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Abstract

Recent theoretical developments had laid down the proper mathematical means to understand how the structural
complexity of search patterns may improve foraging efficiency. Under information-deprived scenarios and specific
landscape configurations, Lévy walks and flights are known to lead to high search efficiencies. Based on a one-dimensional
comparative analysis we show a mechanism by which, at random, a searcher can optimize the encounter with close and
distant targets. The mechanism consists of combining an optimal diffusivity (optimally enhanced diffusion) with a minimal
diffusion constant. In such a way the search dynamics adequately balances the tension between finding close and distant
targets, while, at the same time, shifts the optimal balance towards relatively larger close-to-distant target encounter ratios.
We find that introducing a multiscale set of reorientations ensures both a thorough local space exploration without
oversampling and a fast spreading dynamics at the large scale. Lévy reorientation patterns account for these properties but
other reorientation strategies providing similar statistical signatures can mimic or achieve comparable efficiencies. Hence,
the present work unveils general mechanisms underlying efficient random search, beyond the Lévy model. Our results
suggest that animals could tune key statistical movement properties (e.g. enhanced diffusivity, minimal diffusion constant)
to cope with the very general problem of balancing out intensive and extensive random searching. We believe that
theoretical developments to mechanistically understand stochastic search strategies, such as the one here proposed, are
crucial to develop an empirically verifiable and comprehensive animal foraging theory.
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Introduction

Optimal foraging is one of the most extensively studied

optimization process in ecology and evolutionary biology [1–5].

To fully develop a comprehensive theory of animal foraging, one

must understand separately the evolutionary trade-offs and the

contribution of the different elements involved in the foraging

dynamics [3,6], including pre-detection components such as

search and taxis, and post-detection events such as pursuing and

handling a prey or exploiting a patch [3,6]. Landscape behavioral

ecology [7–9], for example, highlights the relevance of the search

component by observing that animal perceptual scales are often

much smaller than the exploration scales. It also shows that the

degradation of sensory or memory-based information leads to

stochastic motor outputs and decision making [8,10].

Despite the vast amount of literature quantifying movement in

the context of foraging, only recently the focus has shifted to the

spatial search optimization problem, aimed at explaining movement

patterns under low information load. [11–13]. Here we develop in

great depth a spatially explicit Stochastic Optimal Foraging

Theory (SOFT, see [14,15]) to explore the underlying mechanisms

responsible for random encounter success. Importantly, the

assumption of a foraging animal as a random wanderer passes

over a more comprehensive picture of animal search ecology,

where distinct quantity and quality of information (present or past)

is processed [16–18]. Simple stochastic models, however, are

useful to tackle complex spatial search problems [19]. In this sense,

random walk methods in general and SOFT [15] in particular

should play a complementary role to biologically-detailed model-

ing and shed light on universal features of search strategies [13].

In its core formulation SOFT quantifies the distance traveled (or

time spent) by a random walker that starts moving from a given

initial position within a spatial region delimited by absorbing

boundaries, which represent the targets to be found. Each time the

walker reaches the boundaries, an encounter is computed and the

search process starts all over again. Averages on the properties of

many walk realizations are aimed to reproduce the dynamics of a

forager looking for successive targets under specific environmental

conditions [14].

SOFT differs from classical optimal foraging theory in two

fundamental aspects. First, it is a spatially explicit theory focused

on the exploration component of the classical patch exploration/

exploitation trade-off [1,2,4]. Second, it considers inter-patch

travel as a random search [11–13,20] rather than a traveling
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salesman [21] optimization process. In particular, doubt is cast on

whether inter-patch motion should always be ballistic, or else,

complex search patterns occur between patches. In consonance

with previous works, e.g. [22–25], current search theory has

identified reorientations (turns) as key behavioral events for

random search optimization [11–13].

Using the SOFT framework, we quantify the impact of animals’

reorientation strategies and spreading capacity on the search

efficiency. Specifically, we unveil the main aspects associated with

the tension between optimizing the encounters for nearby targets

while balancing the ability to search for further areas. Assuming

distinct movement strategies (represented by probability density

functions, i.e. pdfs, for the move lengths) we study which common

statistical characteristics of such pdfs can lead to higher encounter

rates. Those pdfs yielding reorientation patterns with a proper

compromise between local and far away searching (like Lévy

walks) are the ones optimizing (or at least improving) search

efficiency. In practice, in Lévy walk models the turning angles are

drawn from a uniform probability distribution and the lengths of

the moves are chosen from a power-law probability distribution

[13,26].

Finally, one technical point deserves some considerations. The

one-dimensional (1D) context approached in this work may not

seem the most general case and certain particular characteristics of

random walks might depend on the spatial dimension. Neverthe-

less, it is mathematically convenient and already contains the

essentials of any random search in n D [20,27] (as for the

optimization condition and behavior at low density of targets). In

the simple but very general dynamics assumed here, the searcher

chooses a random direction and draws a step length ‘ from a given

pdf p(‘). It then moves in a straight line, looking for a target along

the way. If the forager does not find any target after traveling ‘, it

changes direction and pick a new distance to go. This process is

repeated many times during a full search. Hence, the statistics of

the ‘’s, which depict rectilinear locomotion, represents one of the

main aspects of the problem (e.g., related to the search efficiency).

This ubiquitous 1D process embedded into an arbitrary n D

search makes the simpler 1D search to be qualitatively represen-

tative of the more complex n D situation [14]. Therefore, the 1D

formulation has the twofold advantage of providing very general

results (the underlying mechanisms and trade-offs of efficient

searches remain valid in more complex environmental scenarios)

and at the same time being simple enough for a full analytical

description.

Analysis

We focus here on a point-like searcher, with a radius of vision

(or perceptual range) rv, that looks for equally spaced point-like

targets separated by a distance l in a 1D search space (see Fig. 1a).

The searcher starts at an arbitrary point x0. It then scans the space

between the two nearest (boundary) targets by choosing a direction

(left or right) with equal probability and taking move lengths ‘
from a pdf p(‘) (Fig. 1b). Such normalized pdf, namely,

Ðz?
{? p(‘)d‘~1, ð1Þ

is taken to be symmetric ½p({‘)~p(‘)� and kept unaltered during

the whole search process.

An encounter takes place each time the searcher is at a detection

distance rv from a target. The search then restarts with the walker

now placed at distance x0 either to the left or to the right (with

50%–50% probability) of the last target found (Fig. 1c). This

dynamics is repeated a large number of times, Nfound, and

averages are performed so as to lead to a proper statistical

characterization of the full movement pattern. Note that the

total traveled distance (Ltot) is composed by the concatenation

of all the partial search trajectories performed by the searcher

along consecutive encounters. The above mentioned averages

will describe a typical random search process in an

environment with global density of targets r!1=
(mean distance between targets)~1=l.

The present framework allows an important technical simpli-

fication. Due to the above features the search for the first target is

statistically equivalent to the search for any subsequent target. In

this way, we obtain exactly the same results by restricting our study

to the situation where the searcher is always within the region

0ƒxƒl, with the targets (acting as absorbing boundaries,

meaning that once a target is found that particular search

dynamics ends and the process of looking for a target starts all over

again) at x~0 and x~l. Thus, we consider the walker movement

until reaching a boundary (just as above) and repeat the procedure

a number Nfound of times. We should also observe that in terms of

the general random walk theory, one event, namely, the finding of

a single target either at x~0 or x~l, corresponds to the so called

first-passage-time problem [28].

In this work we focus mainly on two limiting initial conditions

(see, e.g., Refs. [15,17,20]), even though the analysis for initial

conditions intermediate between these two cases is also provided

(see also [14]). Suppose first that the starting point is at the middle

of the interval, x0~a~l=2 (Fig. 1d). In the regime of low density

Figure 1. Diagrams showing the symmetric and asymmetric
initial search conditions for the 1D stochastic search model. (a)
The 1D searching environment with equally spaced point-like targets.
The initial searcher location is x0 . A detail of the searcher perceptual
range (or radius of vision rv) is shown. (b) An example of the walk
movement dynamics where a target is found after four steps. (c) In the
asymmetric condition, each time the searcher finds a target, the search
is re-initialized by placing it a distance x0 to the right or to the left of
the target found. (d) In the symmetric starting condition, x0~l=2.
doi:10.1371/journal.pone.0106373.g001
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of targets (large l), this means that once a target is found, the

searcher restarts its search faraway from the subsequent targets to

be found. This symmetric condition corresponds to the foraging

case where, once a food item is located and consumed, there are

no other resources nearby, and thus the forager needs to travel

relatively away from its present location in order to find targets. In

contrast, the asymmetric condition x0~a, where a is either close

to 0 or l, represents the situation where, once a target is located,

another one is always available nearby, so that the next search

starts with both a close and a distant target.

Symmetric conditions are well represented by destructive (e.g.

hunting) search processes in homogeneous resource landscapes

[20], whereas asymmetric conditions can represent both non-

destructive (e.g. pollinating) searches, regardless the landscape

properties, and destructive (e.g. hunting) searches when targets are

patchily distributed [20,27]). These two initial limiting conditions

illustrate the fundamental competition between looking efficiently

for nearby targets and exploring new regions to find distant targets

[14,15,27]. It is also possible to take x0 as a random variable

distributed according to some given pdf and use the present

framework to explore search processes in heterogeneous land-

scapes characterized by a distribution of initial conditions (see

[14,15,17] for an explicit analysis of the role of x0 to the search

efficiency).

Some other features should also be considered. First, we set

p(‘)~0 for D‘Dv‘0, so that there is a minimum move length ‘0. As

an example, ‘0 could be taken as the maximum resolution of an

empirical data set. Actually, here ‘0 can assume any arbitrarily

small positive value. Moreover, although in principle the

parameter ‘0 does not need to be related to rv, we set for

simplicity rv~‘0 in our calculations. Since our interest is in the low

density limit, where movement patterns may be an essential factor

for survival, we also take l&rv and l&‘0. The stochastic

character of the search is favored in this low-density regime.

We define a statistical search efficiency g as

g~
Nfound

Ltot
: ð2Þ

By denoting SLT as the average distance traveled between two

successive targets found, we write

Ltot~NfoundSLT, ð3Þ

which leads to

g~
1

SLT
: ð4Þ

Likewise, the total number of moves in the search walk can be

written as

N~NfoundSnT, ð5Þ

with SnT being the average number of moves between two

successive targets.

Of great importance in our analysis is the quantification of the

relative contributions to the search efficiency of the encounters of

nearby and distant targets. We thus provide a factorization of the

average distance between two successive targets in the form

SLT~p0SL0TzplSLlT, ð6Þ

where we assign p0 (pl) to the probability of the searcher to find

the nearest (farthest) target, with p0zpl~1, and SL0T (SLlT)

denotes the corresponding average traveled distance. By further

defining SD‘DT(x0) as the average length of a single step starting at

position x0, we have that SD‘DT, SLT, p0, pl, SL0T and SLlT are

key functions to fully describe the random search process. Note

that all of them depend on the walker initial position x0. For

instance, for the symmetric case (x0~l=2) it follows that

SL0T~SLlT and p0~pl~1=2. In contrast, in the asymmetric

case SL0TvSLlT and p0wpl. The necessary mathematical

machinery to calculate the above quantities has been developed

in [29,30] for the specific case of Lévy walks. To make the present

contribution self-contained, we review in a very comprehensive

manner all the steps necessary to obtain such quantities for any

p(‘) (Appendix S1 in File S1), and particularize our general results

for the biologically relevant cases of stretched exponential, log-

normal, and gamma pdfs (Appendix S2 in File S1).

The above construction describes the essential dynamics of a

non-informed stochastic foraging process, where search efficiency

results only from proper choices for p(‘). In the following we

review previously considered quantities [15] and propose new

ones, all of them p(‘)-dependent and aimed to characterize the full

random search dynamics. These quantities constitute good figures

of merit for an optimal theory.

The root-mean-square displacement
The searcher’s root-mean-square (r.m.s.) displacement is

defined in terms of averages over the position x of the searcher

according to

R:½S(Dx)2T�1=2
~½Sx2T{SxT2�1=2: ð7Þ

The quantity R is the square root of the second moment of the

probability distribution of the position, and is one of the most

important quantities related to the motion in general. Since x is a

function of time t, so it is R. Hence, how R scales with t or with an

operational time equivalent (like Nfound or the number of moves

N) tells us how ‘‘fast’’ diffusion is taking place. Indeed, for the

scaling relations

R*tn or R*Nn or R*Nn
found, ð8Þ

we identify that for normal (Brownian) diffusion n~1=2, while for

superdiffusion nw1=2, and in the ballistic limit n?1.

Many reaction-diffusion processes have built-in multiple time

scales, for example, distinct ‘‘slow’’ and ‘‘fast’’ dynamics with

different relaxation time scales. Consider the case of random

searches. We expect a fast regime at scales up to the encounter of

the first targets, i.e., NfoundvNcrossover or tvtcrossover, where the

diffusive properties strictly depend on the shape of the move length

pdf, and therefore can sensibly differ from Brownian normal

diffusion. Actually, in this regime if the pdf p(‘) is heavy-tailed,

then the foraging process may appear as effectively superdiffusive

[31]. On the other hand, there is also a long-term subsequent

diffusive regime for the overall search trajectory where Brownian

(normal) dynamical behavior pervades. At these large time scales,

the correlations are lost and the process is essentially random and

memory-free. These features might be shared among different

move length pdfs, for some specific choices of their parameters. In

The Intensive-Extensive Random Search Tradeoff

PLOS ONE | www.plosone.org 3 September 2014 | Volume 9 | Issue 9 | e106373



between these two regimes, we expect a crossover to take place

from one to the other.

Finding a target either at x~0 or x~l is essentially a mean

first-passage-time problem [28]. Let SxTfpt and Sx2Tfpt represent

the average of the linear and quadratic searcher’s position, x and

x2, over all walks departing from x0~a and ending either at x~0
or x~l by an encounter (first passage) event. By taking into

account the radius of vision rv, the detection of targets occurs at

x~rv and x~l{rv. Recalling from Eq. (6) that p0(a) and pl(a)
are, respectively, the probabilities for a walker starting at x0~a to

find the target at x~0 and x~l (with p0zpl~1), then

SxTfpt ~rvp0z(l{rv)pl and Sx2Tfpt ~r2
vp0z(l{rv)2pl. Thus

in analogy to Eq. (7) we find the corresponding r.m.s. of the first

time passage at positions x~0 or x~l,

Rfpt ~½Sx2Tfpt {SxT2
fpt �

1=2
~(l{2rv)(p0pl)1=2: ð9Þ

It should be clear that the quantities R, Eq. (7), and Rfpt , Eq.

(9), are not the same because there is no first-passage restriction in

the calculation of the standard r.m.s. distance R. Nevertheless, the

dynamics of these two quantities are closely related, as we argue

below. The minimum time required for the searcher with constant

v to find (ballistically) the farthest target, say at x~l, is

tballistic~(l{rv{a)=v (note the target is detected when the

searcher reaches the position x~l{rv). In this sense, by denoting

t0~SL0T=v as the average time to find the closest target at x~0,

we conclude that a searcher can go back and forth to the closest

site typically a number tballistic=t0 of times during the time interval

needed to reach the target at x~l. At very short times, the

searcher has not traveled far. So, for short times, tvtcrossover, the

closest target will influence much more the behavior of R, since the

probability to find the nearby target is much higher. As time

passes, the searcher increases its probability to move away from

the closest target. Then, it is the characteristic time of finding the

distant target which contributes the most to the behavior of R. In

such time scales, tcrossover should have both lower and upper limits

(respectively, the minimum and the average time to find the

farthest target). Consequently,

(l{rv{a)

v
vtcrossoverv

SLlT
v

, ð10Þ

once we can set the minimum time to find the farthest target as

tballistic~(l{rv{a)=v and the average time to find the farthest

target as tl~SLlT=v (tl marks the onset of the Brownian regime

when revisits to both close and faraway targets becomes frequent).

For an asymmetric initial condition (a&rv) and low targets density

(l&rv), we find that l=vvtcrossovervSLlT=v. Specifically, if the

pdf allows superdiffusivity we expect the crossover to approach the

lower boundary value, also characterized by the density scale of

the system, i.e., tcrossover&l=v. By dividing this expression by the

average time SLT=v to reach either targets, we can also express the

onset in terms of the number of targets found:

(l{rv{a)

SLT
vNcrossoverv

SLlT
SLT

: ð11Þ

On the other hand, at long times the central limit theorem

guarantees that if the move lengths have finite variance and if the

correlations are of short-range (e.g., exponentially decaying), then

the diffusion must converge to Brownian normal motion (upon

coarse graining or renormalization). So, for twtcrossover or

NfoundwNcrossover, R converges to a Brownian-type expression

(RBrownian ). For the asymmetric (non-destructive) case, in which

the walker starts from a fixed distance x0~a~rvzDx to the

closest target, with Dx%rv%l, the actual r.m.s. distance after

Nfound&1 ‘‘moves’’ (i.e., Nfound&1 targets found) has been

derived in [15], i.e. RBrownian ~lp
1=2
l N

1=2
found . Notice the presence

of the Brownian dynamics (diffusion exponent v~1=2) in the long-

term regime, in agreement with the central limit theorem. Further,

by writing the total distance traversed until the encounter of

Nfound targets as Ltot ~vt~Nfound SLT, Eq. (3), we obtain

RBrownian ~
l2vpl

SLT

 !1=2

t1=2: ð12Þ

The close-to-distant ratio of target encounters
A fundamental indicator of the mechanisms of efficient

searching (and surprisingly not discussed before) is the ratio Q

between the average numbers of encounters of the closest and the

farthest targets. Indeed, as we shall see from the numerical results

below, it is the specific trade-off between visiting nearby and

distant regions of targets that ultimately sets the general features

(including the necessary degree of superdiffusivity) for optimal

search strategies.

By definition we can write Q~p0=pl~p0=(1{p0). Neverthe-

less, a more interesting relation for Q can be derived as follows in

terms of the degree of target revisitability. Consider first SNNT to

be the average number of distinct targets visited in a search walk

with a total of Nfound targets found. We also denote by SN0T and

SNHT the average numbers of revisits of first (an event where a

target just visited is immediately found in the next encounter) and

higher (an event where a target previously visited is found again,

but not in the sequence) orders, respectively. From these

definitions, Nfound~SN0TzSNHTzSNNT.

Moreover, let fsig represent the set of positions of the targets

found in a given random search process (i.e., si is the location of

the i visited target, with i~1,2,:::,Nfound ). In the present case,

these positions must be multiples of l. For instance, in the

asymmetric (non-destructive) search one possible sequence could

be

fsig~fl,2l,l,l,0,{l,{2l,{2l,{3l,{2lg:

According to the definitions, this sequence of Nfound~10 targets

has NN~6 (s1,s2,s5,s6,s7,s9), N0~2 (s4,s8), and NH~2 (s3,s10).
We now forget for a while the local details of the search walk and

focus only on fsigeff , which is a sequence of sites visited by a

Brownian random walker with total number of steps Neff , step

length l, and equal probabilities to go either to the right or to the

left. If we do not consider the events in which the walker repeats

the site just visited, the above example could be represented as

fsigeff~fl,2l,l,0,{l,{2l,{3l,{2lg. Therefore, we observe

that this sequence has an effective total of Neff~Nfound{N0~8
steps. In a classical work, Montroll and Weiss calculated [32] the

average number of distinct sites visited in such (i.e. our effective)

1D walk in the large-Neff limit as

The Intensive-Extensive Random Search Tradeoff
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SNNT~
8Neff

p

� �1=2

, ð13Þ

so that in our case

SNNT~
8(Nfound{SN0T)

p

� �1=2

: ð14Þ

Since p0 is the probability to return to the nearby target in a revisit

of first order

SN0T~p0Nfound: ð15Þ

Finally, given SN0T, SNNT and Nfound, we also determine

SNHT~Nfound{SNNT{SN0T: ð16Þ

From these expressions, the ratio between the average numbers

of encounters of the closest (first order revisit) and farthest (new

and higher order revisits) targets is

Q~
SN0T

SNNTzSNHT
: ð17Þ

Results

We have applied the general calculations of the theory

(Appendix S1 in File S1) to relevant specific reorientation

strategies characterized by particular pdfs p(‘) of move lengths,

namely, Lévy power-law, stretched exponential, log-normal and

gamma (Appendix S2 in File S1). Our study mostly concerns the

case of asymmetric initial condition (see Fig. 1), where nearby and

distant targets exist [14,15]. However, results for some other initial

conditions are also shown.

Each of the four distributions mentioned above can be

characterized by a specific set of parameters (e.g., w and b in the

stretched exponential case). In Fig. 2 we show the variability of

each pdf for a few choices of parameters. As the parameters vary,

changes in the shape of the distribution (i.e. second and higher

order moments, see Fig. 2) also determine changes in the search

efficiency (Fig. 3). For each pdf there is a unique combination of

parameters providing the optimal (highest) search efficiency g. By

comparing the plots for the distinct pdfs, we see that the best global

maximum for the asymmetric initial condition is the Lévy,

followed by the log-normal, stretched exponential and gamma

(note in Fig. 3 that all g -axes are in the same scale). Since the

family of Lévy power-law pdfs is the one with fatter tails, our

results indicate the relevance of long power-law tails (and the

associated features, such as superdiffusivity) to achieve large search

efficiencies. However, long tails by themselves cannot be regarded

as the only relevant ingredient. For instance, the value m~1:9 that

leads to the globally optimal efficiency in the asymmetric case is

less heavy-tailed and less superdiffusive than the one with m?1, for

which g is lower. Also, in the case of the stretched exponential, the

higher g is not attained in the b?0 limit, equivalent to the Lévy

ballistic m?1, but with the intermediate value b~0:26.

As we argue below, it is the specific trade-off between visiting

nearby and distant regions (while looking for targets) that

ultimately sets the most appropriate choice of parameters and,

consequently, the shape of the optimal pdf (and the related

diffusivity) yielding the best search strategy.

The subtle balance between accessing nearby and distant

regions of the search space can be inferred if we factorize the

search efficiency into its major components, Eq. (6). First, we

observe in Fig. 4 that the qualitative shape of the SLT (~g{1)
curve is essentially determined by the term responsible for the

distant target encounters (plSLlT). This is so because, as we move

from ballistic to Brownian motion strategies (see caption of Fig. 3),

the mean traveled distance to the distant target (SLlT) increases

whereas the probability to find it (pl) decreases, so that SLT is

minimized (i.e., the efficiency is maximized) approximately when

the product plSLlT is minimized. In contrast, as both SL0T and

p0 increase going from ballistic to Brownian strategies, the product

p0SL0T (responsible for the nearby target encounters) also

increases (no counterbalance of opposite factors exists). This latter

feature implies a very interesting, but counter-intuitive result: large

move lengths and/or an adequate superdiffusive component

(heaviness of the pdf) helps to improve the search efficiency in

the asymmetric (non-destructive) search condition, where a nearby

target is always present. Indeed, as both Figs. 3 and 4 show, a

Brownian search strategy actually leads to rather inefficient

searches in this case.

Even though the search optimization curve (the shape of g) is

strongly influenced by plSLlT, certainly p0SL0T also plays an

important role, as seen in the SLT curves in Fig. 4. In fact, we note

that the factorized quantity p0SL0T (plSLlT) limits the efficiency

of the strategies in the Brownian (ballistic) regime. In intermediate

regimes, search strategies allow the sum of these two quantities to

be minimal, and this is when the maximum efficiency can be

achieved. Interestingly, as observed in Fig. 4, the global maximum

g for the Lévy pdf with m~1:9 occurs after the crossover between

the plSLlT and p0SL0T curves, in the region where the largest

contribution to SLT comes from the nearby visits, p0SL0T.

In Fig. 5 we show the r.m.s. behavior of the random search

process in the asymmetric search condition. A crossover point

between two different diffusive regimes can be observed for certain

move length pdf parameterizations. Move length pdfs with heavy-

enough tails promote superdiffusion over the range of spatiotem-

poral scales where encounters are negligible (i.e. first-passage time

regime). As spatiotemporal scales become larger (long-term

regime) move length truncations due to encounters pervade the

search process which then becomes Brownian (normal diffusion).

Because of this, the crossover takes place around the characteristic

density scale of the system, l (we use l~103 in Fig. 5). However,

it can occur even before (or simply disappear) if the move length

pdf is such that it barely holds, or it cannot hold, superdiffusive

properties over some scales range.

Overall, in Fig. 5 a nice agreement is displayed between

numerical simulations and the short-term Rfpt and the long-term

RBrownian regime predictions. We can also check the theoretical

estimation of the Rfpt–RBrownian crossover. Based on the theory

presented in [see Eq. (10)], for the truncated Lévy pdf with m~1:9,

t~104, l~103, rv~1, v~1, and a~1:2 (asymmetric case), we

find that the crossover time should approach the lower boundary,

tcrossover&(l{rv{a)=v~997:8. This prediction compares nicely

with the numerical results of Fig. 5, where tcrossover&1000.

When we compare in Fig. 6a the r.m.s behavior of the optimal

strategy of diverse pdfs p(‘) in the asymmetric condition

(x0~2rv~2), we observe a pretty similar scaling exponent in the

first-passage time regime (v~0:85), which is close to the theoretical

The Intensive-Extensive Random Search Tradeoff

PLOS ONE | www.plosone.org 5 September 2014 | Volume 9 | Issue 9 | e106373



Figure 2. Probability density functions. Different combinations of shape parameters (scale parameters are fixed) for the four different move
length probability density functions here considered as reorientation strategies: (a) Lévy truncated (t~104), (b) log-normal (b~50), (c) stretched
exponential (w~1), and (d) gamma (b~0:005). For all the distributions (except for the gamma), the smaller the shape parameter the heavier the tail,
hence the larger the probability of large move lengths.
doi:10.1371/journal.pone.0106373.g002

Figure 3. Search efficiency. Search efficiency g for (a) Lévy truncated, (b) log-normal, (c) stretched exponential, and (d) gamma reorientation
strategies in the asymmetric search condition. Different combinations of parameters are shown for each strategy. On the x-axes, low (large)
parameter values represent ballistic (Brownian) regimes, to be compared with the heavy (non-heavy) pdf tails in Fig. 2. Maximum search efficiencies
are achieved at some intermediate value of the parameters (x-axes), except for the gamma distribution where the maximum takes place at k?0.
Notice the striking agreement between the analytical (black lines) and the numerical (symbols) results. We used parameters Dx~0:2, rv~‘0~1,
l~103 , and x0~2rv.
doi:10.1371/journal.pone.0106373.g003
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diffusion exponent for a non-truncated Lévy strategy in free space

[15,33]. These results suggest that nearly the same unique optimal

diffusion exponent should exist for the best parametrization choice

of different models (Fig. 6b). This optimal exponent clearly

depends on the specific initial condition (i.e. x0). Different models,

with different parametrization, should approach the optimal

scaling exponent to some extent in order to generate an efficient

reorientation strategy.

In contrast, the optimal diffusion constant largely varies

depending on the reorientation strategy. Figure 6b explicitly

compares, across models, the diffusive parameters and the close-

to-distant ratio of target encounters Q, Eq. (17). As mentioned

above, the diffusion exponents for the four models reach values

close to n~0:85. On the contrary, the diffusion constants and the

Q values show a large range of variation. In general, the smaller

the optimal diffusion constant, the larger the Q value and the

efficiency of the search strategy (compare Figs. 3 and Fig. 6b).

This pattern suggests that small diffusion constants (i.e., Lévy and

log-normal models) increase the relative contribution to the search

efficiency of close target encounters compared to distant ones,

implying larger values of Q. Hence, once an optimal diffusion

exponent has been achieved, a small diffusion constant should

further improve the search efficiency in the asymmetric condition

by providing an optimal balance between visiting nearby and

faraway targets through the enhancement of the average

encounter rate of close targets. In this case, models incorporating

Lévy statistics are the most efficient ones (Fig. 3), precisely because

they can generate optimal superdiffusive patterns while keeping

the diffusion constant at a minimum rate, which facilitates

intensive (localized) search.

We finally comment on the effect of the initial search condition

(x0) on the optimality of random searches. The starting position x0

sets the initial distance to the closest and farthest targets,

determining the degree of asymmetry in the relative distances of

targets, bearing connections with landscape degrees of heteroge-

neity [14]. The highest asymmetric case (x0~‘0zrv~2rv) is the

main focus of this work, but a continuous range of asymmetry can

be found as x0 varies from x0~2rv to the most symmetrical case

x0~l=2. In Fig. 6c,d we show the search efficiency and the Q

ratios for each optimal model at each initial condition x0 in this

range. Across x0, Lévy reorientation strategies are always the most

efficient, but its relative gain in efficiency compared to the other

pdfs becomes progressively smaller as x0?l=2 (we use l~103). In

particular, the pure (i.e., non-truncated) Lévy strategy provides the

maximum possible search efficiency at x0~l=2, i.e.

g~1=SLT~2=l, in which the faraway targets are reached in

only one very large (ballistic) move of length l=2. However, the

same is not always true for truncated Lévy search walks with a

maximum cutoff length t. In this case, other strategies can display

higher efficiencies close to the symmetric regime, given that this

upper truncation may considerably decrease the ability to reach

distant targets (in Fig. 6 we use t~10l). Regarding the Q-ratios

we observe that in the asymmetric regime optimal search strategies

are associated to large values (Q&1). As we move from

asymmetric to symmetric initial regimes, the Q-ratios tend to

become smaller as the probability to encounter the closest target

(assigned at x~0) decreases. This trend remains until reaching the

limiting value Q~1 in the fully symmetric condition, where it is

equiprobable for the searcher to find the targets at x~0 or x~l.

Figure 4. Factorized search efficiency. Factorized search efficiency, SLT~p0SL0TzplSLlT, analyzed to understand the relative contribution of
the encounters of near (subscript 0) and distant (subscript l) targets to the global search efficiency in the asymmetric search scenario. The behavior
of the traveled distances (SLT, p0SL0T, and plSLT) and the partial quantities (SL0T, SLlT, p0, pl) is shown for each pdf model. Except for the gamma
model, the search dynamics goes from ballistic to Brownian with increasing shape parameters (compare across x-axes with Fig. 2). The scale
parameters are fixed at the search optimal. Note that the minimal SLT is close to the minimal plSLlT, suggesting that, in the asymmetric search
condition, the encounter efficiency of distant targets is relevant to the global search efficiency. However, the precise optimal strategy in each case
results from the subtle balance between exploring nearby areas and accessing faraway regions. Analytical (black lines) and numerical (symbols)
results are displayed with nice agreement. We used parameters Dx~0:2, rv~‘0~1, l~103 , and x0~2rv .
doi:10.1371/journal.pone.0106373.g004
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Discussion

A key tension identified in random (stochastic, non-oriented)

search strategies is to find the balance between efficiently looking

for nearby targets while exploring new areas to find distant targets

[14,15,27]. When this trade-off is important, the exact stochastic

laws governing reorientation strategies (i.e., move length or

interevent reorientation time pdfs) have a clear impact on the

search success. The SOFT framework discussed here shows the

fundamental principles underlying efficient stochastic searching

under the assumption that movement is not governed by cues (but

see [18]), and that both close and distant targets are available

(asymmetric condition or non-destructive search in [20]). Being

simple enough to allow a general and complete study, the 1D case

is thus very useful in establishing a coherent rationale to analyze

crucial mechanisms of random search processes. Moreover, as

discussed in the Introduction, many relevant features of nD

random search are akin to the 1D case [14,20].

We have found that the ballistic strategy is very efficient in

locating distant targets. However, once the direction towards the

distant target has been chosen, the ballistic strategy prevents

finding closer targets, and in this sense the overall search efficiency

ends up governed or limited by the distant target encounters. On

the other hand, the Brownian strategy is assumed to be the most

efficient one to locate nearby targets, but entails too much spatial

overlap. We explicitly show that the introduction of some rare

albeit large move lengths enhance nearby target encounter rates

by reducing the spatial overlap and the occurrence of excessively
large and small-stepped walks. Nearby encounters based on the

latter type of walks ultimately limit the search efficiency of

Brownian strategies. In the end, neither ballistic nor Brownian

strategies alone solve the encounter problem when close and

distant targets need to be found.

Based on our comparison across reorientation strategies in the

asymmetric initial condition, we found that the essential mecha-

nism leading to an efficient random search consists on both the
combination of an optimal superdiffusive exponent with a minimal
diffusion constant. The search process not only should adequately

balance the tension between finding close and distant targets, but it

should also be capable of maximizing the chances to fill in nearby

spatial voids generated through the search process. In other words,

the best strategies are those that not only can promote super-

diffusive properties but can also shift the optimal balance towards

relatively larger close-target compared to distant-target encoun-

ters.

The move length distributions analyzed here have finite

moments, and thus all of them fulfill the central limit theorem,

generating pure diffusive properties at some scale (generally large).

Because of this, it might be preferable the term enhanced diffusion
or transient superdiffusion rather than superdiffusion [14].

Importantly, we show that the distributions with slower conver-

gence rates to the central limit theorem (the ones with fattest tails)

have the larger search efficiency. In the long run, all the strategies

might show Brownian properties but their search efficiencies are

going to be different due to transient superdiffusive properties that

can hold over relevant spatiotemporal scales in relation to the

search process. In the end, the amount of superdiffusion needed to

optimize the search depends also on the specific initial conditions

(i.e. landscape properties).

Figure 5. Root mean square behavior. R.m.s. behavior for the different reorientation strategies (different parametrization for each case) in the
asymmetric search condition. In each case the fixed parameter is set at the search optimal. Note the switch in the spreading dynamics of the searcher
at times &103 (for some of the parametrization), coinciding with the parameter l. Solid lines: numerical simulations. Symbols: analytical results for
both the short-term first-passage-time regime, Rfpt , defined in Eq. (9) (open symbols), and the long-term Brownian regime, defined in Eq. (12) (filled

symbols). Notice the nice agreement between numerical and analytical results. We used parameters Dx~0:2, rv~‘0~1, l~103 , and x0~2rv .
doi:10.1371/journal.pone.0106373.g005
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The mechanistic rationale exposed above should be valid for

any dimensional system. However, we should observe that the

relative impact on the search efficiency of Lévy patterns against

other strategies decreases when dimensionality increases

[17,27,34,35]. More generally, mean field theory predicts that in

the limit of large number of dimensions, encounter rates would

depend more on the target/searcher relative densities rather than

on the search dynamics (type of movement and encounter

reactions), initial search position, or target distribution.

Foraging animals are known to switch between intensive and

extensive modes of search, producing complex movement patterns

[16,36]. The spatiotemporal structure of such run and tumble
patterns can be adjusted to optimize the compromise of finding

both close and distant targets. These elementary results are in

general concordance with simulation results exploring the effect of

different encounter reactions and system dimensions on optimal

search strategies [17,35,37–40]. They are also valid for intermit-

tent search strategies where mixtures of short and fast trips exist

but scanning is discontinuous [41–44].

The present work departs from current movement modeling

debates by depicting relevant generic properties of the search

process, going beyond specific model parametrization (Figure 6).

Animals’ search behavior may not consist on following specific

random walk types, but on accommodating (to the extent they can)

key statistical movement properties, ideally reflected in the Lévy

model. Commonly used statistical approaches do not always allow

distinguishing unambiguously between qualitatively different

processes [45] as, for instance, composite random walks from

Lévy walks [36,46–50]. Because biological motor-sensory systems

are constrained by evolutionary history [51–53] we should not

expect Nature to strictly follow mathematical models. Our results

suggest that regardless of the specific behavioral processes

involved, the incorporation of multiple movement scales in the

search (for example by means of complex directional change

distributions) should improve the way animals resolve the

intensive-extensive search trade-off.

SOFT and current works on random search

[20,41,42,44,54,55] show how basic tools of statistical mechanics

[13,56–58] can naturally address the concepts of search and

uncertainty in behavioral ecology. Routes to integrate classical

OFT [2,4,6,59–61], sensory ecology [18,62], and SOFT will be

needed in order to satisfactorily answer questions about efficiency

and adaptiveness to uncertainty in animal foraging strategies

[11,13].

Supporting Information

File S1 Developements in random search theory: math-
ematical expressions and numerical procedures. Appen-

dix S1 Explicit expressions and numerical procedures to calculate

relevant random search quantities in the general case of p(‘).

Figure 6. Role of diffusion and the close-to-distant encounter ratio in search efficiency. Comparison of key quantities across optimal
reorientation strategies at x0~2 (a,b), and for any initial condition x0 (c,d). Panels a and b: r.m.s. behavior (a) and values for the diffusion constant,
diffusion exponent, and close-to-distant encounter ratio Q (b) at the asymmetric search condition (x0~2rv , l~103 , and rv~‘0~1). Parameter values
as follows: Lévy truncated (m~1:9, t~104), log-normal (w~0:05, b~50), stretched exponential (w~1, b~0:26) and gamma (b~0:005, k~0:001).
Solid brown lines show the r.m.s. behavior (a) and the diffusion exponent (b) for a non-truncated Lévy reorientation strategy with Lévy index m~2.
Panels c and d: search efficiency (c) and Q-ratio (d) for the optimal reorientation strategies at different initial conditions x0 in the whole range up to
l=2. Solid brown lines indicate the results for a pure Lévy walk with mopt(x0). Note that, regardless x0 , Lévy reorientation strategies show the largest

search efficiency compared to the other reorientation strategies, though truncation decreases the efficiency when reaching the symmetric limit
x0~l=2~500.
doi:10.1371/journal.pone.0106373.g006
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Appendix S2 Application of the general theory to specific

reorientation strategies, p(‘)’s.
(PDF)
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intermittent search processes are advantageous. P Natl Acad Sci USA 105:
1055–1059.

43. Bénichou O, Loverdo C, Moreau M, Voituriez R (2011) Intermittent search

strategies. Rev Mod Phys 83: 81–129.

44. Campos D, Méndez V, Bartumeus F (2012) Optimal intermittence in search

strategies under speed-selective target detection. Phys Rev Lett 108: 028102.

45. Kawaii R, Petrovskii S (2012) Multi-scale properties of random walk models of
animal movement: lessons from statistical inference. P Roy Soc A 468: 1428–

1451.

46. Reynolds AM (2008) How many animals really do the Lévy walk? comment.
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