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Abstract

This study evaluated gene expression changes in gastrocnemius slow-twitch myosin heavy chain I (MHC I) and fast-twitch
(MHC IIa) muscle fibers of collegiate cross-country runners (n = 6, 2061 y, VO2max = 7061 mlNkg21Nmin21) during two
distinct training phases. In a controlled environment, runners performed identical 8 kilometer runs (30:1860:30 min:s,
8961% HRmax) while in heavy training (,72 km/wk) and following a 3 wk taper. Training volume during the taper leading
into peak competition was reduced ,50% which resulted in improved race times and greater cross-section and improved
function of MHC IIa fibers. Single muscle fibers were isolated from pre and 4 hour post run biopsies in heavily trained and
tapered states to examine the dynamic acute exercise response of the growth-related genes Fibroblast growth factor-
inducible 14 (FN14), Myostatin (MSTN), Heat shock protein 72 (HSP72), Muscle ring-finger protein-1 (MURF1), Myogenic factor
6 (MRF4), and Insulin-like growth factor 1 (IGF1) via qPCR. FN14 increased 4.3-fold in MHC IIa fibers with exercise in the
tapered state (P,0.05). MSTN was suppressed with exercise in both fiber types and training states (P,0.05) while MURF1
and HSP72 responded to running in MHC IIa and I fibers, respectively, regardless of training state (P,0.05). Robust induction
of FN14 (previously shown to strongly correlate with hypertrophy) and greater overall transcriptional flexibility with exercise
in the tapered state provides an initial molecular basis for fast-twitch muscle fiber performance gains previously observed
after taper in competitive endurance athletes.
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Introduction

Athletes routinely reduce training volume prior to a major

competition to help facilitate peak performance. A 3–4 week

reduced training phase, known as taper, typically results in a 2–4%

improvement in race performance [1–3]. In the last 30 years, taper

research has identified increased power output at the whole muscle

and single muscle fiber level as an important physiological basis for

improved performance [1,2,4]. More specifically, tapering has

been repeatedly shown to target fast-twitch muscle fibers by

increasing their size [1–3] and power [1,2] with improvements in

contractile performance largely accounted for by hypertrophy.

However, little is known about molecular alterations that are

contributing to performance gains in fast-twitch muscle fibers with

tapering.

Recent methodological advances in our laboratory have

established the ability to examine gene expression at the single

muscle fiber level [5–7]. We sought to apply this novel approach

with tapering to better understand potential molecular adaptations

in fast-twitch muscle fibers. We were guided into these single

muscle fiber gene studies by previous work in cross-country

runners (for whom muscle biopsy samples were still available) that

had an altered transcriptional response in mixed-muscle homog-

enate samples after identical 8 km running bouts in the heavily

trained versus tapered state [2]. This alteration was intriguing

since previous research has shown a blunted transcriptional

response to exercise in well-conditioned skeletal muscle [6,8].

Thus, it appears that skeletal muscle of highly trained athletes may

be more sensitive at the molecular level to various training phases

than previously thought. Further support for conducting these

single fiber gene studies was that the runners’ MHC IIa fibers

hypertrophied (+15%) and increased power output (+9%) with

taper [2]. The combination of single muscle fiber gene measure-

ments at strategically timed muscle biopsies after a heavily trained

and tapered state 8 km run provided a unique opportunity to

gauge the transcriptional flexibility of the MHC IIa fibers during

these two training periods.

For the single muscle fiber gene experiments, we selected six

genes that have been implicated in muscle size regulation and

remodeling and included FN14, MSTN, HSP72, MURF1,
MRF4, and IGF1. In developed human skeletal muscle,

Fibroblast growth factor-inducible 14 (FN14/TNFRSF12A) was
recently shown to strongly correlate with fast-twitch specific

growth in response to exercise [6,9], the cytokines Myostatin

(MSTN/GDF8) and Insulin-like growth factor 1 (IGF1) are

components of major growth pathways [10], Myogenic factor 6

(MRF4/MYF6) is associated with exercise-induced remodeling [7],

Muscle ring-finger protein-1 (MURF1/TRIM63) is a marker of

ubiquitin-proteasome mediated myofibrillar breakdown [11], and

Heat shock protein 72 (HSP72/HSPA1A) combats protein

degradation [12]. We hypothesized that advantageous post

exercise regulation of HSP72, MURF1, and MRF4 previously

observed in mixed-muscle with taper [2] would be more

pronounced in MHC IIa fibers and that favorable FN14, MSTN,
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and IGF1 expression would be targeted to the MHC IIa muscle

fibers.

Materials and Methods

Subjects
Seven male runners from Taylor University’s (Upland, Indiana)

cross-country team volunteered to participate in a previous study

[2]. Of these seven subjects, six were used for this investigation

(age [y] 2061, height [cm] 17865, weight [kg] 66.165.1)

(Table 1) as insufficient tissue at one time point for one subject

negated molecular analysis. Details of the general study design and

taper program are outlined in our previous investigation [2] and

briefly profiled here (Figures 1 and 2). Subjects were competitive

runners with 8 km lifetime best average performances of

26:3260:32 (min:s). Prior to the investigation, subjects competi-

tively participated in running for ,7 years (range: 4.5–10.0 y).

Subjects were provided with written and oral information about

experimental procedures and potential risks prior to providing

written consent.

Ethics Statement
Support was granted by the coaching staff and all procedures

were approved by the Ball State University and Taylor University

Institutional Review Boards.

Experimental Design
A schematic of the study design is presented in Figure 3.

Identical laboratory procedures were performed in the heavily

trained (T1 and T2) and tapered (T3 and T4) conditions. Resting

(heavily trained - T1, tapered - T3) and 4 h post exercise (heavily

trained - T2, tapered - T4) gastrocnemius muscle biopsies were

collected around an 8 km standardized indoor track run. MHC I

and IIa fibers were individually isolated and pooled in order to

conduct targeted fiber type specific gene expression analysis via

reverse transcription quantitative real-time polymerase chain

reaction (qPCR). The effect of taper was examined by conducting

exercise response comparisons (T1:T2 and T3:T4) in both fiber

types. Subjects were treadmill tested for aerobic capacity before

and after the taper period.

Training
Taylor University coaching staff prescribed the training

performed throughout the 11 wk season (8 wks of midseason

heavy training +3 wks of reduced-volume taper) based upon

recommendations from our laboratory team. Training load was

quantified using heart rate monitor data (Polar, Lake Success, NY)

and self-reported running logs while mid-season training load (8

wks) was aggregated to represent one mean for heavy training.

Average mid-season weekly running volume (6 d/wk) was

approximately 72 km. During the 3 wk taper, weekly running

volume in the moderate intensity range was progressively reduced

Figure 1. Overall study design (A), and Biopsy trial details (B). Bx = lateral gastrocnemius muscle biopsy, TM=Treadmill VO2max testing.
doi:10.1371/journal.pone.0108547.g001

Figure 2. Summary of training volume and intensity during
heavy training (11 wks) and each week of taper (3 wks),
reproduced from Luden et al. [2] with permission from the
American Physiological Society.
doi:10.1371/journal.pone.0108547.g002
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to 50% of mid-season training while high intensity training volume

was maintained (Figure 2).

Standardized 8 km Indoor Track Run
Subjects were instructed to run 8 km on a 200 m indoor track

between 15.2 and 16.0 km/h (,45–48 s/lap) depending on talent

level (30:1860:30 min:s, 8961% HRmax). This pace was chosen

because it corresponded to a training velocity commonly

performed by this group. Lap times were verbalized throughout

the run to ensure even pacing and each lap split was recorded

manually. Subjects performed identical runs in the heavily trained

and tapered state and were monitored by the investigative team.

Muscle Biopsy
Four muscle biopsies (T1, T2, T3, T4) were obtained from the

lateral head of the gastrocnemius. The gastrocnemius was chosen

based on its documented use during running [13] and the large

amount of gastrocnemius research conducted in runners over the

past 40 years. Subjects reported to Taylor University having

refrained from physical activity for two days (,48 h). After 30 min

of supine rest, a resting muscle biopsy was obtained (T1, T3)

followed by a standardized 8 km run on a 200 m indoor track.

Subjects then underwent 4 h of supine rest upon which a second

biopsy was obtained from the opposite leg (T2, T4). The rationale

for the 4 h post exercise biopsy time point was based on previous

post exercise mRNA time course investigations from our

laboratory [7,14]. From each biopsy, a muscle sample weighing

,15 mg was placed in 0.5 ml of RNAlater (Ambion, Austin, TX),

stored at 4uC overnight, and subsequently stored at 220uC until

fiber separation and RNA extraction.

Muscle Fiber Separation and MHC Identification
See Figure 3 for a schematic representation of the method used

for fiber type-specific isolation and fiber pooling for qPCR.

Individual muscle fibers were isolated in RNAlater using fine

tweezers under a light microscope at room temperature as

previously described [5,11,15,16]. An average of 129 fibers were

isolated from each of the 24 samples (6 subjects64 biopsies) for a

total of 3,096 fibers. Approximately one quarter of each fiber was

clipped and placed into 40 ml sodium dodecyl sulfate (SDS) buffer

(1% SDS, 6 mg/ml ethylenediaminetetraacetic acid [EDTA], 0.06

M Tris [pH 6.8], 2 mg/ml bromophenol blue, 15% glycerol, and

5% b-mercaptoethanol) for SDS-PAGE (sodium dodecyl sulfate

polyacrylamide gel electrophoresis) MHC identification as previ-

ously described by our laboratory [5,11,15,16]. The remaining

fiber segment was placed into an individual well of a number-

labeled 96-well plate with 75 ml RNAlater and stored at 220uC
until MHC type was confirmed and before fiber type-specific

pooling. Overall MHC fiber type distribution of each subject’s

lateral gastrocnemius was determined using all fibers extracted

from each individual.

Fiber Pooling and RNA Extraction
Following MHC isoform identification, the corresponding

MHC I and IIa fiber segments were located in the 96-well plate.

Muscle fibers of each type (MHC I and IIa) at each time point (T1,

T2, T3, T4) were extracted from their individual wells containing

RNAlater and combined in a tube containing 500 ml TRI Reagent
(Molecular Research Center, Cincinnati OH) used for RNA

extraction. RNA extraction was performed according to the

manufacturers protocol (MRC) and total RNA concentration

(4.0760.15 ng/ml) was determined using the Quant-iT RNA assay

kit (Invitrogen, Carlsbad, CA) in conjunction with the Qubit

fluorometer (Invitrogen). Forty-eight samples (24 samples62 fiber

types) were ultimately generated containing 3666 (range 23–54)

fibers, an amount sufficient to yield an RNA concentration of .

1.5 ng/ml [6,7].

Reverse Transcription and qPCR
Oligo (dT) primed first-strand cDNA was synthesized (16.5 ng

of total RNA) using SuperScript II RT (Invitrogen) and

quantification of mRNA levels (in duplicate) was performed in a

72-well Rotor-Gene 3000 Centrifugal Real-Time Cycler (Corbett

Research, Mortlake, NSW, Australia). Ribosomal protein, large,

P0 (RPLP0) was used as a reference gene as we have previously

described [17]. All primers used in this study were mRNA-specific

(on different exons and crossing over an intron) and designed for

qPCR (Vector NTI Advance 9 software, Invitrogen) using SYBR

Green chemistry. The primer sequences for FN14 were: Forward

-ACTTCTGCCTGGGCTGCGCT and Reverse -

TCTCCTGCGGCATCGTCTCC, Genbank number:

NM_016639.2. Primer sequences and characteristics for MSTN,

HSP72, MURF1, MRF4, and IGF1 as well as qPCR parameters

have been reported previously from our laboratory [2,5,7,14,18].

For each qPCR run, a melting curve analysis was generated to

validate the presence of only one product and a serial dilution

curve (cDNA made of 500 ng total RNA from human skeletal

muscle; Ambion, Austin, TX) was generated to evaluate reaction

efficiencies. The amplification calculated by the Rotor-Gene

software was specific and highly efficient (efficiency = 1.0360.02;

R2= 0.9960.00; slope= 3.2460.04). The gene expression re-

sponse to exercise (8 km run) was examined in the heavily trained

and tapered state using the 22DDCT (fold change) quantification

method [14,19,20].

Statistics
Data were checked for normality and sphericity and original or

log transformed data were used for statistical analyses. Within each

fiber type, the gene expression response to exercise in the heavily

trained and tapered state was evaluated using a repeated measures

two-way ANOVA with factors of time (T1–T4) and training state

(heavily trained and tapered). Due to the minimal number of

hybrids (,8%) and no IIx fibers in these highly trained runners,

Table 1. Subject characteristics and physiological data (n = 6).

Heavily Trained Tapered % D

MHC IIa CSA (mm2) 58126622 66316758 +14%

MHC IIa Power (mNNFL21Ns21) 58.766.4 63.567.3 +9%

VO2max (mlNkg21Nmin21) 70.061.1 69.161.1 «

X-Country Race Performance (min:s) 27:4260:25 27:0060:30 23%

Data derived from Luden et al. [2] less one subject.
doi:10.1371/journal.pone.0108547.t001
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Figure 3. Schematic of method used to conduct fiber type-specific isolation of single muscle fibers for qPCR analysis.
doi:10.1371/journal.pone.0108547.g003
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gene expression analysis was limited to MHC I and MHC IIa

fibers. All statistics were conducted in SPSS 17.0 for Windows, all

data are presented as means 6 SE, and significance was set at P,

0.05.

Results

Exercise-Induced (T1:T2 and T3:T4) Gene Expression in
MHC IIa fibers
In the tapered state (T3:T4), FN14 mRNA increased 4.3-fold

(time and interaction effect, P,0.05, Figure 4) 4 h following the

8 km run. MSTN decreased 1.6-fold in the heavily trained state

and 2.0-fold in the tapered state (time effect, P,0.05, Figure 5A).

MURF1 increased 2.7-fold in the heavily trained state and 4.0-

fold in the tapered state (time effect, P,0.05, Figure 6). No

changes were observed with exercise for FN14 in the heavily

trained state or HSP72, MRF4, or IGF1 in the heavily trained or

tapered state (Table 2).

Exercise-Induced (T1:T2 and T3:T4) Gene Expression in
MHC I fibers
Exercise decreased MSTN 1.7-fold in the heavily trained state

and 1.1-fold in the tapered state (time effect, P,0.05, Figure 5B).

HSP72 increased 1.7-fold in the heavily trained state and 2.0-fold

in the tapered state (time effect, P,0.05, Figure 7). No changes

occurred in FN14, MURF1, MRF4, or IGF1 with exercise in the

heavily trained or tapered state (Table 3).

Lateral Gastrocnemius Fiber Type
The average fiber type distribution (percentage) of the

gastrocnemius in these runners was: 61.764.0% MHC I,

4.561.6% MHC I/IIa, 30.963.1% MHC IIa, 2.761.7% MHC

IIa/IIx, and 0.260.1% MHC I/IIa/IIx. There were no MHC IIx

fibers found in any subject. Fibers expressing multiple isoforms

(MHC I/IIa, MHC IIa/IIx, and MHC I/IIa/IIx) comprised

7.4% of the total fiber population.

Discussion

The unique aspect of this investigation was the examination of

MHC I and IIa gene responses in competitive collegiate runners

after identical 8 km runs in the heavily trained versus tapered

state. The 8 km running stimulus used in our study design reflects

a typical weekly training run (,89% HRmax) these athletes

performed throughout the competitive season. The post 4 h run

time point coincides with anabolic and catabolic mRNA

expression patterns following exercise [7,14] and captures

elements of muscle remodeling. The main finding was that

FN14, a gene strongly associated with fast-twitch hypertrophy

[6,9], was robustly induced in MHC IIa fibers with exercise in the

tapered state. Additionally, MSTN was suppressed with exercise in

both fiber types and training states while MURF1 and HSP72
responded to running in MHC IIa and I fibers, respectively,

regardless of training state. Contrary to the notion that exercise

gene response [6,8,21,22] and adaptive potential [23] are

attenuated as training status improves, these data indicate

transcriptional flexibility in MHC I and IIa fibers of highly

trained runners after an effective three week taper. The marked

FN14 response in MHC IIa fibers provides an initial molecular

basis to support MHC IIa hypertrophy observed with taper, a

stimulus that generally produces the highest calculated fast-twitch

fiber growth rate in humans.

Tapered training of #3 weeks in aerobically fit runners [2],

swimmers [1], and cyclists [3] can be calculated to confer MHC

IIa growth rates of 5.0%, 8.0%, and 14.2% per week, respectively.

By comparison, MHC IIa growth with progressive resistance

training in young healthy individuals occurs at a maximum rate of

3.8% by 4 weeks [24] and approaches an asymptote by 12 weeks

[25] as adaptation becomes more refined (see Table S1 for

comprehensive review of fast-twitch growth with exercise). Despite

being highly conditioned, fast-twitch muscle fibers of trained

endurance athletes can rapidly change size in response to training

adjustments which measurably affects whole muscle and single

Table 2. Genes not responsive to exercise in MHC IIa fibers in the heavily trained or tapered state.

Heavily Trained Tapered

T1 T2 T3 T4

HSP72 1.0760.17 1.3160.32 1.0660.15 1.7760.32

MRF4 1.0360.12 0.8460.09 1.1560.28 0.960.11

IGF1 1.0960.17 1.0260.21 1.1860.30 0.7760.12

Presented as fold change, mean 6 SE.
doi:10.1371/journal.pone.0108547.t002

Figure 4. FN14 gene expression response after an 8 km run in
the heavily trained (T1:T2) and tapered (T3:T4) state in MHC IIa
fibers, presented as fold change, *Time and interaction effect,
P,0.05.
doi:10.1371/journal.pone.0108547.g004
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fiber power [1,2,26,27]. However, the only transcript-level insight

into mediators of fiber type-specific size regulation in humans has

been in reference to resistance exercise. Acute resistance exercise

elicits differential MHC I and IIa proteolytic mRNA responses

[11] and activates a distinct MHC IIa transcriptome that precedes

resistance training-induced increases in MHC IIa single fiber cross

sectional area [6,9]. The current investigation reinforces the

differential gene regulation concept, namely that FN14 induction

may augment the capacity of MHC IIa fibers to quickly grow and

improve contractile function with taper.

The 4.3-fold FN14 induction post run in tapered MHC IIa

fibers aligns with our laboratory’s recent finding that robust FN14
expression after exercise is associated with isolated fast-twitch fiber

size increases from resistance training [6,9]. A member of the

TNFa superfamily, FN14 is a cell-surface receptor found on a

variety of tissues including skeletal muscle [28] and appears to

signal through the diverse NF-Kb pathway [28,29]. While linked

to atrophy in pathological conditions [30], FN14 also appears

necessary for muscle proliferation, differentiation, and regenera-

tion in mice and cell culture [31,32]. In this investigation, FN14
gene induction after running in the tapered state was uniform (six

of six subjects) and four responses were larger ($4.4-fold) than the

largest heavily trained response (2.8-fold). These occurrences

highlight the magnitude of this fiber type-specific induction and

further implicate FN14 as an important component specific to the

MHC IIa remodeling process in humans’ response to exercise.

MSTN decreased post-run in both conditions and fiber types.

Myostatin is a negative regulator of skeletal muscle mass that is

blunted following a hypertrophic stimulus in humans [9,14,33–

36]. Interestingly, Myostatin is also suppressed at the gene and

protein level in humans after non-hypertrophic exercise

[14,37,38]. This could signal a metabolic purpose for down-

regulation [38,39] or Myostatin’s supporting role in muscle

remodeling and homeostasis after aerobic exercise [40]. It is

worth noting, however, that the largest MSTN reduction observed

here (2.0-fold) was in tapered MHC IIa fibers. Skeletal muscle

reportedly has ,2–3 times the amount of Myostatin necessary to

restrain growth [41] while animal [42–46] and human [47–49]

fast-twitch muscle appears most sensitive to MSTN alterations.

The 2.0-fold tapered state reduction in MSTN with running may

have surpassed a physiologically significant threshold for Myosta-

tin-mediated growth to occur and could have contributed to

previously observed MHC IIa hypertrophy with taper [2].

MURF1 was responsive to run exercise in the heavily trained

and tapered state in MHC IIa fibers. A marker of myofibrillar

protein breakdown, MURF1 increases after acute resistance

[14,20,50] and endurance [14,51] exercise and is elevated

concomitant with training-induced hypertrophy [52]. Increased

MURF1 with exercise may therefore represent a normal

component of the MHC IIa remodeling process in healthy human

muscle. HSP72, MRF4, and IGF1 were not altered with exercise

in MHC IIa fibers in either training state. In animals, heat shock

protein is less constitutively expressed in fast-twitch than slow-

twitch muscle [53–55] and is less responsive to exercise in human

Type IIa fibers [56]. A lack of HSP72 response to intense training

Figure 5. MSTN gene expression response after an 8 km run in
the heavily trained (T1:T2) and tapered (T3:T4) state in MHC I
(A) and IIa (B) fibers, presented as fold change, Main time
effect for exercise, P,0.05.
doi:10.1371/journal.pone.0108547.g005

Figure 6. MURF1 gene expression response after an 8 km run in
the heavily trained (T1:T2) and tapered (T3:T4) state in MHC IIa
fibers, presented as fold change, Main time effect for exercise,
P,0.05.
doi:10.1371/journal.pone.0108547.g006
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and taper may therefore reflect a normal pattern of heat shock

protein expression in MHC IIa fibers. MRF4 induction after taper

observed previously in mixed-muscle of these runners was

relatively modest (1.4 fold) [2] and was abolished at the single

fiber level in both fiber types. This discrepancy could result from a

combinatorial effect of all fiber types yielding significant MRF4
expression in mixed-muscle or the potential influence of satellite

cells (express MRF4 upon activation [57,58]). Common mRNA

markers of quiescent satellite cells (NCAM1, CD34, CDH15,
CALCR) are present in fibers mechanically dissected using the

method described here [6] which suggests satellite cell presence

but the extent of satellite cell adhesion has not yet been

determined. IGF1 activates the Akt/mTOR pathway and is

strongly implicated in exercise-induced muscle hypertrophy [10].

However, IGF1 transcript is shown to not change appreciably in

the early recovery from aerobic [18] or resistance exercise

[18,59,60] which agrees with our findings.

HSP72 responded to exercise in MHC I fibers in both training

states. This induction is consistent with greater HSP72 protein

levels in Type I vs IIa fibers following 30 minutes of acute exercise

[56]. In well-conditioned aerobic athletes, the greatest increase in

basal HSP72 protein level occurs with intensified training but

overall content peaks following a reduced training period [61].

While speculative, it is conceivable that improved translational

efficiency in reaction to tapering along with a slightly more

pronounced HSP72 response to exercise in tapered MHC I fibers

(Figure 7) of the trained runners studied here ultimately results in

greater HSP72 protein levels after taper. This could be interpreted

as a positive adjustment to the post run cellular environment that

would aid in the localized stress tolerance of intense exercise

performance [12] that coincides with peak level competition

[1,2,4].

A properly conducted taper program in athletes prior to peak

competition improves performance that appears to be mediated, in

part, by increased power at the whole muscle and single muscle

fiber level. The single muscle fiber performance gains with taper

are targeted to MHC IIa fibers and are primarily driven by

hypertrophy [1,2]. The current study extends these MHC IIa-

specific muscle fiber adaptations with taper to the molecular level

and reports a sizeable FN14 induction in the tapered state that

may have contributed to rapid fast-twitch remodeling. A

potentially meaningful MSTN suppression with tapered state

exercise may also help support a favorable fast-twitch growth

environment. We speculate that intense aerobic training periods

reduce MHC IIa plasticity of growth-related gene targets and that

taper reverses this process. To what extent the taper-induced

MHC IIa adaptations are due to super-compensation from intense

training or recovery to levels prior to the heavy training phase has

not been established. The current study illustrates how tapering

can promote transcriptional flexibility not previously thought

possible in well-conditioned muscle [6,8]. These basic alterations

at the molecular level provide a framework for expanded studies

(i.e. transcriptome, protein quantification, epigenetics, etc.) to

further our understanding of MHC IIa plasticity with exercise

training paradigms.

Supporting Information

Table S1 Summary of literature on selective fast-twitch size

alterations in young healthy individuals.

(PDF)
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