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Abstract

A growing variety of ‘‘genotype-by-sequencing’’ (GBS) methods use restriction enzymes and high throughput DNA
sequencing to generate data for a subset of genomic loci, allowing the simultaneous discovery and genotyping of
thousands of polymorphisms in a set of multiplexed samples. We evaluated a ‘‘double-digest’’ restriction-site associated
DNA sequencing (ddRAD-seq) protocol by 1) comparing results for a zebra finch (Taeniopygia guttata) sample with in silico
predictions from the zebra finch reference genome; 2) assessing data quality for a population sample of indigobirds (Vidua
spp.); and 3) testing for consistent recovery of loci across multiple samples and sequencing runs. Comparison with in silico
predictions revealed that 1) over 90% of predicted, single-copy loci in our targeted size range (178–328 bp) were recovered;
2) short restriction fragments (38–178 bp) were carried through the size selection step and sequenced at appreciable depth,
generating unexpected but nonetheless useful data; 3) amplification bias favored shorter, GC-rich fragments, contributing
to among locus variation in sequencing depth that was strongly correlated across samples; 4) our use of restriction enzymes
with a GC-rich recognition sequence resulted in an up to four-fold overrepresentation of GC-rich portions of the genome;
and 5) star activity (i.e., non-specific cutting) resulted in thousands of ‘‘extra’’ loci sequenced at low depth. Results for three
species of indigobirds show that a common set of thousands of loci can be consistently recovered across both individual
samples and sequencing runs. In a run with 46 samples, we genotyped 5,996 loci in all individuals and 9,833 loci in 42 or
more individuals, resulting in ,1% missing data for the larger data set. We compare our approach to similar methods and
discuss the range of factors (fragment library preparation, natural genetic variation, bioinformatics) influencing the recovery
of a consistent set of loci among samples.
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Introduction

A variety of new ‘‘genotype by sequencing’’ (GBS) methods

share the common feature of using one or more restriction

enzymes to target a subset of genomic loci for high-throughput

DNA sequencing, allowing the simultaneous discovery and

genotyping of genetic polymorphisms in a set of multiplexed

samples [1]. Widely applicable in both model and non-model

organisms, these methods generate massive datasets for a range of

applications from genetic mapping to population genetics,

phylogeography, and molecular systematics [2–5]. The methods

described to date vary substantially in the number of loci captured

for sequencing (Table 1), but all are designed to recover a specific

subset of genomic loci in a more or less consistent manner across

samples. Few studies, however, have explicitly evaluated perfor-

mance or the potential biases leading to differential recovery of

loci among samples [6,7].

The optimal level of genome reduction varies with the aims and

sampling design of each study [1,6]. Fortunately, many of these

new methods are highly flexible, allowing researchers to balance

the number of loci sequenced against the number of samples that

can be multiplexed and the expected sequencing depth per sample

and locus. The primary tool for adjusting the number of loci is

choice of restriction enzyme(s) [8]; enzymes with longer recogni-

tion sequences (and/or methylation-sensitive enzymes [9]) cut the

genome less frequently and therefore produce fewer loci. Using

two enzymes combined with size selection further reduces the

number of loci, targeting only those portions of the genome with

cut sites for the selected enzymes in close proximity (e.g., [6,10–

12]). ‘‘Double-digest, restriction-site associated DNA sequencing’’

(ddRAD-seq) [6] also streamlines fragment library preparation in

comparison to the original RAD-seq method [8]. Other means to

reduce the number of loci include selective pre-amplification [10],

the use of a third enzyme leaving ‘‘sticky ends’’ not compatible

with adapters [13], and the use of type IIB enzymes with selective

adapters [14].

We implemented a ddRAD-seq protocol with the aim of

generating robust genotypic data for a relatively small fraction of

the genome (several thousand loci), allowing increased multiplex-

ing and reduced per sample costs for analyses of population

structure and gene flow. In comparison to other studies using

double-digest methods (e.g., [6,11–13,15]), we chose enzymes that

cut less frequently and used a larger fragment size range (see also

[11]). To assess the performance of this approach, we compared

empirical results for a zebra finch (Taeniopygia guttata) sample to

predicted loci from an in silico digest of the zebra finch genome.

This allowed us to characterize biases in the recovery of loci in

relation to fragment size, base composition, and genome position.
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We also explore repeatability across runs by testing the effective-

ness of the method in recovering a broadly overlapping set of loci

in samples from three species of brood parasitic indigobirds (Vidua
spp.). Finally, we discuss our results in relation to other recent

evaluations of bias in GBS methods [6,7,16].

Methods

Ethics statement
This study was carried out in accordance with recommenda-

tions provided in Guidelines to the Use of Wild Birds in Research,
3rd Ed. [17]. Fieldwork, sample collection and genetic analyses

were approved by Boston University’s Institutional Animal Care

and Use Committee (IACUC protocol numbers: 00–026, 06–033,

10–004, 13–010). The zebra finch sample was obtained from a

captive colony at Boston University (IACUC protocol number 11–

026).

ddRAD-seq
We developed a ddRAD-seq protocol similar in basic design to

those described in recent studies [6,11]. Briefly, genomic DNA is

cut with two enzymes in a single reaction after which barcoded

sequencing adapters with overhangs matching the ‘‘sticky ends’’

produced by the respective enzymes are added in a single ligation

reaction. Fragments are then size selected, PCR-amplified,

quantified and pooled for sequencing. In comparison to the

original RAD-seq method [8], ddRAD-seq targets a smaller subset

of loci (assuming the same primary restriction enzyme) and also

simplifies the library preparation process by eliminating hydro-

shearing, end repair, adenylation, and one of two ligation

reactions. Choice of restriction enzymes combined with selection

of a wider or narrower fragment size range allows substantial

control over the number of target loci [6]. A ‘‘divergent-Y’’ in the

‘‘P2’’ adapter prevents amplification of fragments produced by

adjacent cuts of the enzyme with higher cutting frequency,

yielding a fragment library comprising mostly fragments with ‘‘P1’’

and ‘‘P2’’ adapter sequences on either end, and a smaller number

of fragments with a P1 adapter on both ends. The latter affect

concentration estimates and bind to the flow cell, but do not form

clusters during bridge amplification [18].

Selection of enzymes and fragment size range
The number of ddRAD loci expected for a given pair of

enzymes and fragment size range can be estimated given

information on genome size and base composition, but more

accurate estimates can be generated through an in silico digest of

an appropriate reference genome. We wrote a python script

(Digital_RADs.py; available at https://github.com/BU-RAD-seq)

that returns the number, size distribution, base composition, and

sequences of ddRAD loci that should be generated by a given pair

of enzymes and reference genome. To illustrate the difference

between RAD-seq and ddRAD-seq, the zebra finch genome

sequence includes 70,569 SbfI restriction sites, which should

generate an expected 141,138 DNA fragments for sequencing (i.e.,

upstream and downstream from each cut site) when using the

original RAD-seq method [8]. Adding a second enzyme allows

great flexibility in the number of loci targeted for sequencing; for

example, different enzymes with six-base pair recognition sites can

yield as few as 178 or as many as 14,925 fragments in the 200–

400 bp size range when combined with SbfI in a ddRAD-seq

protocol (Table S1 in File S1). Adjusting the size range allows

further modification of the expected number of loci. Ideally, the

second enzyme should cut more frequently than the first to

minimize the number of fragments with P1 adapters on both ends.

Laboratory protocols
We outline here the ddRAD-seq protocol we have used to

process several batches of samples for analyses of the brood

parasitic indigobirds (Vidua spp.) and their estrildid finch hosts (a

detailed protocol is available in Protocol S1). Some of the results

Table 1. Examples of genotype-by-sequencing (GBS) methods using restriction enzymes and high throughput DNA sequencing to
select, sequence and genotype a large set of loci across multiple samples.

Method # Enzymes Expected # of loci Further reduction steps Year Ref.

Complexity Reduction of Polymorphic
Sequences

(CRoPS) 2 45,440 Pre-selective amplification 2007 [10]

Restriction-site Associated
DNA Sequencing (RAD-seq)

1 *70,569 None 2008 [8]

Modified CRoPS 2 292,165 Pre-selective amplification,
size selection

2010 [37]

Multiplex Shotgun Genotyping (MSG) 1 593,397 Size selection 2011 [38]

Genotype-by-sequencing (GBS) 1 219,256 None 2011 [9]

Modified RAD-seq 2 6,258 Size selection 2012 [11]

Modified GBS 2 83,013 Size selection 2012 [15]

Double-digest RAD-seq (ddRAD-seq) 2 **9,277 Size selection 2012 [6]

Modified GBS 2 445,358 None 2012 [12]

Sequence-Based Genotyping (SBG) 2 or 3 676,355 Third enzyme 2012 [13]

Type IIB RAD-seq (2b-RAD-seq) 1 ***27,048 Type IIB enzyme 2012 [14]

*Using SbfI enzyme.
**Using ‘‘narrow’’ size range (see [6]).
***Using selective adapters.
To facilitate comparison, the expected number for each method is estimated for the zebra finch genome based on the specific restriction enzymes and other
parameters (e.g., size selection) used in each study.
doi:10.1371/journal.pone.0106713.t001
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reported in this paper used earlier versions of the protocol, and we

highlight any pertinent differences below. We extract genomic

DNA using the DNeasy Blood & Tissue Kit (Qiagen Inc.) and

estimate concentrations with a NanoDrop instrument (Thermo

Scientific). Genomic extracts showing evidence of degradation in

an agarose test gel are avoided. We then double-digest ,1.0 mg of
DNA with high fidelity versions of the SbfI and EcoRI restriction

enzymes (New England Biolabs); when less DNA is available, we

have had good success starting with as little as 0.17 mg of genomic

DNA. Following digestion, ligation of double-stranded sequencing

adapters is completed in the same tube. The P1 adapter includes

the Illumina TruSeq forward amplification and sequencing primer

sequences, one of 48 unique, six bp barcodes, and a TGCA

overhang on the top strand to match the sticky end left by SbfI

(Table S2 in File S1). The 48 barcodes were selected from a set of

128 (Table S3 in File S1) that we designed using Hamming codes

[19] such that each barcode has exactly 50% GC content, no more

than two consecutive identical bases, and a minimum of two

differences with every other barcode. The P2 adapter includes the

Illumina TruSeq reverse amplification and sequencing primer

sequences, a six bp index sequence, and an AATT overhang on

the top strand to match the sticky end left by EcoRI. It also

incorporates a ‘‘divergent-Y’’ [20] to prevent amplification of

fragments with EcoRI cut sites on both ends (Table S2 in File S1).

The barcoded (P1) and indexed (P2) adapters can be used in

combination to allow for highly multiplexed libraries [6].

Following ligation, individual samples are run on a 2% low-melt

agarose gel and DNA in the 300–450 bp size range is excised from

the gel. This size range corresponds to genomic fragments of 178–

328 bp after excluding adapter sequences. To aid accurate and

repeatable size selection, we add internal size standards of exactly

300 and 450 bp in each lane. To compensate for an amplification

bias that favors smaller fragments in the downstream PCR ([21],

see Results), we cut a tapered slice from the gel, excising the full

width of the lane at 450 bp but only half the width at 300 bp.

DNA is extracted from gel slices with the MinElute Gel Extraction

Kit (Qiagen) following the manufacturer’s protocol except that the

agarose is dissolved at room temperature to increase the

representation of AT-rich fragments [22] and we use 20 mL of

the Qiagen Elution Buffer. Samples are then amplified for 20 PCR

cycles using Phusion High-Fidelity PCR Master Mix (Finnzymes)

in a 60 ml reaction with 15 ml of template DNA. Amplified DNA

fragments are purified with AMPure XP magnetic beads

(Agencourt). Fragment library concentrations for each sample

are estimated with quantitative PCR (qPCR) using a KAPA

Biosystems kit. Individual fragment libraries are then combined in

equimolar amounts and sequenced on an Illumina HiSeq 2000 or

2500 machine. Unless otherwise noted, single end raw sequence

reads of 100 bp were generated with TruSeq v3 reagents and

CASAVA v1.8 software (Illumina, Inc.). We generated single end

sequence data to simplify computational processing of the data, to

minimize per sample costs for a large population study, and

because there is no opportunity to detect PCR duplicates from

paired end reads when using two-enzyme methods like ddRAD-

seq. De-multiplexed fastq files for all samples described in this

study are available in the National Center for Biotechnology

Information (NCBI) Short Read Archive (Accession:

PRJNA240988).

Bioinformatics analyses
We used custom Python scripts (available at https://github.

com/BU-RAD-seq) in conjunction with other freely available

software to process the Illumina sequence reads. Briefly, sequences

passing the preliminary Illumina quality filter are parsed into

individual sample files based on P1 barcode and P2 index

sequences. The barcode is trimmed from each read and replaced

with ‘‘CC’’ to reconstruct the 8-base SbfI recognition sequence.

Although the first 6 bases of all reads (and 8 bases including the

added ‘‘CC’’) are identical, we include the full 8-base restriction

site to improve the performance of subsequent BLAST searches

against the reference (zebra finch) genome. In preliminary

analyses, we discovered that many sequences represented unex-

pectedly short restriction fragments and thus extended through the

EcoRI site and into the P2 adapter (see Results); thus, we also

search for and remove P2 adapter sequences using an alignment-

based approach to allow for imperfect matches; we then add a ‘‘C’’

at the end of these trimmed sequences to complete the EcoRI

recognition site. Finally, reads with a complete SbfI or EcoRI

recognition sequence in the middle of the sequence, representing

concatemers of two different restriction fragments, are either

removed from the analysis (SbfI) or trimmed accordingly (EcoRI).

To reduce the size of data files for downstream analysis, we

condense identical sequences for a given sample into a single data

line, retaining the number of identical reads observed and the

highest quality score at each position. Retaining the highest quality

score is conservative because multiple identical reads, each with a

generally small probability of error, increases confidence in the

base call beyond that provided by any single read. We then cluster

the condensed reads from each sample using the UCLUST

method in USEARCH v5 [23]. Low quality reads (average quality

score ,20) that do not cluster with any other reads from the same

individual at a 90% identity threshold are omitted from further

analysis.

Next, the condensed and filtered reads for individual samples

are concatenated into a single large file, sorted by average quality

score (from high to low), and then clustered into putative loci using

UCLUST with an identity threshold of 85%. The highest quality

sequence from each cluster is mapped to the zebra finch reference

genome using BLASTN v2.2.25 [24] with the following settings:

evalue = 0.0001, word_size = 11, gapopen=5, gapextend= 2,

penalty =23, reward= 1, and dust = yes. Clusters with BLAST

hits to the same or approximately the same chromosomal position

(650 bp) and with the same orientation (plus or minus strand) are

merged; clusters that do not produce a BLAST hit are carried

through the remainder of the pipeline as anonymous loci. We then

use MUSCLE v3.8.31 [25] to align the sequences in each cluster

(i.e., each putative ddRAD locus).

We developed a custom script to process the aligned sequence

data and output haplotype/allele counts, SNPs, and binary coding

of each unique indel for each sample and locus. Briefly, our script

makes several passes through the data for each putative locus to: 1)

identify positions with SNPs and/or indels in one or more samples,

2) identify all unique haplotypes (considering polymorphic sites

only) and determine the number of reads for each haplotype in

each sample, and 3) evaluate the results for each sample in light of

Mendelian expectations. For single-copy autosomal loci, we expect

the sequences for each homozygous individual to represent a single

haplotype (subject to infrequent errors, typically at different

positions in different sequence reads), whereas heterozygous

individuals should have two predominant haplotypes, ideally

appearing at approximately equal frequency. For the analyses

presented here, individuals were scored as homozygous if more

than 93% of sequence reads for a given locus were consistent with

a single haplotype and as heterozygous if the second most frequent

haplotype was represented by .29% of reads. If the second most

frequent haplotype was represented by 20% to 29% of reads, the

genotype for that individual was flagged as a ‘‘provisional

heterozygote’’ and was later ‘‘passed’’ as heterozygous only if

ddRAD-seq Biases and Performance
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both haplotypes were present in other individuals in the

population. Samples failing this test and other samples with a

secondary haplotype representing 7 to 20% of reads were flagged

as ambiguous (‘‘Bad Ratio’’). Similarly, a putative heterozygote

with a third haplotype representing more than 10% of reads was

also flagged as ambiguous (‘‘Extra Reads’’). Loci for which

multiple samples have ambiguous genotypes (Bad Ratios/Extra

Reads) often have high sequencing depth and/or multiple BLAST

hits and likely represent duplicated or repetitive elements in the

genome (see Results). For loci with segregating polymorphisms,

homozygous samples with fewer than five reads were also flagged

as ambiguous (‘‘Low Depth’’). Finally, if the average quality-score

for a variable position across all reads at a locus dropped below 25,

we truncated the locus at that position before scoring genotypes.

Comparison of zebra finch sample to reference genome
To assess the recovery of predicted ddRAD loci, we compared

in silico and empirical results for a single zebra finch sample. We

searched the zebra finch genome for all predicted ddRAD loci in

the 32–700 bp size range (inclusive of the SbfI and EcoRI

restriction sites) and recorded the sequence and base composition

for each locus. We then used the first 100 bp of each predicted

locus (corresponding to the read length), or the entire sequence for

loci less than 100 bp, in BLAST searches against the zebra finch

genome. Loci with a single, high quality BLAST hit matching the

original location of the predicted tag were included in a stringent

set of single-copy loci for comparison to empirical results. We

processed a zebra finch tissue sample as described in Protocol S1,

but with slightly different PCR conditions (1 ml of each 10 mM
primer, 10 ml of template DNA, and 26 PCR cycles), gel

purification of the PCR product rather than bead cleanup, and

TruSeq v2 reagents. We clustered the empirical sequence reads

with the database of predicted single-copy loci using UCLUST,

allowing us to determine the number of reads for each predicted

locus.

Consistency among samples and runs for a population
sample
We tested the consistency of our ddRAD-seq method by

assessing the extent to which a common set of loci was recovered

across samples and sequencing runs. We used data for three

species of West African indigobirds (V. camerunensis, V. raricola,
and V. wilsoni) collected over the course of six different sequencing

runs. These species are closely related and show minimal genetic

differentiation at nuclear loci [26,27]. We first assessed data

quality and the number of shared loci among 46 samples in a

single sequencing run (‘‘RAD10’’) and then used a set of

commonly recovered loci to assess consistency among runs,

making comparisons to other runs that included 10 or more

samples of these same West African species.

We constructed a database of 5,996 putative single copy loci

recovered in all 46 RAD10 samples at a depth of five or more

sequence reads per sample per locus. Fragment length was

estimated from the corresponding locus in the zebra finch genome

or, in the case of loci ,100 bp in length, measured directly from

the indigobird sequence data. Note that the location of the nearest

EcoRI site to a given SbfI site often differs between indigobirds

and zebra finch; thus, we assumed that estimated lengths greater

then 328 bp were incorrect, while also recognizing that some

estimates within our size range are also incorrect. We then used

USEARCH to cluster the reads for 10 indigobird samples from

each of five other runs (RAD5, 6, 14, 16, 18) with the database of

RAD10 loci and determined the number of reads representing

each locus in each sample. RAD5 fragment libraries were

prepared with the same laboratory protocol used for the zebra

finch sample (see above). For RAD6, we used a smaller quantity of

genomic DNA (,0.1 mg), pooled batches of 12 samples after

ligation of adapters and before the size selection step, and TruSeq

v2 reagents. Individual fragment libraries were prepared for the

RAD14, 16, and 18 runs following the same protocol used for

RAD10.

Results

Comparison of empirical zebra finch data to predictions
from the reference genome
We analyzed 747,650 reads assigned to an individual zebra

finch. Processing these reads through our computational pipeline

generated 17,144 ‘‘clusters’’ or putative loci, of which 9,439 were

represented by five or more reads. The consensus sequence for

most clusters with fewer than 500 reads generated a single BLAST

hit or a ‘‘best’’ hit along with other poorer matches (Figure S1 in

File S1). In contrast, clusters with sequencing depth of 500 or more

reads (n=53, maximum depth = 7,626 reads) typically generated

multiple BLAST hits (Figure S1 in File S1) and undoubtedly

represent repetitive elements in the genome. Considering the

9,386 putative loci with depths of 5–500, at least 4,295 were

heterozygous, with 2 distinct haplotypes, each representing 30–

70% of the reads for that locus.

Consistent with expectations, recovery of predicted, single-copy

ddRAD loci within our targeted size range was generally high,

although sequencing depth and the proportion of loci recovered

decreased toward the upper limit of the size range before dropping

to nearly zero for fragment lengths above the selected size range

(Figure 1A). Surprisingly, we also recovered a high proportion of

loci in the ,38–178 bp size range, with a tiny fraction of

sequences ranging all the way down to the minimum possible

length of 10 bp (13 bp with the restriction sites reconstructed),

comprising adjacent SbfI and EcoRI restriction sites overlapping

by one base. Considering a stringent set of predicted single copy

loci (see Methods), the empirical data included at least one

sequence read for 5,232 (90.5%) of 5,783 predicted loci in the 38–

328 bp size range, and 5,078 of these loci (87.8% of the predicted

loci) were represented by at least five reads. A small number of

recovered loci with predicted lengths longer than 328 bp are

presumably due to restriction site polymorphisms, indels generat-

ing fragment length differences between the reference genome and

our individual sample, or a low level of star activity (see below).

Sequencing depth per locus within the recovered size range

varied with both fragment length (Figure 1B) and base composi-

tion (Figure 1C). Sequencing depth was highest for loci that were

,200 bp in length and was negatively correlated with length in

the ,200–328 bp range (Figure 1B). Within this range, both

fragment length and base composition explained a significant

portion of the variation among loci in sequencing depth (multiple

linear regression, R2 = 0.43, p,0.0001; partial R2 for

length = 0.20, p,0.0001; partial R2 for GC-content = 0.23, p,
0.0001). By making a tapered cut of the gel slice during size

selection, we reduced the relative representation of smaller

fragments, generating a positive correlation between depth and

fragment length in the ,178–200 bp range (Figure 1B, Figure S2

in File S1). Sequencing depth was not strongly related to fragment

length for loci smaller than the selected size range (i.e., ,38–

178 bp). For all loci, sequencing depth was positively correlated

with GC content; this relationship was stronger within the selected

size range than it was for shorter loci (Figure 1C).

The base composition of recovered ddRAD loci was not

representative of the entire genome. While the overall base

ddRAD-seq Biases and Performance
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composition of the zebra finch genome is 41.4% GC, the base

composition of the 5,783 predicted, single-copy ddRAD loci in the

38–328 bp size range is 48.1% GC, excluding the restriction sites.

Likewise, average base composition for the subset of loci with one

blast hit and 5–500 reads was also 48.1% GC. This bias towards

GC-rich regions is expected given that the SbfI recognition

sequence (CCTGCAGG) is 75% GC and the combined base

composition of the SbfI and EcoRI recognition sites is 57% GC.

As noted above, we recovered 17,144 putative loci from our

zebra finch sample, thousands more than the 10,120 loci (38–

328 bp size range) predicted by an in silico digest of the reference
genome (note that most of the above analyses were based on a

Figure 1. Recovery and sequencing depth for predicted, single-copy ddRAD loci in the empirical zebra finch data. (A) Proportion of
predicted loci recovered at three different minimum depth thresholds as a function of predicted fragment length. Each data point represents the
proportion of ,140–220 predicted loci recovered in a given 10 bp size range. Dashed vertical lines represent the upper and lower bounds of the size
range isolated from the agarose gel. (B) Sequencing depth for recovered (depth $1), single-copy loci in the 32–500 bp size range (includes 5,232 of
5,783 predicted loci in the 38–328 bp size range). (C) The relationship between GC content and sequencing depth for zebra finch ddRAD loci. Data
are shown for predicted, single-copy loci recovered at a depth $1 in three selected subsets of the overall size range (n=502, 466, and 445 loci in the
100–125, 200–225, and 300–325 bp size ranges, respectively). The predicted length and GC content of each locus are based on the full-length
fragment in the reference genome, inclusive of the SbfI and EcoRI restriction sites on either end. Note that the y-axis is on a logarithmic scale in (B)
and (C).
doi:10.1371/journal.pone.0106713.g001
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smaller, stringent subset of predicted single copy loci). Mapping

our empirical data to the genome identifies two processes that

increase the number of loci represented in the fragment library:

star activity (i.e., non-specific cutting by the restriction enzymes)

and ligation of two or more restriction fragments during fragment

library preparation (i.e., concatemerization). Focusing on 11,309

empirical loci that produced a single, high-quality BLAST hit

reveals four distinct categories:

1) 5,303 loci (46.9%) map, as expected, to a predicted SbfI-

EcoRI fragment less than 328 bp in length; these loci were

generally recovered at relatively high depth (median

depth = 47; 93.0% had $10 reads) (Figure 2).

2) 4,524 loci (40.0%) map to a genomic location with an 8 bp

sequence similar but not identical to the canonical SbfI

recognition site (1 to 4 mismatches). Most loci in this category

start at a genomic location that differs from the SbfI

recognition site by a single mismatch in either the first or

last position (90.6% of 3,962 loci with one mismatch), and

most of these loci were recovered at low depth (median

depth = 2; 94.7% had #9 reads), consistent with a low level of

non-specific enzyme activity at such sites. In contrast, loci

differing by a single mismatch in positions 2 through 7

accounted for only 374 (9.4%) of these loci but were typically

recovered at much higher depth (median depth = 24; 71.7%

of loci had $10 reads), suggesting that most loci in this latter

category represent SbfI-EcoRI fragments generated by

restriction site polymorphisms between the reference genome

and our zebra finch sample.

3) 791 loci (7.0%) map to an SbfI site without a nearby EcoRI

site. Sequencing depth for these loci was variable (Figure 2);

we suggest that most of the low-depth loci in this category are

generated by non-specific activity of EcoRI at non-canonical

EcoRI sites near SbfI sites, whereas most loci recovered at

higher depth represent EcoRI restriction site polymorphisms

between the reference genome and our sample.

4) 491 loci (4.3%) map to a predicted SbfI-SbfI restriction

fragment less than 328 bp in length; most of these loci were

recovered at low depth (Figure 2). In preliminary analyses, we

identified a small number of sequences representing the

ligation of SbfI-SbfI restriction fragments to SbfI-EcoRI

fragments, generating chimeras with the necessary sequencing

adapters on either end. Thus, our computational pipeline

checks for and discards sequences that include a complete SbfI

restriction site, but chimeras with a reconstituted SbfI site

beyond the read length are not detected and are thus retained

in the final data set. A few of these loci (n=21, 4.3%) were

recovered at higher depth ($10 reads) and may represent

‘‘intended’’ SbfI-EcoRI fragments, reflecting polymorphisms

responsible for gain of EcoRI or loss of SbfI sites in the

downstream sequence.

ddRAD-seq results for a population sample
We pooled ddRAD-seq libraries for 46 indigobird samples

(RAD10), representing three species from Cameroon, and

generated ,30.8 M reads in a single lane of an Illumina HiSeq

2000 flow cell; this was somewhat fewer reads than anticipated due

to an issue with library quantification. We achieved approximately

equal representation across individual samples (mean 6 sd:

562 K655 K assigned sequence reads; range: 476 K–767 K).

Likewise, a broadly overlapping set of loci was recovered across all

46 samples; our computational pipeline yielded 5,996 putative

single copy loci that were recovered with$5 reads and successfully

genotyped in all 46 samples, including 2,109 invariant loci and

3,887 loci with one or more polymorphisms (SNPs and/or indels).

Most of these loci (91.1%) generated a BLAST hit to the zebra

finch reference genome (median e-value of 7E-29). Of the

remaining 531 loci, 392 produced a BLAST hit when compared

to the NCBI reference genomic sequences database. All of these

hits were to avian taxa, and another passeriform was the closest

match in almost all cases (99.0%). Sequence data ($1 read per

sample per locus) were obtained for at least 90% of individuals (42

of 46) for an additional 1,283 invariant and 2,554 variable loci.

These totals exclude 548 clusters/putative loci with data for $42

samples, but also three or more ‘‘flagged’’ genotypes (‘‘bad ratio’’,

‘‘extra reads’’); many of these clusters include sequences from loci

with two or more similar copies in the genome. We used several

additional criteria to screen for and exclude duplicated loci,

including: 1) unusually high average read depth; 2) a strong excess

of heterozygotes as compared to Hardy-Weinberg expectations; 3)

highly divergent alleles; and/or 4) consistently higher read depth

for heterozygotes than homozygotes, a pattern generated when a

second, similar locus was recovered in only a subset of samples.

For the larger set of 9,833 loci, less than 0.2% of genotypes were

flagged, whereas data were missing for ,1% of genotypes and

,10.8% of genotypes had low sequencing depth (,5 reads)

(Table 2).

Consistent with the relationships between fragment length, base

composition, and sequencing depth noted above, sequencing

depth varied among loci and this variation was strongly correlated

among individuals. Locus identity explained a far greater

proportion of variation in sequencing depth than sample identity

(two-way ANOVA of 2,000 randomly selected loci: partial g2

effect sizes of 0.82 and 0.02 for locus and sample, respectively).

BLAST results indicate that recovered indigobird loci were

broadly scattered across the genome. As would be expected, there

was a significant positive correlation between zebra finch

chromosome length and number of indigobird loci mapping to

each chromosome, but with an up to four-fold over representation

of loci on generally smaller, GC-rich chromosomes (Figure 3A–C).

The proportion of loci that were polymorphic also increased with

GC content (Figure 3D).

We further assessed data quality by examining PCR and/or

sequencing error rates as well as the fit of our data to Mendelian

and population genetic expectations. To simplify these analyses,

we focused on 1,721 loci that were scored as having a single bi-

allelic SNP and that were recovered in all 46 samples with no

flagged genotypes (results were entirely comparable for loci with a

larger number of polymorphisms/alleles, but are more complex to

summarize). For reference, these 1,721 loci had median sequenc-

ing depth of 58 reads per sample per locus, with heterozygotes

having a median of 28 reads per allele. Consistent with low rates of

PCR and/or sequencing error, 99.48% of all reads (n=5.2 M)

were identical across their full length to one of the two consensus

allele sequences at each locus; thus, sequences for all these loci

were effectively ‘‘replicated’’ across multiple samples. Of those

sequences that did not match perfectly, 96.8% were either

singletons (i.e., observed only once in a given sample; 66.4% of

mismatched reads) and/or were sequences that differed from one

of the consensus allele sequences at a position(s) with quality score

,30 (69.7% of mismatched reads), the latter indicating sequencing

error rather than PCR error as the predominant source of error.

In a few cases (n=14 individual genotypes at 13 loci; 0.018% of all

genotypes), an individual had 2 to 9 high quality reads comprising

20–30% of its reads; these likely represent rare polymorphisms

that did not meet the initial threshold for identifying a variable site

in our genotyping code.
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Consistent with Mendelian expectations, read counts for 79,166

genotypes (1,721 loci 6 46 individuals) were strongly tri-modal,

with homozygotes having either ,0% or ,100% of reads

matching the rare allele at the SNP position and heterozygotes

having reads matching both alleles (Figure 4). Read depths for the

two alleles in heterozygotes were consistent with stochastic

sampling from the binomial distribution, with reduced variation

around the 50/50 expectation as total depth increased. The

proportion of heterozygous genotypes deviating from binomial

expectations at the 0.05 confidence level (4.6%; 537 of 11,761),

including 1.3% (n=151) at the 0.01 confidence level, was

approximately what would be expected by chance. Only 64 of

67,045 homozygous genotypes (0.095%) included one or more

high quality reads that matched the alternative allele at the SNP

position; in cases of low depth (e.g., ,20 reads total), there is a

small chance that some of these were heterozygotes incorrectly

scored as homozygous, but either PCR or sequencing error

(including errors in the barcode sequence) might also account for a

single mismatched read.

Genotyping accuracy is also supported by an approximate fit of

genotype frequencies to Hardy-Weinberg expectations, with both

heterozygotes and homozygotes for the rare allele increasing with

allele frequency (Figure 5A–B). A small fraction of loci with a

deficiency of heterozygotes can be attributed to combining data

from three closely related species with minimal genome-wide

differentiation (i.e., the Wahlund effect [28]); nearly all of these

loci have WST values in the right tail of the distribution (range 0.15

to 0.62) as compared to the genome-wide value of WST = 0.047.

Likewise, the distribution of rare allele frequencies at these same

loci (i.e., the site frequency distribution) is roughly consistent with

neutral expectations for a population of constant size (Figure 5C),

albeit with a moderate excess of low frequency alleles, which is

consistent with population expansion. Finally, expanding the

analysis to all loci recovered in all 46 samples, the observed level of

polymorphism (mean=1.27 polymorphisms per locus) was con-

sistent with previous indigobird studies [26,27], and the distribu-

tion of polymorphisms among loci was approximately Poisson

distributed (Figure 5D).

Consistency among runs in sequenced ddRAD loci
A broadly overlapping set of loci was recovered across most but

not all of our sequencing runs (Table 3, Figure 6). This was

particularly true for later runs using the same laboratory protocol

(i.e., RAD10, 14, 16, 18); using 5,996 ‘‘core’’ loci from RAD10

samples as a reference set, subsequent runs recovered 95.7%

(RAD14), 92.9% (RAD16) and 98.0% (RAD18) of these loci at a

Figure 2. Sequencing depth for single copy ddRAD loci in relation to the corresponding sequence in the zebra finch reference
genome. Categories from top to bottom include: loci mapping as expected to predicted SbfI-EcoRI restriction fragments#328 bp in length; all loci
beginning at a genomic location similar but not identical to the canonical SbfI recognition sequence (1–4 mismatches); subset of loci with one
mismatch in position 1 or 8 of the SbfI recognition sequence; subset of loci with one mismatch in positions 2 through 7 of the SbfI recognition
sequence; loci mapping to a genomic SbfI site without an EcoRI site within 328 bp; and loci mapping to a predicted SbfI-SbfI restriction fragment less
than 328 bp in length.
doi:10.1371/journal.pone.0106713.g002

Table 2. Genotyping success for 9,833 loci recovered in at least 42 of 46 indigobird samples in the ‘‘RAD10’’ run.

Constant Loci Variable Loci

46 samples 42–46 samples* 46 samples 42–46 samples* Total

Number of loci 2,109 1,283 3,887 2,554 9,833

Median read depth per sample 45 10 61 8 25

Total number of genotypes 97,014 59,018 178,802 117,484 452,318

Number with ‘‘low depth’’ – 14,850 – 33,920 48,770 (10.8%)

Number of missing genotypes – 1,200 – 3,086 4,286 (0.9%)

Number with ‘‘bad ratio’’ – – – 811 811 (0.2%)

Number with ‘‘extra reads’’ – – – 69 69 (0.02%)

Total missing or ‘‘flagged’’ – 1,200 – 3,966 5,166 (1.1%)

See Methods for more information on categories of ‘‘flagged’’ genotypes.
*Includes loci with $ one read for at least 42 of 46 samples and no more than 2 ‘‘flagged’’ genotypes.
doi:10.1371/journal.pone.0106713.t002
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depth of 5+ reads in all 10 samples analyzed, and individual

samples were missing data for a small fraction of loci (Table 3). In

these runs, core loci were recovered at a high rate across the

selected size range (Figure 6, Figure S3 in File S1), with a strong

correlation across runs in per locus sequencing depth (Figure S4 in

File S1). Slightly poorer success in RAD16, which had similar per

sample read depth to RAD10, was apparently due to one or more

factors influencing quality of the fragment library (Figure S5 in File

S1). Our RAD5 run used different PCR parameters (see Methods)

and gel-based rather than bead-based purification of PCR

products. Despite these differences, the set of core loci was well

represented; 88.2% of loci had at least five reads for each of the 10

individuals analyzed in RAD5 (Table 3). Loci with missing data

tended to be toward the upper limit of the size range (Figure 6,

Figure S3 in File S1). Variation in sequencing depth across

samples and within loci was relatively low in all of these runs; the

average coefficient of variation in read depth was below 0.3 in

each run (Table 3).

Pooling samples earlier in the library preparation process (e.g.,

after digestion and ligation of barcoded adapters) offers consider-

able savings in both the time and costs associated with preparing

samples for ddRAD-seq [6]. We used this approach for our RAD6

run (see Methods). Despite generating many more sequence reads

per sample (Table 3), the reference set of loci was recovered much

less consistently in RAD6 as compared to other runs. While loci

with the highest average depths in RAD10 were generally

recovered in most or all RAD6 samples, the RAD6 run showed

a pattern of seemingly random ‘‘dropout’’ of loci throughout the

entire size range (Figure 4, Figure S4 in File S1), resulting in much

greater within locus variability in read depth among samples

(Table 3). Results also differed between two batches of pooled

samples in RAD6: 44.0% of the RAD10 reference loci were

recovered with $5 reads in all 10 samples in RAD6-pool-1,

whereas only 11.9% were consistently recovered in RAD6-pool-2.

Recovered loci often had many more reads (e.g., 1,000+) than
necessary to determine genotypes. These results illustrate that high

per sample sequencing depth does not necessarily translate into

good representation across loci or consistent recovery of loci

among samples.

Discussion

A variety of conceptually similar GBS methods have been

introduced in recent years, providing new opportunities and

increased power for addressing a wide range of questions in

molecular ecology, evolutionary biology and related fields.

Designed to sample a specific subset of the genome across multiple

samples, the utility of these methods depends on consistent

recovery of loci across batches of samples, but there has been

limited evaluation of this key aspect of performance (but see

[6,7,16]). Potential pitfalls and biases associated with laboratory

protocols, natural genetic variation, and computational processing

of the sequence data all may affect the degree to which a common

set of homologous loci is recovered across samples. We discuss

below the range of factors influencing performance and how the

details of different ddRAD-seq protocols may influence results.

Recovery and amplification biases associated with
fragment library preparation
While the ideal GBS method would yield uniform sequencing

depth across all recovered loci, both the original RAD-seq method

and ddRAD-seq generate substantial variation, albeit for different

reasons. In the original method, there is a strong positive

relationship between restriction fragment length and sequencing

Figure 3. Genomic distribution of indigobird ddRAD loci based on BLAST results against the zebra finch reference genome. Includes
7,819 loci that had one or a ‘‘best’’ BLAST hit and were genotyped in at least 42 of 46 samples (n= 5,045 variable loci, n= 2,774 constant loci). Data for
the ‘‘chrUn’’ contig and small contigs with no BLAST hits (e.g., ‘‘chr16’’, ‘‘LG2’’, ‘‘LG5’’) are excluded. (A) The number of loci mapped to each
chromosome as a function of chromosome length. (B) The density of loci as a function of chromosome length. (C) The density of loci as a function of
chromosome GC content. (D) The proportion of loci that was variable as a function of chromosome GC content. The Z-chromosome is indicated by a
red point in each panel and was not used in regression analyses.
doi:10.1371/journal.pone.0106713.g003
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depth, apparently due to the poor efficiency of hydro-shearing

shorter fragments [7]. This bias is not relevant to ddRAD-seq,

which replaces hydro-shearing with a second restriction enzyme

that determines final fragment length; thus, we found a negative

relationship between fragment length and sequencing depth within

our selected size range (Figure 1B), presumably due to amplifica-

tion bias in favor of shorter molecules [21]. We also detected a

significant bias in favor of loci with higher GC content

(Figure 1C), an effect also observed in the original RAD-seq

method with an increasing number of PCR cycles [7].

Our ddRAD-seq protocol is generally similar to that described

by Peterson et al. [6], but we used enzymes that cut less frequently

combined with a larger fragment size range to recover a

comparable number of loci (Table 4). A narrower size range is

preferable for Illumina sequencing [22] and reduces the potential

for amplification bias but it puts a premium on precise and

consistent size selection. Indeed, Peterson et al. [6] focused on this

issue as a key to good performance and demonstrated the

advantages of automated size selection using a Pippin Prep

instrument (Sage Science). We obtained excellent results using a

standard agarose gel and wider size range combined with enzymes

that cut less frequently. Under these conditions, slight error in the

selected size range affects a smaller proportion of the targeted loci.

Except for our RAD5 run, which used gel-based rather than bead-

based purification of PCR products, we achieved consistent

recovery of loci all the way to the upper limit of our selected size

range (Figure 6, Figure S4 in File S1).

An unexpected consequence of size selection in a standard

agarose gel was the recovery of fragments shorter than the lower

limit of our targeted size range (Figure 1A–B, Figure S2 in File

S1). This ‘‘small fragment carryover,’’ revealed by directly

comparing empirical data with expectations from a reference

genome, has not been reported in previous ddRAD-seq studies

(e.g., [6,11]). Because sequences for the shortest fragments (,

100 bp) extended into the P2 adapter, searching for P2 adapter

sequences and trimming sequences accordingly was a critical step

in the initial processing of our data. While the inclusion of short

fragments reduces data collection efficiency, the consistency of the

effect across samples produced a set of shared loci in the 38–

178 bp range, a large fraction of which were variable and

genotyped in all samples. While the exact mechanism is uncertain,

this effect is apparently substantially reduced by including a bead-

based purification step following digestion of the genomic DNA

and/or by using a Pippin Prep for size selection (Sage Science,

pers. comm.).

Although our realized fragment size range was substantially

wider than intended, excessive variation in sequencing depth was

likely ameliorated by two factors: 1) for smaller fragments (38–

178 bp), we speculate that a positive relationship between

‘‘carryover probability’’ and size was countered by amplification

Figure 4. Read counts for indigobird ddRAD loci with a single bi-allelic SNP. Data are shown for 1,721 loci recovered in all 46 indigobirds in
the RAD10 sequencing run (n= 79,166 genotypes). The area of data points is proportional to the number of individual genotypes at each coordinate.
Read counts for heterozygous genotypes (n=11,761) were consistent with random sampling from a binomial distribution with probability 0.5 (i.e.,
Mendelian expectations), resulting in a strongly trimodal distribution of read counts. Most homozygous genotypes (n= 67,405) were based on 100%
of reads (light grey) matching one of the two alleles at a given locus; only 64 genotypes (0.09%) scored as homozygous had one or more high quality
reads (magenta) matching the alternative allele.
doi:10.1371/journal.pone.0106713.g004
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Figure 5. Comparison of indigobird ddRAD results to population genetic expectations. (A) Number of heterozygotes and (B) number of
homozygotes for the rare allele versus rare allele frequency for 1,721 loci with a single bi-allelic SNP. The area of data points is proportional to the
number of individual genotypes at each coordinate; observed relationship (sold lines), expected (dotted lines). Loci deviating from Hardy-Weinberg
expectations are highlighted in green and red. (C) Comparison of the empirical allele frequency distribution for the same 1,721 loci with neutral
expectations for a population of constant size. (D) Distribution of polymorphisms among full-length (97 bp) loci genotyped in all 46 samples in
RAD10 compared to a Poisson distribution, which assumes equal evolutionary rates across loci.
doi:10.1371/journal.pone.0106713.g005

Table 3. Summary statistics characterizing the performance of multiple sequencing runs in recovering a core set of loci.

Samples Depth per sample Missing loci per sample CV per locus depth Loci recovered at

Run (N) (avg6sd) (avg6sd) (avg6sd) $5x in all samples

RAD5 10 895 K651 K 38635 0.2760.16 5,289

RAD6 pool 1 10 2,377 K6459 K 7326166 0.7160.37 2,640

RAD6 pool 2 10 2,170 K6140 K 2,634680 1.3760.81 714

RAD14 10 1,651 K667 K 661 0.2360.13 5,740

RAD16 10 536 K653 K 4664 0.2660.16 5,571

RAD18 10 929 K6194 K 9616 0.2860.07 5,879

Analysis based on a set of 5,996 loci genotyped in all 46 samples in RAD10 with per locus sequencing depth $5 reads for all 46 samples.
doi:10.1371/journal.pone.0106713.t003
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bias favoring short fragments, resulting in relatively constant

average sequencing depth across this range (Figure 1B); and 2)

making a tapered gel slice during size selection was effective in

reducing amplification bias at the lower edge of our selected size

range (,178–200 bp; Figure 1B, Figure S2 in File S1).

As in previous studies [6,7], we found that recovery/amplifica-

tion biases affect all samples in a similar manner, resulting in

strong covariation among samples in sequencing depth across loci.

Peterson et al. [6] attributed this effect to a negative correlation

between depth and distance of a given locus from the midpoint of

the selected size range, presumably due to lower recovery of

Figure 6. Recovery of indigobird ddRAD loci across individual samples and sequencing runs. Sequencing depth for 160 selected loci
(rows), including 40 loci in each of four narrow size ranges, is shown for 10 randomly selected samples (columns) from each of seven pooled libraries.
The 160 loci illustrated are a subset of the 5,996 loci recovered in all 46 indigobirds sequenced in the RAD10 sequencing run. Overall sequencing
depth for each individual sample is show in the bar graph at top. Sequencing depth for each locus is indicated by color (see scale at bottom of
figure), with red indicating no data. See text for more information.
doi:10.1371/journal.pone.0106713.g006

Table 4. Number of predicted ddRAD loci in the zebra finch genome for alternative restriction enzymes and fragment size ranges.

Selected Size Range

This study: Peterson et al.:

38–328 bp 230624 bp 230636 bp

Enzyme Pair (300 bp) (48 bp) (72 bp)

SbfI-EcoRI (this study) 10,120 1,751 2,613

EcoRI-MspI (Peterson) 66,672 9,277 14,115

All reported values are based on in silico digest of the zebra finch reference genome. Table compares our ‘‘realized’’ size range (with ‘‘small fragment carryover’’, see
text) with two size selection options employed by Peterson et al. [6].
doi:10.1371/journal.pone.0106713.t004
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fragments farther from the midpoint. With direct estimates of

fragment length from the zebra finch genome, our results show

that amplification bias in relation to both fragment length and

GC-content also contributes to correlated variation in depth across

loci. Even from 206 bp to 254 bp, which corresponds to the

‘‘narrow’’ range used by Peterson et al. (but is well within the limits

of our selected size range), we observe a 25% reduction in median

per locus sequencing depth in our zebra finch test sample. The

relatively large number of PCR cycles we used may exacerbate

amplification biases in relation to both fragment size and GC

content, but the consistency of this effect contributes to the

recovery of a ‘‘core set’’ of high-depth loci in all or almost all

samples, which can be viewed as an advantage of ddRAD-seq (see

also [6]). Note that PCR ramp time is another factor that may

have a significant impact on amplification biases [29].

Our RAD6 run illustrates an additional important point:

inconsistent recovery of ddRAD loci across samples may result

from laboratory failures unrelated to size selection. Despite

generating 2+ million reads per sample, we obtained highly

uneven representation of the targeted loci and observed a pattern

of seemingly random ‘‘dropout’’ throughout the selected size range

(Figure 6). To reduce library preparation time and costs, we

pooled the RAD6 samples after ligation and prior to size selection,

but we suspect the poor performance of this run was due primarily

to reducing the quantity of input genomic DNA per sample (from

1 mg to 100 ng) combined with inefficient recovery during one or

more purification steps prior to PCR amplification. Note that a

tiny fraction of the genome may be represented in a ddRAD-seq

fragment library: for example, ten thousand ,250 bp loci

represent only ,0.2% of the zebra finch genome. With our

protocol, 100 ng of genomic DNA yields only 0.2 ng of ligated

fragments in the selected size range, assuming 100% efficiency.

Degraded input DNA, inefficient digestion or ligation reactions,

and/or poor recovery during size selection may further reduce the

quantity of DNA taken into the PCR step. In more recent work

(Stryjewski et al., in prep.), we have achieved results comparable to

RAD10 and subsequent runs when pooling batches of 12 samples

prior to size selection; in these runs, we have digested ,1.0 mg of

genomic DNA per sample and then used qPCR to quantify the

concentration of successfully ligated fragments in each sample

before pooling equimolar amounts.

A final factor generating inconsistent recovery of loci among

samples is restriction enzyme star activity (i.e., cutting at non-

canonical recognition sites). By comparing our empirical zebra

finch data to the reference genome, we discovered a considerable

level of star activity (even when using ‘‘high fidelity’’ versions of the

enzymes) concentrated at sites with a mismatch in the first or last

base of the recognition sequence (Figure 2). Comparison to

another recent study [30] suggests that the specific patterns of

non-canonical activity may vary with restriction enzyme and

flanking sequence. In our study, star activity generated a large

number of ‘‘extra’’ loci sequenced at low depth (typically one or a

few reads), and, for the most part, these loci were non-overlapping

among samples and inconsequential for downstream analysis. At

other loci, however, star activity may result in the recovery (at low

depth) of alleles that would otherwise be null alleles (due to

restriction site polymorphisms, see below); this presents complica-

tions both for the detection of null alleles and for the potential use

of presence-absence data in phylogenetic or other analyses.

Biases and challenges related to natural genetic variation
GBS methods are sometimes portrayed as providing a

‘‘random’’ sample of loci across the genome, but our analysis

clearly demonstrates the interaction between choice of restriction

enzymes and the number loci recovered from different parts of the

genome. While our method, and any other method based on

restriction enzymes, broadly samples the genome, it does not

randomly sample it. Our use of SbfI, which has a recognition

sequence that is 75% GC, as the less frequent cutter resulted in an

over-representation of loci with higher average GC content than

the genome as a whole and up to four-fold over-representation of

loci on the relatively small, GC-rich avian microchromosomes

(Figure 3B–C). The higher rate of sequence evolution on these

chromosomes [31,32] also resulted in a higher ratio of variable to

constant loci with increasing GC content (Figure 3D).

Recovery of loci in all GBS methods is influenced by restriction

site polymorphisms, which generate null alleles [33] or, more

optimistically, presence-absence polymorphisms. With ddRAD-

seq, null alleles are likely to be more frequent than in the original

RAD-seq method because mutations at either recognition site can

result in the gain or loss of a given locus. Null alleles result either in

missing data, in the case of homozygous individuals, or

heterozygous individuals erroneously scored as homozygotes.

Given sufficient population sampling and sequencing depth, loci

with null alleles at an appreciable frequency can be identified and

removed from analyses; for such loci, observed genotypes will

deviate from Hardy-Weinberg expectations, and sequencing depth

for true homozygotes will be higher than for individuals with one

copy of the null allele (Figure S6 in File S1). This approach,

however, will not be effective for loci recovered at low depth.

Likewise, substantial variation in depth across loci (see above)

makes differences in average per-sample depth an ineffective tool

for detecting loci with null alleles (see [16]). One conservative

approach to reducing potential bias due to null alleles is to use only

those loci recovered in all samples.

Gautier et al. [16] used simulations of RAD locus evolution to

conclude that null alleles (or allele drop out, ADO) result in a

counterintuitive upward bias on estimates of both genetic diversity

and population divergence. Their simulation, however, modeled

only the loss of existing RAD loci, such that restriction site

mutations tended to reduce the observed frequency of ancestral

(and more common) SNP states in the flanking sequence while

increasing rare allele frequencies [16]. In real data, null alleles may

be either ancestral or derived, so the generality of this finding is

uncertain. As noted above, ddRAD loci provide a biased sample of

the genome and will thus provide a biased estimate of genome-

wide nucleotide diversity; as has long been standard procedure in

molecular ecology, estimation of demographic and historical

parameters will require calibration specifically for the loci under

study.

The frequency of null alleles increases with population size and

mutation rate (h=4Nem) and, in comparisons between populations

or species, with population divergence [16]. This limits the

potential utility of restriction-enzyme-based methods for compar-

ative or phylogenetic analyses involving highly divergent taxa, but

it also presents an opportunity to use presence-absence data as a

source of informative characters. Analysis of presence-absence

data will require successful library preparation and good

representation of loci across the selected size range. Two metrics

that may be useful in evaluating the quality of library preparation

when distantly related samples are included in the same study are:

1) within sample variation among loci in read depth for a core set

of loci found in all samples, and 2) variation among samples in the

total number of clusters (i.e., putative loci) with sequencing depth

between appropriate minimum and maximum thresholds (scaled

to the total number of reads for each sample). Samples with a

smaller number of putative loci and/or greater variation in depth
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across loci are likely to be missing loci due to problems with

fragment library preparation rather than natural variation.

In addition to restriction site polymorphisms, we note a number

of other situations in which natural polymorphism generates either

null alleles or variation in the length of alleles, and in turn

variation in sequencing depth due to amplification bias. When

using ddRAD-seq, an indel of sufficient length can move an allele

out of the selected size range and generate a null allele even if both

restriction sites are conserved. In other cases, both alleles are

recovered but may differ substantially in length, and therefore

sequencing depth. We also noted loci with polymorphisms in

either SbfI or EcoRI sites, but alternative alleles that were

nonetheless recovered due to nearby restriction sites that

generated alleles of different length. A similar effect is observed

in the original RAD-seq method, in which gain or loss of

restriction sites over an ,10 kb range influences the efficiency of

hydroshearing and in turn allelic variation in sequencing depth

[7].

Computational challenges
While the intent of this study is not a thorough evaluation of the

bioinformatics components of ddRAD-seq, we briefly note some

issues that influence the extent to which homologous loci are

recovered across a set of samples. RAD-seq reads may either be

mapped to a reference genome or clustered de novo into putative

loci based on an essentially arbitrary threshold of sequence

similarity. A lower threshold may result in increased clustering of

paralogous loci, whereas a higher threshold may result in failure to

cluster divergent alleles. In initial analyses, we noted that alleles

differing by a long indel often failed to cluster, an issue we

addressed by merging clusters with identical or nearly identical

BLAST hits. Given the likelihood of indels resulting from both

sequencing error and natural polymorphism, multiple sequence

alignment for each putative locus is an essential step in the process.

Our current genotyping code also implements a gap-coding

algorithm, so that each unique indel, regardless of length, is scored

as a single presence-absence character. The computational

approach we used for the analyses here is in other respects

generally similar to that of Peterson et al. [6], including the

retention of singleton sequences that may contain random errors

but are nonetheless informative at genuinely polymorphic

positions, and a focus on counting distinct haplotypes within each

individual and comparing those counts with Mendelian expecta-

tions.

Conclusions

Direct comparison of empirical ddRAD-seq data from a zebra

finch sample with predictions from the reference genome reveals

unexpected carryover of small fragments through the size selection

process, amplification biases associated with fragment length and

GC content, and overrepresentation of genomic regions with high

GC content. These effects are consistent across samples, gener-

ating strongly correlated variation among samples in per locus

sequencing depth. Preliminary data for indigobirds shows that our

method recovers a large and broadly overlapping set of loci across

individual samples and sequencing runs, generating sufficient

sequence data to genotype 5,966 loci in all 46 samples and 9,833

loci in 42 of 46 samples (.90%), thresholds that are more stringent

than applied in other recent studies seeking to recover robust

genotypic data for most individuals (e.g., [6,11,34]). For the core

set of 5,966 loci, median depth per sample per locus is sufficiently

high that bias in estimating population genetic parameters such as

the site frequency distribution should be minimal [35]. Given good

success with ,500 K sequence reads per sample, there is ample

opportunity to increase the number of multiplexed samples using

‘‘combinatorial indexing’’ [6]. Thus, ddRAD-seq is an increasingly

cost-effective approach for generating robust data for a sample of

genomic loci and is well suited for those applications in molecular

ecology not requiring dense sampling of the genome. Indeed, with

increased multiplexing, ddRAD-seq will likely become an attrac-

tive and highly powerful replacement for microsatellite loci in

paternity analyses, for example.

As noted above, we designed our method with the intention of

generating robust genotypic data for a consistent set of loci across

samples. Other GBS approaches yield data for a larger fraction of

the genome and/or a larger number of individual samples, but

with lower sequencing depth per locus. Indeed, it has recently

been argued that sequencing at a depth of ,1x per locus per

individual and otherwise maximizing the number of individuals

sampled is the optimal design for maximizing information about

population genetic parameters using Bayesian approaches [36].

Pending further evaluation of this provocative result, the nearly

complete data matrices produced by our method lend themselves

to analysis with a broad range of existing population genetic

models and software. At the same time, data generated by our

method should be perfectly compatible with statistical approaches,

including ‘‘direct estimation’’ of population genetic parameters

from the data [35], which may yield additional information from

those loci recovered at lower average depth. We also note that

adding additional samples may represent a significant challenge

for many studies of natural animal populations. Likewise, in other

contexts in which there is limited sampling of divergent

populations and/or closely related species, including phylogenetic

applications, accurately inferring genotypes and allele frequencies

based on incomplete information may be impracticable. In these

situations, a method generating more robust data for individual

samples and loci may be desirable.

Insights resulting from our study, including those related to

amplification biases, biased genomic representation, size selection,

star activity and null alleles, are also relevant for understanding

potential biases in methods that target a larger number of loci at

lower depth. Likewise, our laboratory protocol is easily modified to

increase the number of sampled loci; replacing EcoRI with MseI

increases the expected number of loci from ,10 K to ,100 k and

replacing both enzymes with PstI and MseI increases the predicted

number of loci to ,1 million. All three combinations (SbfI-EcoRI,

SbfI-MSeI, PstI-MseI) leave the same sticky ends, allowing a single

set of bar-coded adapters to be used in a wide range of studies.
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