressed genes according to the description above.

Results
The raw data of A. chrysochlorus RNA-seq were deposited in NCBI Gene Expression Omnibus
(GEO) database (accession number: GSE71097). We obtained a total of 108,123,354 raw reads
from two libraries (control and selenium-treated) using paired-end sequencing on Illumina
Hiseq 2000 platform. Totally, 9,358,590,780 clean nucleotide reads were generated from two
libraries. From these reads, a total of 83,273 unigenes were assembled and identified with a
total of 93,072,751 nt in length with an average of 1,118 nt. Then the numbers of unigenes were
determined via function annotation analysis and length distribution sizes of A. chrysochlorus
unigenes were calculated (Table 1 and S1 Fig). A total of 52,640 CDS were mapped to protein
database. Total raw reads for control and Se-treated samples were similar with 53,984,240 and
54,139,114, respectively (Table 2). It was determined that the clean reads were more than 95%
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in both samples. An average of 658,976-fold of sequencing depth was obtained (S1 and S2
Tables). The Q20 value of the reads were over 98% for both samples. Fig 1 summarizes the e-
value similarity and species distribution. According to the NR database similarity search, it was
found that 59.2 of the sequences showed high degree of similarity (<1e-45), 40.8% of the
sequences showed reasonable similarity (between 1e-5 and 1e-45). According to the similarity
distribution, 40.1% of the sequences showed more than 80% similarity with the sequences in
the database.

We also compared the transcriptome similarity between A. chrysochlorus and other closely-
related plant species. A total of 43.1% of A. chrysochlorus transcriptome were matched to Gly-
cine max (43.1%) followed byMedicago truncatula (39.7%) and Lotus corniculatus var. japoni-
cus (9.6%), respectively. For the COG classification, a total of 35,175 genes were categorized
into 25 classes (Fig 2). According to the number of genes, the most significant ones were gen-
eral function (6,278), replication, recombination and repair (3,846), transcription (3,101), post-
translational modification, protein turnover and chaperones (2,668) and signal transduction
mechanisms (2,429). According to the Gene ontology analysis, unigenes were sorted into 55
categories (Fig 3). In biological process category, cellular process, metabolic process and single
cell process ontologies were the top three gene ontology terms with the number of unigenes
25,641, 24,683 and 17,416, respectively. In the same category, biological adhesion, ryhtmic pro-
cess and locomotion were the last three GO terms with the number of unigenes 324, 233 and
31, respectively. In cellular component category, cell, cell part and oganelle terms were the top
three classes with 28,623, 28,622 and 23,094 unigenes. The last three categories were extracellu-
lar matrix part, extracellular region part and virion and virion part with the number of 26, 17,
and 18, respectively. Lastly, for molecular function category, binding, catalytic activity and
transporter activity were the top three GO terms with the number of unigenes 21,302, 20,560
and 2,578, respectively. The categories with the least three unigene numbers were metallocha-
perone activity (6), translation regulator activity (4) and protein tag (4), respectively. For
KEGG analysis, 31,003 unigenes were annotated with the pathway analysis and it is determined
that 3,549 of them were differentially expressed. These unigenes were annotated with 127 path-
ways according to KEGG analysis. The most significant unigene numbers that were detected,
were listed in Fig 4.Metabolic pathways are the first category with 828 differentially expressed
unigenes. Biosynthesis of secondary metabolites and plant-pathogen interaction are the second
and third categories with 429 and 263 differentially expressed unigenes, respectively.

Table 2. Sequencing statistics of Se-treated and untreated A. chrysochlorus callus tissues.

Samples Total Raw Reads Total Clean Reads Total Clean Nucleotides (nt) Q20 percentage N percentage GC percentage

Control 53,984,240 51,945,966 4,675,136,940 98.54% 0.00% 40.96%

Se-treated 54,139,114 52,038,376 4,683,453,840 98.49% 0.00% 41.74%

doi:10.1371/journal.pone.0135677.t002

Table 1. Annotation results of A. chrysochlorus unigenes according to different databases.

Database Number of Unigene Percentage

NR 53,960 90

NT 54,521 91

Swiss-prot 33,650 56

KEGG 31,003 51

COG 19,318 32

GO 40,599 68

doi:10.1371/journal.pone.0135677.t001
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To understand the effect of Se treatment on gene expression in A. chrysochlorus, we studied
the differentially expressed genes in control and Se-treated callus (Fig 5 and S3 Table). Se
treatment significantly up-regulated the expression of 4,539 genes (FDR� 0.001, log2 ratio�
1). On the other hand, 3,838 genes were downregulated significantly by Se treatment
(FDR� 0.001, log2 ratio�-1) (Fig 6). When we adjusted the fold change to ±2, 1311 genes
were found to be upregulated and 912 were found to be downregulated. Among these 1311
upregulated and 912 downregulated genes, 663 of upregulated ones and 309 downregulated
ones were annotated with nr database (S3 Table). We also did gene ontology analysis with the
differentially expressed genes to investigate the mechanisms that these genes may belong to
(Fig 7). These genes were classified into 59 categories (Fig 7). In biological process category,
cellular process, metabolic process and single cell process ontologies were the most abundant
categories with the number of unigenes 2887, 2830 and 2031, respectively. In cellular compo-
nent terms, cell, cell part and oganelle terms were again the top three categories with 3021,
3021 and 2331 unigenes. Finally, in molecular function category, binding, catalytic activity and
transporter activity were the most abundant GO terms with the number of unigenes 2529,
2408 and 331, respectively. According to the KEGG analysis that performed differentially
expressed genes, 20 pathways were determined.

Fig 1. Unigene annotation results according to the NR database. (A) The E-value distribution. (B) The similarity distribution. (C) The species distribution.

doi:10.1371/journal.pone.0135677.g001
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Fig 2. Functional classification of A. chrysochlorus unigenes according to COG database.

doi:10.1371/journal.pone.0135677.g002

Fig 3. GO functional classification of A. chrysochlorus unigenes.

doi:10.1371/journal.pone.0135677.g003
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Discussion
Next generation sequencing technologies has been becoming a powerful technology to illumi-
nate the new genes and their involved biochemical pathways in non-model plants. Using
RNA-seq, it has become easier to attain the transcriptome data of plant tissues or cells under
specific conditions. Astragalus plants are valuable and extensively studied because of their
properties, however there is little genetic information and transcriptomes. Here we studied the
transcriptome of secondary Se accumulator A. chryschlorus callus tissues under selenium sti-
muli to bring in new perspectives to selenium accumulation and tolerance. In our study, Illu-
mina Hi-seq sequencing generated totally 9,358,590,780 nucleotides. From these, we obtained
83,273 unigenes with a total of 93,072,751 nt in length with an average length of 1,118 nt for
each unigene. Our study identified much more uniqgenes in A. chryschlorus than that in A.
mebranaceus, a close-related plant species, in which a total of 15,167 contigs, 84,393 singletons,
and 9,893 unigenes were assembled [23]. Our results identified many new genes involving in
many new biochemical pathways, including Se tolerance and metabolism that have not been
illuminated up to now.

Fig 4. KEGG pathway annotation of unigenes related with Se-treated and untreated A. chrysochlorus calli metabolism.

doi:10.1371/journal.pone.0135677.g004
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miRNAs may regulate gene expression in response to Se stimuli
In our previous study, we found that miRNAs, an important gene regulator, play a potential
role in A. chrysochlorus during Se treatment [9]. In this study, we compared the expression of
miRNAs, identified in our previous study and miRNA expression, we found the adverse rela-
tionship between the expression of miRNAs and their targets (Fig 8). During Se treatment,
auxin response factor 8-like was upregulated while miR167 was downregulated; The expression
of omeobox-leucine zipper protein HOX32-like, Class III HD-Zip protein, DNA (cytosine-5)-
methyltransferase CMT3-like, F-box protein SKIP2-like protein was up-regulated by Se expo-
sure but based on the degradome data, their targeting miRNAs, miR166, miR166i, miR399k,

Fig 5. Differential expression level of Se-treated and untreated A. chrysochlorus callus tissues.Red and green colours represent up-regulation and
down-regulation of Se-treated vs. control genes, respectively. Blue colour means not differentially expressed genes.

doi:10.1371/journal.pone.0135677.g005
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Fig 6. The unigene numbers of Differentially Expressed Genes (DEGs). The red bar is up-regulated genes, and the blue bar is down-regulated genes in
Se-treatment vs. control sample respectively.

doi:10.1371/journal.pone.0135677.g006

Fig 7. GO enrichment terms as biological process, cellular component andmolecular function of differentially expressed genes by Se-treatment.

doi:10.1371/journal.pone.0135677.g007
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miR399h-5p, were down-regulated, respectively. In this study, we found that DAMAGED
DNA-BINDING 2, Disease resistance protein RGA2, protein argonaute 2-like, TIR-NBS-LRR
RCT1 resistance protein were repressed by Se exposure; in our previous study, we found their
targeting miRNAs; miR7767-3p, miR1507, miR7122b-5p and miR3633a-3p were induced by
Se treatment, respectively.

Se treatment induced the aberrant expression of many protein-coding genes in A. chryso-
chlorus callus tissues. Among the upregulated genes, there are different transcription factors,
including TCP13-like (5.64 fold), bZIP transcription factor (2.96 fold), putative transcription
factor bHLH041-like (2.87 fold), heat stress transcription factor A-3-like (2.84 fold), trihelix
transcription factor GT-3b-like (2.74 fold), B3 domain-containing transcription factor
VRN1-like (2.58 fold), probable WRKY transcription factor 32 (2.18 fold), transcription factor
bHLH130-like (2.15 fold), transcription factor bZIP (2.06 fold). Another study using Arabidop-
sis found that Se treatment induced the expression of ethylene responsive factors and WRKY
family transcription factors, Myb15 and zinc finger proteins [24]. It is known that these kinds
of transcription factors are related to plant development as well as plant response to different
types of stresses. In our study, we found that selenate treatment resulted in down regulation of
ethylene responsive factors. Another upregulated genes were auxin responsive factors such as
auxin-responsive protein IAA30-like (3.06 fold), auxin response factor 2-like (2.52 fold), auxin
response factor 5-like (2.02 fold). Van Hoewyk et al. [24] found that selenate treatment
decreased the level of auxin responsive proteins and this way reduced the plant development.
However, in our study, auxin-responsive protein IAA30 was upregulated and it is a transcrip-
tion factor that represses the early auxin responsive genes at low levels of auxins, even so auxin
responsive factor 2-like and auxin responsive factor 5-like proteins seem to be upregulated.
Auxin responsive factor 2 is known to be transcription activator/repressor that activates/
represses early auxin responsive genes. These early auxin responsive genes are related to plant

Fig 8. Se affectedmiRNAs and their targets in A. chrysochlorus calli based on the degradome data. ARF8 like: auxin response factor 8-like [Glycine
max], HOX32-like protein: homeobox-leucine zipper protein HOX32-like [Glycine max], Class III HD Zip protein: Class III HD-Zip protein [Medicago
truncatula], CMT-3 like protein: DNA (cytosine-5)-methyltransferase CMT3-like [Glycine max], F-Box: F-box protein SKIP2-like [Glycine max], Damage DNA
Binding 2: protein DAMAGED DNA-BINDING 2 [Glycine max], RGA2: Disease resistance protein RGA2 [Medicago truncatula], AGO-2: protein argonaute
2-like [Glycine max], TIR- NBS-LRR: TIR-NBS-LRR RCT1 resistance protein [Medicago truncatula]. Blue color: upregulated, red color: downregulated.

doi:10.1371/journal.pone.0135677.g008
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growth and development [25]. However auxin responsive factor 5 is known to be a transcrip-
tion activator. ABC transporter family proteins are known to be involved in growth, nutrition,
development, abiotic stress response, and environment-plant interaction [26]. In our study
ABC transporter family B member, B member 1-like, B member 1-like isoform 2, B member
11-like, B member 28-like proteins, ABC transporter family C member, C member 5-like, ABC
transporter family G member, G member like-28 were all upregulated between 2 to 11 folds.
On the other hand, ABC transporter family A member 2 and member 7, family G member 5
were downregulated between 2,8 and 2.03 folds. ABC transporter family proteins are involved
in detoxification and transport processes in plants [26] and when considered from this aspect,
it is not surprising to detect these genes in cells after selenium treatment. Se and selenocom-
pounds could be toxic for most the plants and Astragalus plants are known to tolerate high lev-
els of Se, also in our previous study, A. chrysochlorus was found to be secondary accumulator.
Another interesting finding is the alteration in expression of disease resistance genes, cc-nbs-
lrr (coiled-coil nucleotide-binding site leucine-rich repeat) resistance genes and tir-nbs-lrr
(Toll/interleukin-1 receptor nucleotide-binding site leucine-rich repeat) resistance genes.
These resistance proteins are involved in pathogen recognition [27]. It was found that while

Fig 9. Significantly affectedmetabolisms of A. chrysochlorus callus tissues with selenium treatment according to KEGG pathway analysis.

doi:10.1371/journal.pone.0135677.g009
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some of these resistance genes were upregulated, some of them were downregulated. The
majority of the downregulated resistance genes were tir-nbs-lrr and cc-nbs-lrr genes. However
among the upregulated ones, there were multidrug resistance ABC transporter gene, TMV
resistance gene besides tir-nbs-lrr and cc-nbs-lrr genes. A study showed that several disease
and stress induced proteins were upregulated in Arabidopsis [24]. It seems that calcium related
genes were upregulated in Se treated callus tissues in A. chrysochlorus. The upregulated genes
were annotated with calcium-dependent protein kinases, calcium-dependent protein kinase
20-like. These types of plant kinases bind calcium ions and phosphorylate metabolites which
are related to many cellular mechanisms such as hormone response and stress signaling path-
ways [28]. Other genes related to calcium were type IIB calcium ATPase, calcium-transporting
ATPase 4 plasma membrane-type-like, calcium-transporting ATPase 9 plasma membrane-
type-like proteins. These proteins also are involved in adaptation to stressors by altering the
calcium concentrations [29]. According to the Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes database pathway analysis, Se affected metabolic pathways and genes
such as ABC transporters, plant pathogen interaction, phenylalanine metabolism, biosynthesis
of secondary metabolites, flavone and flavonol biosynthesis, flavonoid biosynthesis, plant circa-
dian rhythm, glycolysis/gluconeogenesis and endocytosis genes (Fig 9). The metabolites that
may help to adapt the environment were thought to be produced by flavone and flavonol bio-
synthesis, flavonoid biosynthesis pathways (Figs 10 and 11). It seems that in flavon and

Fig 10. Flavone and Flavonol Biosynthesis pathway involved in Se-treated A. chrysochlorus calli.Red boxes and green boxes represent up-regulated
and down-regulated genes, respectively.

doi:10.1371/journal.pone.0135677.g010
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flavonol biosynthesis pathway, flavonol-3-O-rhamnosyltransferase was upregulated and flavo-
nol 3-O-glucosyltransferase was downregulated by Se treatment (Fig 10). In flavonoid biosyn-
thesis pathway, chalcone synthase, chalcone isomerase, trans-cinnamate 4-monooxygenase,
naringenin 3-dioxygenase and coumaroylquinate (coumaroylshikimate) 3'-monooxygenase
were determined as downregulated while bifunctional dihydroflavonol 4-reductase/flavanone
4-reductase and leucoanthocyanidin reductase were found to be upregulated (Fig 11). These
metabolic pathways are all somewhat related to environmental adaptation and stress response
[30]. Basically, in our previous study, it was determined that plant pathogen interaction path-
way is affected by miRNAs under Se stress [9]. Here in this study, we confirm that the expres-
sion of the genes in this pathway were affected by Se. Besides this fact, it was an intriguing
finding to detect other pathways and genes associated with responses to environmental stimuli.

In conclusion, we assembled for the first time the transciptome of A. chrysochlorus de novo.
We also studied the expression difference of genes responsive to Se exposure. Our results
showed that A. chrysochlorus sequences are mostly similar to G.max (43.1%) andM. trunca-
tula (39.7%). We detected total of 1,311 genes were upregulated by Se treatment awhile 912 of
genes were down-regulated genes. ABC transporters, plant pathogen interaction, biosynthesis

Fig 11. Flavonoid Biosynthesis pathway involved in Se-treated A. chrysochlorus calli.Red boxes and green boxes represent up-regulated and down-
regulated genes, respectively.

doi:10.1371/journal.pone.0135677.g011

RNA-Seq in Astragalus chrysochlorus

PLOSONE | DOI:10.1371/journal.pone.0135677 October 2, 2015 13 / 16



of secondary metabolites genes are affected by Se stimuli in A. chrysochlorus. We believe that
our results enable a new intellection about elucidating the cellular processes about Se accumu-
lation and tolerance in plants.
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