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Abstract

Switchgrass (Panicum virgatum L.) is a perennial grass undergoing development as a biofuel feedstock. One of the most
important factors hindering breeding efforts in this species is the need for accurate measurement of biomass yield on a per-
hectare basis. Genomic selection on simple-to-measure traits that approximate biomass yield has the potential to
significantly speed up the breeding cycle. Recent advances in switchgrass genomic and phenotypic resources are now
making it possible to evaluate the potential of genomic selection of such traits. We leveraged these resources to study the
ability of three widely-used genomic selection models to predict phenotypic values of morphological and biomass quality
traits in an association panel consisting of predominantly northern adapted upland germplasm. High prediction accuracies
were obtained for most of the traits, with standability having the highest ten-fold cross validation prediction accuracy (0.52).
Moreover, the morphological traits generally had higher prediction accuracies than the biomass quality traits. Nevertheless,
our results suggest that the quality of current genomic and phenotypic resources available for switchgrass is sufficiently
high for genomic selection to significantly impact breeding efforts for biomass yield.
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Introduction

Switchgrass (Panicum virgatum L.) is undergoing development

as a biofuel feedstock due to its high biomass yield, broad

adaptation, perennial growth habit, and long-standing presence in

the seed industry [1]. Once inhabiting prairie and savanna

ecosystems from Canada to Mexico and east of the Rocky

Mountains, native switchgrass is now confined to thousands of

prairie and savanna remnants that range in size from a few plants

to a few hundred hectares [2]. Driven largely by photoperiod and

temperature, latitude is the principal source of adaptive pheno-

typic variability across a broad landscape [3,4].

Switchgrass contains three principal taxa: a tetraploid

(2n = 4x = 28) lowland ecotype, a tetraploid upland ecotype, and

an octoploid (2n = 8x = 56) upland ecotype [5]. Upland ecotypes

originated from upland prairie and savanna habitats that were

frequently exposed to drought, especially toward the western

portion of the range [6]. Lowland ecotypes originated in low-lying

riverine or lacustrine habitats that were exposed to seasonal wet

periods [6]. Upland ecotypes tend to be more northern adapted,

while lowland ecotypes tend to be more southern adapted, with a

transition zone where both can be found, sometimes within a

single prairie or savanna remnant [5]. Upland and lowland

ecotypes are highly cross-fertile and significant gene flow has

occurred between the ecotypes during glacial maxima of the past

million years [7]. Ploidy is the secondary taxonomic division

within the species, primarily within the upland ecotype; lowland

plants at the octoploid level are rare [8]. Gene flow has occurred

between tetraploid and octoploid levels, largely by 2n gametes (4x

to 8x) or haploidy (8x to 4x), but at relatively low frequencies due

to the role of ploidy as a hybridization barrier [9].

Since the establishment of switchgrass as the herbaceous model

species for cellulosic biofuel feedstock development in 1992 [1], a

total of 12 breeding programs have been developed in North

America [5]. Due to phenotypic differences among the three

principal taxa and to the magnitude of adaptive phenotypic

variation for flowering time and temperature (cold and heat)

tolerance, there is very little overlap or duplication among these

breeding programs. Collectively, their target population of

environments covers eastern North America, but their individual
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target regions are realistically broken down into a minimum of

eight regional gene pools or cultivar deployment zones [5].

Because adaptive phenotypic variation is a strong driver of both

adaptation and production traits, genotype 6 environment

interactions are a dominant force and individual cultivars are

rarely adapted to more than three hardiness zones, as defined by

[10].

Due to the length of the breeding cycle and the need for

frequent (perhaps constant) phenotypic assessment of adaptive

traits, few cultivars have been developed with documented

improvement in biomass production traits. ‘Liberty’ is the most

notable example, demonstrating both an increase in biomass yield

and broader adaptation into USDA hardiness zone 3 [11]. Recent

advances in the development of genomic tools for measuring and

quantifying DNA marker diversity and sophisticated statistical

tools to associate marker variation with phenotypic variation have

the potential to revolutionize switchgrass breeding methodology

[12]. Switchgrass breeding is complicated by the perennial nature

of the species and the need for accurate measurement of biomass

yield on a per-hectare basis, the single trait that is most limiting for

sustainable and economically viable biomass production [13].

Simple-to-measure surrogate traits are needed to speed up the

breeding cycle. Genomic selection [14,15] offers such an

opportunity by developing predictive equations that allow breeders

to measure DNA markers on seedlings and to predict which

seedlings will have the highest biomass yield potential as adult

plants [12].

The potential of genomic selection for improving the effective-

ness of breeding programs has been successfully demonstrated in

livestock [16–18], annual crops [19–23], and forest trees [24–26].

In these species, genomic selection has been shown to increase

selection accuracy, reduce evaluation cost per genotype, and

reduce breeding cycle time compared to phenotypic selection.

More specifically, a recent evaluation of genomic selection

methods concluded that genomic selection for perennial biofuel

crops, such as switchgrass, is most advantageous when biomass

yield on a per-hectare basis is difficult or expensive to measure,

when it is difficult or impossible to apply meaningful selection

pressure on plants within families, and when cycle times are .5

years, which is typically the case with switchgrass [12].

The purpose of this study was to explore the potential for

genomic selection to increase the breeding cycle in switchgrass,

particularly for seven morphological traits and 13 biomass quality

traits. For most of these traits, reasonably high prediction

accuracies were obtained. Our analysis was conducted within an

association panel of 515 genotypes defined as a random sample of

switchgrass from the northern USA gene pools. The population

was evaluated using a set of 16,669 single nucleotide polymor-

phisms (SNPs) obtained using genotyping by sequencing (GBS)

techniques [27,28] that were subsequently mapped to the recently

available Panicum virgatum genome sequence v1.1 reference

genome [29].

Materials and Methods

Germplasm
We analyzed the switchgrass association panel described in [27].

Briefly, this panel included 66 diverse switchgrass populations

derived from predominantly northern adapted upland germplasm.

Both tetraploid and octoploid germplasm were included. This

panel was grown from seed planted at the greenhouse in the

USDA-ARS Dairy Forage Research Center in Madison, Wiscon-

sin in 2007. Ten clones or genotypes from each population were

vegetatively propagated, then planted in Ithaca, New York in 2008

in a randomized complete block design with two replicates.

Subsequently, a total of 540 plants from the Ithaca location were

used for genotypic and phenotypic evaluation.

Morphological traits
The association panel was evaluated for seven morphological

traits in 482 of the plants grown in Ithaca, NY during the 2009,

2010, and 2011 field seasons. These traits included anthesis date,

heading date, standability, leaf length, leaf width, plant height, and

total plant height. Descriptions of how each of these traits was

measured are presented in Table 1, and the tools used to obtain

the measurements are described at http://www.maizegenetics.

net/phenotyping-tools [30]. Prior to subsequent analysis, the

heading and anthesis dates were converted to growing degree days

(GDD) as follows:

1) The first day in which GDD was recorded occurs the day after

the first five consecutive days where the average temperature

is .32u F.

2) After this day, GDD for a single day is calculated as:

Adj:MinzAdj:Maxð Þ=2½ �{32

where Adj. Min is the maximum of the minimum daily

temperature and 32uF, and Adj.Max is the minimum of the

uF. Intuitively,

Adj. Min and Adj.Max limits the recorded minimum and

uF and 86uF, respectively.

3) For each day after the first day in which GDD is recorded, the

cumulative GDD is also recorded. The cumulative GDD is

used to record heading date and anthesis date.

Biomass Quality traits
Near-infrared reflectance spectroscopy (NIRS, described in

[31]) was used to estimate 42 biomass quality traits for a total 515

genotypes grown during two field seasons at the Ithaca, NY

location. Samples were ground in Ithaca, NY, shipped to Madison,

WI, and scanned on an NIRS unit at the U.S. Dairy Forage

Research Center, as described in [31]. A total of 42 biomass

quality traits were predicted using equations developed by [31],

but only 13 of those traits were analyzed in this study due to their

direct relevance and practical value in a breeding program focused

on improving conversion efficiency, and to minimize redundancy

from collinear traits. Specifically, these traits include acid

detergent lignin, minerals (total ash), carbon, high heating value,

cell wall concentration, ethanol/g dry forage, etherified ferulates,

in vitro dry matter digestibility, pentose sugars release/g dry

forage, total soluble carbohydrates, starch, sucrose, and total

sugar. No sample had an H-statistic .3.0, indicating that none of

the samples could be classified as outliers.

Description of SNPs
The Universal Network-Enabled Analysis Kit (UNEAK)

discovery pipeline [27] was used to generate 29,221 SNPs with a

minimum call rate of 0.5 and minimum minor allele frequency

(MAF) of 0.05 among the 540 plants grown at the Ithaca location.

These SNPs were then aligned to the Panicum virgatum genome

sequence v1.1 [29]. The resulting 16,669 uniquely aligned SNPs

were used for subsequent analysis.

Genomic Selection Study in Switchgrass
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Phenotypic evaluation
A subset of the 540 plants that yielded sufficient biomass for at

least one field season was evaluated for morphological and quality

traits. Specifically, 482 plants were evaluated for seven morpho-

logical traits and 515 plants were evaluated for 13 quality traits. All

20 traits were examined for outliers using Studentized deleted

residuals [32] from a mixed linear model including year, field,

block, and population as random effects in SAS version 9.3 [33].

For each trait, best linear unbiased predictors (BLUPs) were

obtained for each line across years and replicates, using a mixed

linear model fitted in ASReml version 3.0 [34]. Details of the

model fitting procedure have been described in [35]. The

relationship between each of these BLUPs was then evaluated

using the Pearson correlation coefficient (r). Variance component

estimates from the model used to obtain BLUPs were also used to

estimate repeatability on a clone mean basis (ĥh2
l ) [36,37]. These

repeatability estimates are upper bounds of the heritabilities for

each trait. The delta method was used to approximate the

standard error of the repeatability estimates [36]. Finally, the Box-

Cox procedure [38] was implemented to find the optimal

transformation of the BLUPs, as described in [39].

Genomic Selection
Prior to evaluating the genomic selection models, missing allelic

values among the 16,669 SNPs anchored to the Panicum virgatum

genome sequence v1.1 reference genome were imputed using

fastPhase version 1.4.0 [40]. The allele frequencies of these SNPs

were calculated among the 482 plants evaluated for the

morphology traits and again among the 515 plants evaluated for

the quality traits. Within each of these two subsets, SNPs with

MAF ,0.05 were removed. Consequently, 11,857 SNPs were

used in the genomic selection models for the morphology traits,

and 12,180 SNPs were used in the models for the quality traits.

To assess the capability of our imputed markers to predict

morphological and quality trait values, three genomic selection

approaches were tested, namely ridge regression-best linear

unbiased prediction (RR-BLUP) [14], least absolute shrinkage

and selection operator (LASSO) [41], and elastic net [42].

Although these three approaches have been shown to produce

similar results in practice (e.g., [21]), the performance of each

approach could depend on the genetic architecture of the

evaluated traits. Specifically, RR-BLUP should theoretically

outperform LASSO for complex traits, while LASSO should be

superior for simpler traits. The elastic net, whose penalty is a

weighted average of the penalties of RR-BLUP and LASSO, is

considered to be a compromise between the two approaches. In

this study, the mixing parameter for the elastic net was set to

a= 0.5, meaning that the RR-BLUP and LASSO penalties were

given equal weights. The RR-BLUP approach was conducted

using the rrBLUP package [43] in the R programming language

Table 1. Phenotyping protocol for seven morphology traits measured in three summer environments, in Ithaca, NY across three
years.

Trait Name (units) Trait Description Measured in Following Years

Anthesis Date 50% of panicles have 50% open florets 2009–2011

Heading Date at least 50% of stems are 50% emerged (panicle branches still upright, just starting to spread) 2009–2011

Standability 0 = prostrate 2010–2011

10 = upright

Leaf length (mm) Leaf below flag; base to tip 2009–2011

Leaf width (mm) Leaf below flag; widest part 2009–2011

Plant Height (cm) Base of longest flowering stem to the node at the base of the panicle 2009–2011

Total Plant Height (cm) Base of the longest flowering stem to the tip of the panicle 2009–2011

-
doi:10.1371/journal.pone.0112227.t001

Table 2. Means and ranges for best linear unbiased predictors (BLUPs) of seven morphological traits evaluated on a switchgrass
association panel, and estimated repeatability on a clone-mean basis in three summer environments, in Ithaca, NY across three
years.

Trait No. Lines BLUP Mean BLUP SDb BLUP Range Repeatability Repeatability SEc

Anthesis Date (GDDa) 481 3840.53 450.21 2630.25–5272.48 0.93 0.01

Heading Date (GDD) 482 2870.47 343.81 2111.75–4547.04 0.91 0.01

Standability (0–10 scale) 481 5.36 1.60 1.47–8.59 0.88 0.01

Leaf Length (mm) 482 528.88 73.30 294.62–708.48 0.85 0.02

Leaf Width (mm) 482 13.32 1.91 6.56–20.75 0.82 0.02

Plant Height (cm) 482 88.78 16.45 44.75–146.16 0.75 0.03

Total Plant Height (cm) 482 162.22 20.24 105.43–222.81 0.85 0.02

aGDD, Growing degree dates
bSD, Standard deviation
cSE, Standard error
doi:10.1371/journal.pone.0112227.t002
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[44], while LASSO and elastic net were conducted using the

glmnet R package [45].

For any genomic selection model, it is important to ensure that

SNP effects arising from overall differences in population structure

are factored out [17]. Given the genetic differences attributable to

the observed ecotypes and ploidies in our association panel, it is

crucial to account for such SNP effects prior to conducting our

genomic selection study. Based on the results presented in [27], we

hypothesized that the first two principal components (PCs) of a

principal component analysis (PCA) of the 16,669 SNPs imputed

with fastPhase would sufficiently account for these genetic

differences. Accordingly, we fitted a model to each trait where

the trait was the response variable and the first two PCs from the

PCA of these SNPs were the explanatory variables. The residuals

from each model were used for genomic selection.

The performance of each model was assessed through ten-fold

cross validation, as described in [46]. Briefly, the association panel

was partitioned into ten equally-sized subgroups. Nine of the ten

subgroups (i.e., the training set) were used to fit each prediction

model while the remaining subgroup (the prediction set) was used

to assess the correlation between the observed and predicted trait

values. This process was repeated ten times, with each subgroup

being the prediction set exactly once. For each trait, prediction

accuracies were calculated by dividing the average Pearson’s

correlation coefficient across the ten folds by the square root of the

repeatability [25]. To prevent inflated prediction accuracies

arising from clones nested within populations, the data were

partitioned for ten-fold cross validation so that none of the

populations were in both the training and prediction sets. All

phenotypic and genotypic data used to conduct this analysis are

included in File S1.

Results

Extensive Phenotypic Variability among Clones
Substantial variation was observed for each of the seven

morphological traits, with differences between minimum and

maximum values of each trait ranging from 2-fold for anthesis date

to 5.84-fold for standability (Table 2). In general, the majority of

the morphological traits were highly correlated, with the strongest

Pearson’s correlation being between heading date and anthesis

date (r = 0.92; Table S1). High correlations between leaf width,

plant height, and total plant height were also observed (Pearson

correlations ranging from r = 0.53 to r = 0.88). The average

repeatability among the seven morphological traits was 0.86, with

a range from 0.75 for plant height to 0.93 for anthesis date

(Table 2). These high repeatabilities suggest that the majority of

the phenotypic variation is attributable to genetic effects, and that

genomic selection could be a useful breeding approach for

morphological traits in switchgrass.

In comparison to the morphological traits, a greater range of

fold differences between the minimum and maximum values of

each trait was observed for the quality traits (Table 3). Although

many of the correlations between the quality traits were generally

Table 3. Means and ranges for best linear unbiased predictors (BLUPs) of 13 quality traits evaluated on a switchgrass association
panel, and estimated repeatability on a clone-mean basis in two summer environments, in Ithaca, NY, across two years.

Trait (mg/g) No. Lines BLUP Mean BLUP SDa BLUP Range Repeatability Repeatability SEb

Acid detergent lignin 514 75.62 5.45 61.47–90.02 0.81 0.02

Minerals (total ash) 514 69.20 4.60 54.47–83.62 0.67 0.03

Carbon 514 443.86 2.19 438.78–452.85 0.67 0.03

High Heating Value 514 4182.59 17.6 4136.14–4237.54 0.76 0.02

Cell wall concentration 514 673.11 47.31 564.12–832.92 0.87 0.01

Ethanol/g dry forage 514 82.73 7.46 60.83–106.78 0.78 0.02

Etherified ferulates 514 0.88 0.10 0.64–1.28 0.83 0.48

In vitro dry matter digestibility 514 410.54 35.16 311.86–494 0.82 0.01

Pentose sugars release/g dry forage 515 191.29 8.30 167.13–218.05 0.77 0.02

Total soluble carbohydrates 514 51.27 8.58 29.22–74.16 0.71 0.03

Starch 514 6.35 2.72 0.67–17.27 0.59 0.04

Sucrose 514 28.29 5.71 13.71–45.13 0.72 0.02

Total sugar 514 625.44 19.01 572.91–691.56 0.79 0.02

aSD, Standard deviation
bSE, Standard error
doi:10.1371/journal.pone.0112227.t003

Figure 1. First two principal components of 16,669 single
nucleotide polymorphisms separate plants by ploidy and
ecotype. The first and second principal components (x- and y-axis,
respectively) from a principal component analysis of 540 switchgrass
closes separate octoploid (8X) and upland tetraploid (4X) accessions
from lowland 4X accessions. The lowland accessions are also separated
into two distinct clusters.
doi:10.1371/journal.pone.0112227.g001
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lower than those between the morphology traits, some individual

quality traits were strongly correlated. For example, a Pearson

correlation coefficient of r = 0.95 was observed between sucrose

and total soluble carbohydrates (Table S2). Although lower than

observed among the morphology traits, the estimated repeatabil-

ities of the quality traits were sufficiently high enough to merit

investigation into the utility of genomic selection.

First Two Principal Components of SNPs Sufficiently
Account for Ploidy and Ecotype Differences

The first two PCs of the imputed GBS markers subdivided the

plants used in this study into three genetically distinct subgroups

(Figure 1). Specifically, the octoploid and upland tetraploid plants

were clustered into one group, while the lowland tetraploid plants

were subdivided into two distinct clusters. Collectively, these

results suggest that the first two PCs of the SNPs capture a

substantial amount of the major genetic differences between the

ploidies and ecotypes of the plants included in our association

panel. Moreover, these results justify our use of the first two PCs to

factor out the SNP effects arising from overall population structure

differences prior to conducting our genomic selection study.

Genomic Selection has Considerable Potential in
Switchgrass

As expected, the observed prediction accuracies were similar

across the three GS approaches (Tables 4–5). The predictive

ability of the morphological traits were generally higher than those

of the quality traits, with the highest prediction accuracies

Table 4. Prediction accuracies of seven morphological traits in a switchgrass association panel.

Trait Mean prediction accuracy Prediction accuracy: RR-BLUPa Prediction accuracy: Elastic net
Prediction
accuracy: LASSOb

Anthesis Date 0.44 0.55 (0.21) 0.38 (0.23) 0.38 (0.23)

Heading Date 0.36 0.39 (0.14) 0.34 (0.20) 0.34 (0.19)

Standability 0.52 0.51 (0.27) 0.53 (0.19) 0.52 (0.19)

Leaf Length 0.40 0.55 (0.21) 0.34 (0.30) 0.32 (0.29)

Leaf Width 0.19 0.32 (0.29) 0.13 (0.24) 0.13 (0.24)

Plant Height 0.25 0.34 (0.18) 0.21 (0.26) 0.20 (0.26)

Total Plant Height 0.15 0.30 (0.28) 0.09 (0.19) 0.06 (0.19)

Standard errors of prediction accuracies are provided in parentheses.
Mean prediction accuracies were obtained by averaging results across ridge regression best linear unbiased prediction (RR-BLUP), least absolute shrinkage and selection
operator (LASSO), and elastic net analysis.
aRR-BLUP, Ridge regression-best linear unbiased prediction
bLASSO, Least absolute shrinkage and selection operator
doi:10.1371/journal.pone.0112227.t004

Table 5. Prediction accuracies of 13 quality traits in a switchgrass association panel.

Trait Mean prediction accuracy Prediction accuracy: RR-BLUPa Prediction accuracy: Elastic net

Prediction
accuracy:
LASSOb

Acid detergent lignin 0.34 0.41 (0.25) 0.31 (0.21) 0.30 (0.21)

Minerals (total ash) 20.08 20.09 (0.18) 20.06 (0.13) 20.10 (0.15)

Carbon 0.12 0.21 (0.25) 0.09 (0.27) 0.07 (0.27)

High Heating Value 0.22 0.26 (0.14) 0.21 (0.16) 0.20 (0.17)

Cell wall concentration 0.23 0.30 (0.23) 0.21 (0.19) 0.19 (0.18)

Ethanol/g dry forage 0.43 0.46 (0.20) 0.42 (0.20) 0.41 (0.21)

Etherified ferulates 0.22 0.27 (0.23) 0.20 (0.16) 0.19 (0.15)

In vitro dry matter digestibility 0.35 0.43 (0.27) 0.32 (0.25) 0.30 (0.25)

Pentose sugars release/g dry forage 0.06 0.15 (0.20) 0.03 (0.26) 0.01 (0.25)

Total soluable carbohydrates 0.30 0.39 (0.21) 0.26 (0.23) 0.25 (0.23)

Starch 0.08 0.19 (0.26) 0.03 (0.16) 0.03 (0.15)

Sucrose 0.32 0.44 (0.20) 0.26 (0.24) 0.25 (0.24)

Total sugar 0.04 0.16 (0.17) 0.00 (0.14) 20.03 (0.17)

Standard errors of prediction accuracies are provided in parentheses.
Mean prediction accuracies were obtained by averaging results across ridge regression best linear unbiased prediction (RR-BLUP), least absolute shrinkage and selection
operator (LASSO), and elastic net analysis.
aRR-BLUP, Ridge regression-best linear unbiased prediction
bLASSO, Least absolute shrinkage and selection operator
doi:10.1371/journal.pone.0112227.t005
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(averaged across all three tested GS models) obtained for

standability (0.52), anthesis date (0.44), ethanol/g dry forage

(0.43), leaf length (0.40), and heading date (0.36). We also obtained

relatively strong positive Spearman’s rank correlation coefficients

between repeatabilities and unstandardized prediction accuracies

for both the morphology (rSP = 0.61) and the quality (rSP = 0.44)

traits. Consistent with the findings of previous studies (e.g., [25]),

this result suggests that all three GS approaches successfully use

the larger genetic contribution to phenotypic variability of the

more heritable traits to obtain higher prediction accuracies.

Discussion

We evaluated the ability of three popular genomic selection

approaches to predict the phenotypic values of seven morpholog-

ical traits and 13 quality traits in a switchgrass association panel.

Such a study is important because the successful application of

genomic selection to switchgrass could significantly reduce the

breeding cycle of this important biofuel feedstock. In general, our

prediction accuracies are comparable to those reported in previous

studies (e.g., [17] and [23]) that identified quantifiable advantages

of genomic selection compared to traditional breeding programs.

For perennial grasses such as switchgrass, one important quantity

to consider is the expected genetic gain per unit of time. Because

genomic selection does not require on-site phenotyping to identify

accessions with superior trait values, multiple cycles of breeding

could be completed with a genomic selection breeding program

during the same amount of time required to achieve one cycle of

breeding using traditional breeding programs [17,23]. For

instance, it is demonstrated in [23] that it is possible for genomic

selection breeding programs in maize and winter wheat to

respectively achieve three cycles and two cycles of breeding

during the same amount of time to complete one cycle of marker-

assisted selection breeding. Moreover, the same study concluded

that the expected genetic gain per year from a genomic selection

breeding program will exceed that of a marker-assisted selection

breeding program for traits with prediction accuracies as low as

0.20 in maize and 0.30 in winter wheat. Because many of our

tested traits had prediction accuracies that exceed these thresholds,

we believe that it is possible for similar advantages in expected

genetic gain per unit of time to be achieved in switchgrass genomic

selection breeding programs.

To our knowledge, the genetic architectures of the traits we

evaluated are unknown in switchgrass. In particular, little is known

about the number of genes underlying each trait. Therefore, we

used three genomic selection models that have been hypothesized

to perform differently under various genetic architectures. In

general, we obtained similar prediction accuracies for all three

genomic selection models. This result is especially apparent if we

consider the standard errors of the prediction accuracies. Suppose

we use the prediction accuracies and their standard errors from

each genomic selection model (presented in Tables 4 and 5) to

construct 95% confidence intervals. For each trait, the confidence

intervals from the three genomic selection approaches overlap.

This suggests that there are no discernible differences in prediction

accuracies among the three genomic selection models. Indeed, this

finding has been reported in other studies (e.g. [46]) and is

theoretically justified in [47]. Nevertheless, we recommend

repeating our study because we anticipate that the sampling,

genotyping, and phenotypic resources available to the switchgrass

community will continue to expand and improve, and it is

imperative to confirm that these conclusions still hold given the

new information we expect to obtain from these resources.

We observed a wide range of prediction accuracies across the

traits. We suspect that this result was obtained because our

markers provided incomplete coverage of the switchgrass genome,

and it is likely that they tagged only a subset of the loci underlying

the genetic sources of variation for each trait. It is therefore

plausible that traits with higher prediction accuracies have causal

loci that were in higher linkage disequilibrium with our markers

compared to traits with lower prediction accuracies. Nonetheless,

the prediction accuracies for many of the studied traits were

suitably high enough to justify further investigation into the

application of genomic selection to switchgrass breeding programs.

Indeed one major factor contributing to our observed prediction

accuracies was the availability of the Panicum virgatum genome

sequence v1.1 reference genome. Because of this reference

genome, we were able to use genotypic information from

neighboring markers to impute missing genotypic data, and

ultimately obtain substantial increases in the predictive abilities of

our genomic selection models. Thus, we strongly recommend that

switchgrass genomic selection breeding programs only use markers

that are anchored to a reference genome. This will enable accurate

imputation of missing data, and should ultimately result in

genomic selection models with higher predictive abilities.

In general, lower prediction accuracies were obtained for the

biomass quality traits relative to the morphology traits. We suspect

that this result could have arisen from two different sources. In

contrast to the morphological traits, the process of obtaining the

quality traits was a lengthy procedure that was conducted in the

laboratory. As such, it is possible that a greater amount of

variability was introduced into the quality traits, which ultimately

resulted in lower prediction accuracies. Factors such as spatial

variability in the field, diurnal variation in biomass quality traits

manifested by variation in sampling time, variation in grinding

time and blade sharpness, and moisture content of the samples

may all introduce variability to the measurement of biomass

quality traits.

Our study suggests that the implementation of genomic

selection approaches to switchgrass breeding programs will be

highly beneficial. We believe that such an approach will

revolutionize switchgrass breeding programs just as it has in at

least four dairy cattle breeding programs [17]. Indeed, the large

body of theoretical and empirical studies conducted in plant and

animal species [15,22,25,46,48,49] suggests that genomic selection

is a cost-effective approach that will substantially speed up

breeding cycles, and we expect that these advantages will

significantly benefit the development of switchgrass as a biofuel

feedstock. As high as the prediction accuracies were in our study,

we expect them to increase as more attention is focused on the

characterization and exploitation of switchgrass phenotypic and

genotypic resources. Specifically, we believe that increased

prediction accuracies will arise from improvements to the

switchgrass reference genome, improvements in phenotyping

techniques, and the development of markers with higher levels

of genomic coverage and density.

Supporting Information

Table S1 Correlation matrix for untransformed BLUPs
of the seven morphological traits. Pearson correlation

coefficients are presented in the upper triangle, and the P-values

for the significance of associations are in the lower triangle.

(XLS)

Table S2 Correlation matrix for untransformed BLUPs
of the 13 quality traits. Pearson correlation coefficients are
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presented in the upper triangle, and the P-values for the

significance of associations are in the lower triangle.

(XLS)

File S1 Data files used to conduct analysis. All files used to

conduct the genomic selection analysis are included in this file.

(ZIP)
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