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Abstract

Protein interaction networks are a promising type of data for studying complex biological systems. However, despite the
rich information embedded in these networks, these networks face important data quality challenges of noise and
incompleteness that adversely affect the results obtained from their analysis. Here, we apply a robust measure of local
network structure called common neighborhood similarity (CNS) to address these challenges. Although several CNS
measures have been proposed in the literature, an understanding of their relative efficacies for the analysis of interaction
networks has been lacking. We follow the framework of graph transformation to convert the given interaction network into
a transformed network corresponding to a variety of CNS measures evaluated. The effectiveness of each measure is then
estimated by comparing the quality of protein function predictions obtained from its corresponding transformed network
with those from the original network. Using a large set of human and fly protein interactions, and a set of over 100 GO terms
for both, we find that several of the transformed networks produce more accurate predictions than those obtained from the
original network. In particular, the HC:cont measure and other continuous CNS measures perform well this task, especially
for large networks. Further investigation reveals that the two major factors contributing to this improvement are the
abilities of CNS measures to prune out noisy edges and enhance functional coherence in the transformed networks.
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Introduction

Protein interaction networks are one of the most promising

types of data for studying complex biological problems, such as

identifying disease-related proteins and networks [1–3] and finding

functional modules and functions of individual proteins [4,5]. In

particular, since functionally related proteins tend to be highly

inter-connected in these networks, several approaches like

neighborhood-based prediction [6] and FunctionalFlow [7] have

been proposed for predicting the functions of unannotated

proteins using this type of data [5].

However, despite the rich information embedded in protein

interaction networks, they face several data quality challenges that

adversely affect the results obtained from their analysis. One such

pervasive problem is noise in the data, which manifests itself

primarily in the form of spurious or false positive interactions [8,9].

Studies have shown that the presence of noise in these networks

has significant adverse affects on the performance of several types

of analyses, including protein function prediction algorithms [10].

Another important problem facing the use of these networks is

their incompleteness, i.e., the absence of biologically valid

interactions from the currently available data sets [8,9,11]. This

lack of completeness is mainly caused by the specific targeting of

bait and prey proteins by individual studies (based on criteria such

as functional annotations), which can only generate relatively small

samples of the entire interactome of an organism. Not surprisingly,

the incompleteness of such valuable data leads to missed biological

insights that could be valuable [12,13]. Thus, noise (false positives)

and incompleteness (false negatives) are major challenges facing

protein interaction data that need to be addressed in order to

obtain richer information from them.

Here, we apply a set of techniques that make use of the local

structure of an interaction network to address these challenges. For

the purpose of explaining and implementing these techniques, we

represent a protein interaction network as an undirected graph,

with proteins being represented by nodes and interactions by edges

(For this reason, the sets of terms (‘‘network’’, ‘‘graph’’),

(‘‘protein’’, ‘‘node’’) and (‘‘interaction’’, ‘‘edge’’) will be used

interchangeably in this paper.). We also assume that weights

reflecting the reliability of individual interactions are assigned to

the corresponding edges. Most analyses of protein interaction

networks are based on this representation, and focus on the direct

interactions connecting two nodes.
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In addition to the direct interactions, the structure of the entire

protein interaction network provides information about several

other types of higher-level associations between proteins. One of

the most widely studied of these associations is that based on the

idea of common neighborhood [14–18], where it is hypothesized

that two proteins that have several common direct neighbors

(interaction partners) are likely to have a functional association
between them and vice versa. Consequently, several measures for

the common neighborhood similarity (CNS) of two proteins, based

on different variants of the number of their common neighbors,

have been proposed. Several of these similarity measures have

been used for clustering the proteins in the given network into

functional modules [14–16], and many of the resultant modules

were hard to discover directly from the original network. Chua et
al. [17] used a CNS measure named FS (Functional Similarity) to

predict the functions of unannotated proteins, and their approach

showed better performance than several other function prediction

approaches. Pandey et al. [18] adapted H-Confidence (HC), a

measure of cohesiveness from association analysis in data mining

[19], into a CNS measure for protein interaction networks.

Despite the demonstration of the utility of the different CNS

measures in various contexts, an understanding of their relative

efficacies for the analysis of protein interaction networks has been

lacking due to several reasons. Firstly, as discussed above, each of

these measures has been used for different applications involving

different interaction data sets, thus making their relative compar-

ison difficult. Furthermore, even in cases where these measures

have been used in the context of function prediction [17,18] or

functional module discovery [15,16], different sets of functional

classes and evaluation measures are used, making this comparison

harder. Our goal in this work is to close this gap by conducting an

extensive comparative evaluation of the CNS measures within the

uniform context of protein function prediction from both

unweighted and weighted interaction networks. We follow the

systematic framework of graph transformation [18] to generate a

transformed network corresponding to each of the CNS measures

evaluated. The effectiveness of each measure is then estimated by

comparing the quality of function predictions made from their

corresponding transformed network with those from the original

network. In recent work [20], we employed this methodology for

evaluating the performance of CNS measures in processing several

yeast (S. cerevisiae) protein interaction networks. We found that

CNS-based graph transformation indeed improved the quality of

protein function predictions. The H-Confidence measure pro-

duced the most accurate predictions due to its ability to resist the

adverse effects of noise and incompleteness in interaction data.

Proteins interaction networks of higher eukaryotes, such as

human (H. sapien) and fly (D. melanogaster), are much larger, and

structurally and functionally more complex than the yeast

network. Furthermore, a thorough understanding of these higher

networks is essential for their use in studying diseases such as

cancer and cardiovascular disorders. These factors motivated us to

directly investigate the efficacy of CNS measures for processing

higher eukaryotic interaction networks and subsequently predict-

ing protein function from them. Using large sets of human and fly

interactions from the BioGRID database [21], and annotations

with over 100 GO Biological Process terms for both, we find that

several of the transformed networks produce more accurate

function predictions than those obtained from the original

network, although some CNS networks derived from the binary

version of the original network do not perform well. Among these,

the HC-based CNS measure performs well, especially for the

larger human protein interaction network. Our investigation

suggests that the ability of the CNS measures to identify and drop

noisy edges during graph transformation is an important reason

for these better predictions. CNS measures are also effective at

enhancing the functional coherence, i.e., the extent to which

functionally related proteins are connected by an edge, leading to

more accurate function prediction than the original network.

Overall, these results are expected to provide a better under-

standing of the efficacy of CNS measures for processing protein

interaction data and the utility of these measures for enhancing the

functional content of these data.

Finally, before discussing our methods and results in detail, we

note that several other methods have also been proposed for

assessing the reliability of protein interactions using other data

sources, such as microarray data and amino acid sequences

[10,22,23]. However, since our focus is on using the information in

the given interaction network itself for this task, we do not evaluate

these methods in this study. These two types of approaches

provide complementary information about the reliability of an

interaction, and their combination is expected to provide an even

more accurate estimation of these reliabilities. However, this

investigation is outside the scope of this paper.

Materials and Methods

In this section, we discuss the interaction data set, functional

annotations, CNS measures and evaluation methodology used in

this study.

Interaction data and functional annotations
We obtained our interaction data sets from the BioGRID

database [21] in April, 2013. These data sets included 39,540
interactions between 4768 human proteins and 10,718 interac-

tions between 3093 fly proteins. In addition to using the

unweighted (binary) version of this network, we also generated

their weighted versions, where each edge was assigned a weight

equal to the fraction of the total number of studies included in the

data set where it was detected.

The functional annotations for the proteins in these interaction

data sets were taken from the GO database [24] in April, 2013.

For both the organisms, we identified GO Biological Process (BP)

terms assigned to at least 50 proteins included in the correspond-

ing data sets to ensure the statistical robustness of the prediction

results. Furthermore, we only selected the GO BP terms that

didn’t have any ancestor-descendant relationships between them.

This selection reduces the effect of the hierarchical relationships

between the terms, which is well-known to be a complicating

factor for evaluating protein function prediction results [25]. As a

result of this process, we obtained 197 and 131 GO BP terms for

human and fly respectively that were used in our evaluation and

are listed in Tables S1 and S2 respectively.

Common Neighborhood Similarity (CNS) measures
We evaluated a variety of CNS measures in our study, which

are discussed below. For the purpose of defining each of these

measures, we will use the following standard notation:

N u and u are the nodes between which the similarity is being

computed.

N Nu and Nu are the direct interaction partners of u and u
respectively, and Nuu~Nu \ Nu.

N au,u denotes the binary or positive real-valued weight of the

edge between u and u.

We now define and discuss the CNS measures studied in detail.

Analyzing Eukaryotic Protein Interaction Networks
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Jaccard coefficient (JC). One of the most commonly used

measures for the similarity of two sets, Nu and Nu here, is the

Jaccard coefficient [26], which is defined as follows:

JC(u,u)~
DNuuD

DNu|NuD
ð1Þ

The Jaccard coefficient measures how similar the two sets are,

and assumes a value of 1 only if Nu~Nu. However, in this form, it

can only be used for unweighted graphs. Also, this measure does

not incorporate the presence or absence of an interaction between

u and u (au,u) itself.

Pvalue (P). Samanta et al. [15] proposed a probabilistic

measure for the statistical significance of the common neighbor-

hood configuration of two nodes u and u in an unweighted graph.

The value of this measure, commonly known as Pvalue (P), is the

{log10 value of the probability of u and u having a certain

number of common neighbors by random chance, and is defined

as:

P(u,u)~{log10(p(N,DNuD,DNuD,DNuuD)) ð2Þ

Here, N is the total number of proteins in the network, and

p(N,DNuD,DNuD,DNuuD) is computed on the basis of a Binomial

distribution as:

p(N,DNuD,DNuD,DNuuD)~

N

DNuuD

� �
N{DNuuD

DNuD{DNuuD

� �
N{DNuD

DNuD{DNuuD

� �

N

DNuD

� �
N

DNuD

� � ð3Þ

Thus, P is expected to have a high value (low value of p) for the

non-random common neighbor configurations in a network.

However, similar to JC, this measure is unable to take edge

weights into account, thus losing information about the reliabilities

of interactions over which the measure is computed. Another

potential weakness of this measure is that it does not incorporate

the value of au,u, i.e., the reliability of the direct edge between u

and u.

Functional Similarity (FS). Chua et al. [17] proposed a

measure named Functional Similarity (FS) for measuring the

common neighborhood similarity of two proteins in an interaction

network. For an unweighted network (0=1 weights), this measure,

referred to as FS:bin, can be defined as:

FS:bin(u,u)~
2DNuuD

DNu{NuDz2DNuuDzlu,u
|

2DNuuD
DNu{NuDz2DNuuDzlu,u

ð4Þ

where lu,u~max(0,naug{(DNu{NuDzDNuuD)) and naug is the

average number of neighbors of each protein in the network.

The purpose of the l factor is to penalize the score between

proteins pairs where at least one of the proteins has too few

neighbors, since the score may not be very reliable in such a case.

Note that unlike the other measures, the computation of FS
assumes that a protein, say u, is included in its direct

neighborhood, i.e., Nu.

Essentially, FS separates the (functional) similarity of two

proteins into two probabilities that denote the conditional

probabilities of u and u being functionally related given the

neighborhoods of u and u respectively. Each of these conditional

probabilities are computed as how similar the set of common

neighbors of u and u (Nuu) is to the set of individual neighbors of u

(Nu) and u (Nu). The final FS score is obtained as a product of

these probabilities, assuming that they are independent.

Also, by using Sw[Nu
au,w as the generalization of Nu (similarly

for Nu), and Sw[Nuu
au,wau,w as the generalization for Nuu, a version

of the FS measure, named FS:cont, can be defined for a weighted

interaction networks as follows:

FS:cont(u,u)~
2Sw[Nuu au,wau,w

Sw[Nu au,wzSw[Nuu au,wau,wzlu,u
|

2Sw[Nuu au,wau,w

(Sw[Nu au,wzSw[Nuu au,wau,wzlu,u
ð5Þ

Note that we used a similar definition of lu,u as for the

unweighted network case, while using the weighted versions of

naug, DNuD, DNuD and DNuuD. Note that Chua et al. [17] proposed a

slightly different definition for lu,u that assumes the knowledge of

the functions of the proteins, which was not applicable here.

Topological Overlap Measure (TOM). This measure was

proposed for network analysis by Ravasz et al. [27] and was

subsequently used for co-expression network analysis by Zhang

and Horvath [16]. TOM measures the strength of the association

between two nodes in a graph based on the similarity of their

common neighborhood to the smaller of the individual neighbor-

hoods of the two nodes. For the case of an unweighted or binary

network, the TOM:binary measure can be defined as:

TOM:bin(u,u)~
DNuuDzau,u

minfDNuD,DNuDgz1{au,u
ð6Þ

The basic definition of TOM:bin is quite straightforward.

However, an important factor included in this measure is the

presence or absence of an edge between u and u (au,u~1 and 0
respectively) in the original network through the terms au,u and

1{au,u in the numerator and denominator respectively. The

inclusion of these factors has the desirable effect that the value of

TOM:bin is increased if u and u are known to have an interaction,

which is sensible since the knowledge of this interaction should

contribute favorably to the score for these proteins.

Again, using the same generalizations as for FS:cont produces a

formulation of TOM for weighted networks, i.e. TOM:cont, as:

TOM:cont(u,u)~
Sw[Nuu au,wau,wzau,u

minfSw[Nu au,w,Sw[Nu au,wgz1{au,u
ð7Þ

Several studies [28–31], have used this measure extensively for

analyzing gene co-expression networks. We consider it for

processing protein interactions networks.

H-confidence (HC). Pandey et al. [18] demonstrated an

innovative application of the H{confidence (HC) measure [19],

originally designed for the analysis of binary data matrices, to the

pre-processing of protein interaction networks, both weighted and

unweighted. We modified the original definition of HC [18]

slightly to define the HC:bin measure as:

Analyzing Eukaryotic Protein Interaction Networks
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HC:bin(u,u)~
DNuuDzau,u

maxfDNuD,DNuDg
ð8Þ

The change here is the addition of the au,u term in the

numerator to incorporate the presence/absence of the interaction

between u and u. As per this definition, HC:bin rewards cases

where the set of common neighbors (Nuu) is very similar to the sets

of individual neighbors of u and u. However, due to the use of the

maxfDNuD,DNuDg term in the numerator, HC:bin penalizes the cases

where the degree of at least one of the nodes is substantially higher

than DNuuD, thus avoiding a bias in favor of high-degree or hub

nodes in the network. This behavior of HC:bin is in sharp contrast

to that of the similarly defined TOM:bin measure, the value of

whose denominator is generally small for protein interaction

networks due to the use of the minfDNuD,DNuDg term and the fact

that a vast majority of the nodes in these networks have very small

degrees.

Finally, using the same generalizations as for FS and TOM, the

definition of HC:bin can be extended to HC:cont for the case of

weighted interaction networks as follows:

HC:cont(u,u)~
Sw[Nuu au,wau,wzau,u

maxfSw[Nuau,w,Sw[Nu au,wg
ð9Þ

This definition of HC:cont enables a more conservative

estimation of HC-based common neighborhood similarity due to

the use of the sum of the product of the edge weights, both of

which are at most 1 and thus their product is expected to be much

smaller than the minimum of the two values. It should be noted

that HC:cont also has a behavior similar to HC:bin, wherein

nodes with low weighted degrees in the original network are more

likely to have links with higher HC:cont scores as compared to

higher weighted degree nodes in the original network.

As can be seen, these measures adopt different formulations for

computing common neighborhood similarity between two nodes

(proteins) in a graph (interaction network). We next describe how

we evaluated these measures within the frameworks of graph

transformation and protein function prediction.

Evaluation methodology
Our evaluation methodology consists of the following two steps:

N First, each of the above CNS measures is used to compute the

similarity (strength of the association) between each pair of

proteins in the input interaction network, depending on

whether they operate on the weighted or unweighted version

of the network. Our goal is to examine how the association

networks so generated compare with the original interaction

networks in terms of predicting protein function from them.

However, this comparison can be biased due to varying

number of edges in (size of) the networks. Thus, in the first

step, we create transformed versions of the networks, whose

number of edges is comparable to that of the original network.

For this, a threshold is chosen for each CNS measure such that

the number of pairs with a score higher than this threshold is

as close as possible to the number of interactions in the original

network. The pairs that score higher than the threshold are

structured as a network, and constitute the transformed
network for the corresponding measure. Most of our analysis

is based on these transformed networks. In addition, we also

examine the effect of thresholding on the results obtained after

transformation.

N Next, two different protein function prediction algorithms are

run on the original as well as the transformed networks to

make predictions over the corresponding selected sets of GO

BP process terms/classes for human and fly. The first

algorithm used was Nabieva et al.’s FunctionalFlow algorithm

[7]. We also used a simple neighborhood-based algorithm

inspired by Schwikowski et al.’s function prediction algorithm

[6]. Here, the likelihood score of a query protein performing

certain function is simply counted as the sum of the weights of

its interactions with proteins that are known to be annotated

with that function, and these scores are collected for all the

unannotated proteins in the data set for all the relevant

functions. The predictions from both these algorithms are

collected within a five-fold cross-validation setup.

N The collected predictions are evaluated using the Fmax

measure, which was shown to be a reliable metric in a recent

large-scale protein function prediction assessment [25]. This

measure is simply the maximum value of the F-measure across

all the values of precision and recall at many thresholds applied

to the prediction scores. To confirm the observed trends, we

also evaluated the predictions using the commonly used AUC

(Area under the ROC Curve) measure.

All the CNS measures and this evaluation methodology were

implemented in Matlab (Mathworks). Where necessary, the

computations were parallelized using Matlab’s Distributed Com-

puting toolbox. Also, note that our graph transformation process

was based only on the CNS scores of the protein pairs. It is easy to

introduce constraints, e.g. two proteins must be connected since

they are in the same pathway, into this process by ensuring that

they are satisfied in the transformed networks. However, since

there is no single source of these constraints, and we didn’t want to

bias our results by choosing any particular source, we did not

incorporate any such constraints into our methodology. We plan

to study this feature in future work, and invite others as well to do

the same.

Results

In this section, we discuss the results of our evaluation, and also

the subsequent analyses that we carried out to explain the

observed trends.

Details of transformed networks
Table 1 lists the details of the different transformed networks

generated using the methodology described above. As can be seen,

the number of interactions in these networks, as well as the

number of connected proteins with at least one interaction, are

almost the same as the original network, thus ensuring that the

downstream analysis of these networks is not biased due to a

variation in the size of the networks. The only exceptions to this

observation are the HC:bin networks, which contained slightly

different number of edges than the original networks, although the

differences were minor. A much bigger variation is observed in the

number of connected proteins, i.e. proteins with at least one edge,

in the transformed networks. Here, the transformed networks

derived from the binary version of the original network had

substantially fewer connected proteins than the original network

(4768 and 3093 for human and fly respectively), while those

derived from the continuous version had effectively the same

number of connected proteins as the original network. Although

this observation itself indicates a weakness of the binary CNS
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measures, we eliminated its influence on the rest of the evaluation

by assessing the function prediction results on only the connected

proteins in each network.

Performance of protein function prediction algorithms
We evaluated the utility of each of the human and fly

transformed networks for predicting the membership of their

proteins in the selected GO BP classes, and compared their

performance with the weighted (Original:cont) and unweighted

(Original:bin) versions of the corresponding original interaction

networks. Figures 1 and 2 shows this comparison for human and

fly respectively in terms of the median Fmax score of the

FunctionalFlow and neighborhood-based function predictions

over all the classes considered (Similar results based on median

AUC scores are shown in Figures S1 and S2 respectively.). Table

S3 lists the Wilcoxon rank sum P-values indicating the statistical

significance of the improvement or deterioration of function

prediction results from various CNS-transformed networks as

compared to the results from the corresponding original network

(Original:bin or Original:cont). The following observations can be

made from these results:

N In almost all the cases, the binary CNS measures produce

much worse predictions than the Original:binary network, the

only exception being FS:bin, which is able to perform

competitively as compared to the Original:cont network. This

inferior performance is primarily due to the loss of information

incurred by these measures by not incorporating real-valued

edge weights in the original network.

N In most of the cases, the continuous CNS measures that can

incorporate edge weights, namely FS:cont, TOM:cont and

HC:cont, perform much better than (or almost the same as)

the Original:cont network. Furthermore, this improvement in

performance is more substantial in the case of the human

network as compared to the fly one. This is because of the

former’s larger size, from which continuous CNS measures can

utilize much richer structural information to infer more

reliable functional associations and thus produce more

accurate function predictions.

N Among the continuous CNS measures, HC:cont is able to

make the best use of the information in the large human

network to provide the largest boost in protein function

prediction performance (Figure 1). For the smaller fly network,

all the continuous CNS measures comparable relatively

smaller improvements over the Original:cont network (Fig-

ure 2), with FS:cont providing a slight advantage in terms of

relative performance and statistical significance.

These results show that it is possible to perform more accurate

analysis on the original interaction network by transforming it

using appropriate CNS measures. Further, for larger interaction

networks, transformation using HC:cont appears to provide a

substantial advantage in terms of the final analysis results. Indeed,

the best CNS measure for any given network needs to be

determined based on rigorous evaluation, such as using our graph

transformation and evaluation methodology here.

Next, we investigated how the size of the transformed networks

(determined by the degree of thresholding of the respective CNS

measures) influenced the quality of function predictions obtained

from them. For this, using each CNS, we generated transformed

networks of sizes varying from a quarter of the size of the original

network to eight times the size, progressing by a factor of two in

each step. Next, FunctionalFlow is run on each of these networks

and the predictions evaluated as the median Fmax score over all the

classes considered. Figure 3 shows the results of this investigation

for the fly transformed networks. Interestingly, the order of

performance of the CNS measures is consistent with the order in

Figure 2: FS:cont and HC:cont are the best performers, followed

by TOM:cont, while JC and P don’t perform well across all

thresholds. These results show that the relative efficacies of the

CNS measures are not dependent on the threshold used for graph

transformation. Examining the individual variation of the preci-

sion and recall scores contributing to these Fmax scores (Figure S3),

it can be observed that this order of performance is influenced

more by precision than recall. Some of the measures, such as P,

achieve high rates of recall with smaller networks, but their

precision performance remains relatively low across all the sizes

considered. In contrast, measures like HC:cont and FS:cont
achieve balanced levels of precision and recall (approximately

0:15–0:2). Since Fmax is the (conservative) harmonic mean of the

two, the latter set of continuous CNS measures perform better

overall as compared to binary CNS measures like P across all

sizes/thresholds. Furthermore, across all these evaluation mea-

sures (Pmax, Rmax and Fmax), the performance of the measures

becomes effectively stable when the size of the transformed

network is the same as that of the original network (ratio of

size = 1) and beyond. Thus, to obtain a stable relative order of

performance of these measures and the reasons underlying this

Table 1. Details of transformed networks derived from the original human and fly interaction networks using different CNS
measures.

Human Fly

CNS Measure # Interactions
# Connected
proteins

Range of edge
weights #Interactions

#Connected
proteins

Range of edge
weights

JC 34494 2599 0:25{1 11760 2426 0:2{1

P 39540 2370 7:07{180:26 10718 1888 3:37{74:07

FS:bin 39786 2979 0:08{0:89 10786 2630 0:09{1

TOM:bin 39540 4416 0:5{1 10718 2876 0:5{1

HC:bin 44528 3148 0:33{1 9420 2344 0:25{1

FS:cont 39540 4762 0{0:36 10719 3093 0:005{0:69

TOM:cont 39540 4768 0:002{0:33 10731 3093 0:03{0:67

HC:cont 36114 4521 0:003{1 11533 3073 0:04{1

doi:10.1371/journal.pone.0109130.t001
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performance, as well as to reduce the effect of network size on the

interpretation of the results, we analyze the results at this

threshold. However, users of these measures and/or our frame-

work can use different thresholds for their analyses if they have

different goals than our study, such as achieving the highest

possible precision or recall.

The above results show the relative efficacies of various CNS

measures when used within a graph transformation framework for

problems such as protein function prediction. Now, a natural

question to ask here is what features of these CNS-based

transformations lend them these efficacies? We hypothesize that

these features are (i) robustness of CNS measures to noise and (ii)

enhancement of functional coherence after graph transformation.

Through a detailed analysis of the continuous CNS measures

HC:cont, FS:cont and TOM:cont, which performed the best in

our function prediction experiments, we provide evidence in

support of these hypotheses in the next two subsections.

Robustness of CNS measures to noise
One of the hypotheses underlying the use of common

neighborhood similarity information is that it can be used for

filtering out noisy or spurious associations in a network, since two

proteins connected by a true association are more likely to have a

larger number of common neighbors than two proteins connected

by a spurious association. We investigated if this hypothesis holds

in our study, and if it contributes to better function predictions

Figure 1. Comparison of protein function prediction results from the original and transformed human networks in terms of the
median Fmax score over all the GO BP classes considered.
doi:10.1371/journal.pone.0109130.g001

Figure 2. Comparison of protein function prediction results from the original and transformed fly networks in terms of the median
Fmax score over all the GO BP classes considered.
doi:10.1371/journal.pone.0109130.g002
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after graph transformation. Since it is difficult to identify the noisy

edges in the original network a priori, we followed a simulation-

based methodology for validating this hypothesis. Under this

methodology, we generated several randomly perturbed versions

of the Original:cont network using the random rewiring model

[32,33] where two edges in the original network are chosen

randomly and two new edges are created by swapping their end

points. The weights of the original edges are also randomly

reassigned to the new edges. Applying this model to a varying

fraction of the edges in the original network (0{100%) gave us

several ‘‘noisy’’ versions of the network, and we created

transformed versions of each of these networks using the

continuous and binary CNS measures used in our study.

Next, we examined how the extent of noise in the noisy

networks and their transformed versions affected the performance

of the FunctionalFlow algorithm, measured in terms of the median

Fmax score over all the GO BP terms considered. Figure 4 shows

the results of this analysis for the continuous CNS measures as the

noisy fraction of the (a) human and (b) fly networks ranges from

0% to 100%. As expected, the results from all the networks, both

the original and the transformed ones, become worse as the extent

of noise increases, converging to a common score when the

networks are completely noisy or randomized. Consistent with the

order in Figure 1, HC:cont (green line) is consistently the best at

resisting the effect of noise in the original human network, and can

perform better than the original network even when a vast

majority of the edges in the network are noisy. On the other hand,

TOM:cont and FS:cont are only slightly more noise resistant than

the original network, thus indicating a mechanism for how

HC:cont outperforms the other CNS measures in protein function

prediction (Figure 1). Similarly, consistent with the overall fly

function prediction results (Figure 2), HC:cont and FS:cont are

almost equivalently noise resistant, although the relative perfor-

mance from all networks is effectively the same at very high levels

of noise (over 50%). These results demonstrate the relative

robustness of the continuous CNS-based transformed networks

to noise in the original network, with a relative advantage to

HC:cont for large networks. In contrast, the same analysis for

binary CNS measures (Figure S4) shows that none of these

measures produce more accurate predictions than either of the

original networks (Original:cont and Original:bin) at any level of

noise, except FS:bin for very low levels of noise in the human

network.

Overall, these results serve as validation for the hypothesis that

the ability to resist the adverse effects of noise is an important

factor behind the improvement of function prediction results using

common neighborhood similarity quantified through continuous

CNS measures.

Enhancement of functional coherence
Three types of edges can be identified when the original

network is transformed using one of the CNS measures:

N Retained edges: Edges in the original network that are retained

after transformation due to their high CNS score.

N Dropped edges: Edges in the original network that are dropped

due to their low CNS scores and thus are not a part of the

transformed network.

N Added edges: Edges that were not present in the original

network but were added to the transformed network due to

their high CNS scores.

Given this classification, we investigated how the transformation

process influences functional coherence (FC). Broadly, the func-

tional coherence of a network refers to the extent to which

connected proteins in the network share cellular functions and thus

is inherently connected to how well algorithms like FunctionalFlow

are able to predict function from this network. We define

functional coherence (FC) of a network N , viewed as a set of

edges (u,u), as:

Figure 3. Comparison of protein function prediction results from CNS-transformed fly networks of varying sizes in terms of the
median Fmax score. These transformed networks are obtained by varying the threshold on the CNS score so as to derive a transformed network
with size (# edges) that is a given fraction, say 0:5, of that of the original network.
doi:10.1371/journal.pone.0109130.g003
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FC(N)~

P
(u,u)[N (#functions shared by u and u)

DN D
ð10Þ

Thus, FC(N) is simply the average number of functions shared

by every pair of proteins connected by an edge in N.

Using this definition, we evaluated the functional coherence of

the above sets of edges created by HC.cont-, FS.cont- and

TOM.cont-based transformation. Figure 5 shows the results of this

evaluation for the (a) human and (b) fly networks as color-grouped

bar charts. Also included in these charts are the numbers of edges

dropped and added during transformation with each of these

measures. The following observations can be made for both

human and fly networks from these charts:

N While the number of retained edges is nearly the same for all

the three measures, HC:cont drops and adds the biggest

number of edges, thus causing the biggest changes to the

network structure during transformation. FS:cont and

TOM:cont introduce minor changes to the network structure.

N The functional coherence of the edges retained by HC:cont is

slightly higher than FS:cont and TOM:cont, indicating that

the former measure is better able to identify the most

functionally coherent portion of the original network.

N The functional coherence of the edges dropped by HC:cont is

the lowest, followed by TOM:cont and then FS:cont,
indicating that the edges dropped by HC:cont are indeed

the least functionally informative and thus should not be a part

of the transformed network.

N FS:cont introduces more functionally coherent edges into the

transformed network, followed by TOM:cont and HC:cont.

The result of the above observations is the functional coherence

of the transformed networks, whose values are shown in the last set

of bars in Figure 5 (labeled ‘‘Overall’’), and can be explained as

follows. HC:cont retains the most functionally coherent edges,

drops the highest number of functionally incoherent edges and add

a large number of reasonably functionally coherent edges. As a

result, it scores the highest in terms of the overall functional

coherence of its transformed network, especially for human. In

contrast, although FS:cont and TOM:cont are more effective at

adding functionally coherent edges, their number is fairly small,

and thus this advantage is not able to counteract the disadvantages

of less coherent retained edges and dropping of coherent edges.

Thus, the enhanced (or deteriorated) functional coherence of the

CNS-transformed network, which is inherently connected to their

ability to predict protein function, serves as another factor

underlying the function prediction trends discussed earlier. From

this point of view, HC:cont is quite effective at enhancing

functional coherence, and consequently produces improvements in

function prediction over the original network, which are especially

substantial for the human network.

We conducted a similar analysis of how functional coherence is

affected during transformation using binary CNS measures, the

results of which are shown in Figure S5. These results show several

contrasting trends to those in Figure 5. First, the binary measures

retain very few of the edges in the original network. Second,

among the large number of edges that are dropped and added

during this transformation, the latter set is substantially less

functionally coherent than the former. As a result, the overall

functional coherence of the networks transformed using these

measures is lower than those of the continuous CNS networks

(Figure 5). However, among these binary measures, FS:bin is able

to attain reasonable functional coherence for both the human and

fly networks. As a result, this measure is able to perform well in

conjunction with the neighborhood-based function prediction

algorithm (Figure 1(b)), which is based on the same principle of

direct connectivity between functionally related proteins. This

suggests that FS:bin may be a good option for networks where

edge weights may not be available at all.

In conclusion, we showed in this section, that while CNS-based

graph transformation is generally useful, transformation based on

CNS measures that are able to utilize continuous edge weights or

reliabilities in the original network are especially effective for tasks

such as protein function prediction. This effectiveness is due to (1)

their resistance to noise in the data and (2) enhanced functional

coherence of their transformed networks. In particular, HC:cont

performs relatively better for large networks, such as the human

Figure 4. Performance of the FunctionalFlow protein function prediction algorithm, evaluated in terms the median Fmax score, on
the original and CNS-transformed (a) human and (b) fly networks at different levels of noise.
doi:10.1371/journal.pone.0109130.g004
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one tested here, although FS:cont and TOM:cont also perform

well.

Discussion

In this study, we evaluated the use of a variety of common
neighborhood similarity (CNS) measures to quantify the association

of two proteins in a protein interaction network, and used them

within the graph transformation framework for processing

complex eukaryotic protein interaction networks. Using a model

analysis task, we showed that such processing, especially using

CNS measures that take advantage of the real-valued edge

reliability scores (weights), is able to substantially improve the

accuracy of predictions made for several GO Biological Process

terms by standard protein function prediction algorithms. In

further analysis, we showed that this efficacy is achieved by

boosting robustness to noise, and enhancing functional coherence

to address the knowledge shortages due the incompleteness issue

with currently available protein interaction data. In particular, the

HC:cont measure performs well this task, especially for large

networks, due to its ability to effectively address the above

challenges. Overall, the methods and results of this study should

help researchers adopt robust processing schemes for protein

interaction networks, which should in turn help them obtain more

accurate inferences from this type of data.

We hope that this work will motivate several further research

efforts. Among the most direct would be a validation of the noisy

edges removed and the functional linkages added to the network

during the graph transformation process using experimental PPI

assessment methods, such as that of Braun et al [34]. Furthermore,

we only explored second-degree common neighborhood-based

topological features to evaluate associations between proteins.

However, several other topological features, including global ones,

have been studied for protein interaction networks [35]. Thus, the

problem of how these features can be used within a graph

transformation framework to improve analysis results should be

investigated. Finally, another interesting direction would be to

examine how CNS measures and other topological features

perform for other types of networks that have their own

characteristics, such as genetic interaction networks [36] that

contain both positive and negative interactions, and regulatory

and signaling networks [37] that include both directed and

undirected edges.

Supporting Information

Figure S1 Comparison of function prediction results from the

original and transformed human networks in terms of the median

AUC score over all the GO BP classes considered.

(TIFF)

Figure S2 Comparison of function prediction results from the

original and transformed fly networks in terms of the median AUC

score over all the GO BP classes considered.

(TIFF)

Figure S3 Comparison of protein function prediction results

from CNS-transformed fly networks of varying sizes in terms of the

(a) precision (Pmax) and (b) recall (Rmax) measure contributing to

the median Fmax score shown in Figure 3.

(TIFF)

Figure S4 Performance of the FunctionalFlow protein function

prediction algorithm, evaluated in terms the median Fmax score,

on the original and binary CNS-transformed (a) human and (b) fly

networks at different levels of noise.

(TIFF)

Figure S5 Functional relevance of the different components,

namely the common, dropped and added edges, of the binary

transformed (a) human and (b) fly networks. The legend shows the

color coding of the five binary CNS measures examined, as well as

the number of edges that were dropped from the original network

and the number of edges added in their place to obtain the

corresponding transformed network.

(TIFF)

Table S1 Details of selected GO Biological Process terms

(classes) used for predicting the functions of human proteins in

this study.

(PDF)

Table S2 Details of selected GO Biological Process terms (classes)

used for predicting the functions of fly proteins in this study.

(PDF)

Figure 5. Functional relevance of the different components, namely the common, dropped and added edges, of the transformed
(a) human and (b) fly networks. The legend shows the color coding of the three CNS measures examined, as well as the number of edges that
were dropped from the original network and the number of edges added in their place to obtain the corresponding transformed network.
doi:10.1371/journal.pone.0109130.g005

Analyzing Eukaryotic Protein Interaction Networks

PLOS ONE | www.plosone.org 9 October 2014 | Volume 9 | Issue 10 | e109130



Table S3 Wilcoxon rank sum P-values indicating the statistical

significance of the improvement or deterioration of function

prediction results from various CNS-transformed networks as

compared to the results from the corresponding original network

(Original:bin or Original:cont).
(PDF)
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