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Abstract

Objectives: We aimed to analyze the CT findings of ground-glass opacity nodules diagnosed pathologically as
adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma in order to
investigate whether quantitative CT parameters enable distinction of invasive adenocarcinoma from pre-invasive or
minimally invasive adenocarcinoma.

Methods: We reviewed CT images and pathologic specimens from 191 resected ground-glass opacity nodules with little or
no solid component at CT. Nodule size, volume, density, mass, skewness/kurtosis, and CT attenuation values at the 2.5th–
97.5th percentiles on histogram, and texture parameters (uniformity and entropy) were assessed from CT datasets.

Results: Of 191 tumors, 38 were AISs (20%), 61 were MIAs (32%), and 92 (48%) were invasive adenocarcinomas. Multivariate
logistic regression analysis helped identify the 75th percentile CT attenuation value (P = 0.04) and entropy (P,0.01) as
independent predictors for invasive adenocarcinoma, with an area under the receiver operating characteristic curve of
0.780.

Conclusion: Quantitative analysis of preoperative CT imaging metrics can help distinguish invasive adenocarcinoma from
pre-invasive or minimally invasive adenocarcinoma.
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Introduction

In 2011, the International Association for the Study of Lung

Cancer (IASLC), the American Thoracic Society (ATS), and the

European Respiratory Society (ERS) proposed a new international

multidisciplinary classification system for lung adenocarcinoma

[1]. Of special interest to thoracic radiologists and surgeons are the

new categories of adenocarcinoma in situ (AIS) and minimally

invasive adenocarcinoma (MIA) that represent small (#3 cm)

solitary adenocarcinomas with either pure lepidic growth (AIS) or

predominant lepidic growth with #5 mm myofibroblastic invasion

(MIA) histopathologically. AIS and MIA have been introduced

because they should have 100% or near-100% 5-year disease-free

survival (DFS), respectively, if completely resected [2–5].

Regarding the histopathology of GGNs, the morphologic and

textile changes should be thoroughly defined. When GGNs are

small and represent atypical adenomatous hyperplasia (AAH) or

AIS, tumors grow along the alveolar walls only to appear as

homogeneous GGNs at CT [6]. However, with an increase in

invasive components (myofibroblastic, not vascular or lymphatic)

in MIAs and in invasive adenocarcinomas, the tumors may still

appear as GGNs at CT, but may contain portions of regional

voxel heterogeneity within the tumor. Thus, MIAs are still seen as

a GGN harboring a small central solid component measuring

5 mm or less [7] or pure GGNs of .10 mm in diameter [8]. Even

invasive adenocarcinomas may be seen as a large pure GGN

greater than 16 mm in diameter [8]. In the case where all three

diseases may be seen as GGNs, we hypothesized that an improved
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CT image-data processing technique would allow us to detect

physical voxel-level changes (quantitative CT parameters includ-

ing uniformity and entropy) within GGNs that could be used to

discriminate invasive adenocarcinomas from pre-invasive or

minimally invasive lesions [8]. Thus, the aim of the present study

was to analyze the CT findings of GGNs diagnosed histopatho-

logically as AIS, MIA, and invasive adenocarcinoma for investi-

gating whether quantitative CT parameter evaluation enables

prognostic stratification of the invasive adenocarcinomas from pre-

invasive or minimally invasive lesions.

Methods

Our institutional (Samsung Medical Center [SMC]) review

board approved our study (SMC 2011-09-083) with a waiver of

informed consent.

Patients
We (J.Y.S. and H.Y.L.) reviewed the lung cancer surgical

registry database of the department of thoracic surgery at

Samsung Medical Center (Seoul, Korea) between July 2003 and

July 2011 to select patients with persistent GGNs that had been

resected completely. We identified 264 patients who underwent

complete resection for GGN on CT scans, and 54 patients

showing $5 mm in diameter of solid component on mediastinal

window CT image were excluded after review by two radiologists

(J.Y.S. and H.Y.L., with 2 and 11 years of experience, respectively,

in thoracic CT interpretation). We excluded 32 patients for

radiology- or pathology-related factors: (1) limited quantitative

evaluation due to CT images with more than 1.5-mm slice

thickness (n = 11) or CT images reconstructed with a bone

algorithm (n = 13), (2) insufficient pathologic slides (n = 7), and

(3) mucinous type of adenocarcinoma on pathologic review (n = 1).

Finally, 178 patients with 191 GGNs with little or no solid

component were included in our study.

Imaging and Analysis
Helical CT images were obtained with 1.25 mm section

thickness for transverse images.

CT scans were assessed for tumor size in lung setting/

mediastinal setting, density, volume, mass, skewness/kurtosis,

and the CT attenuation values at the 2.5th, 25th, 50th, 75th, and

97.5th percentiles on the histogram, and texture parameters

(uniformity and entropy), independently by two chest radiologist

(J.Y.S. and H.Y.L., with 2 and 11 years of experience, respectively,

in thoracic CT interpretation), who were unaware of clinical and

pathologic results.

For nodule segmentation, tumors were segmented by drawing a

region of interest (ROI) covering as large an area as possible from

the whole tumor. An ROI was drawn freehand around the tumor

using an electronic cursor and mouse. Large vessels and

pulmonary arteries were excluded from the ROIs. This process

was repeated for each contiguous transverse level, until the entire

tumor was covered. Next, voxel-based non-contrast CT numbers

were collected from the lesion segmentation.

Heterogeneity within this ROI was quantified by calculating

entropy (irregularity) and uniformity (distribution of gray level) [9].

Entropy is a measure of texture irregularity, while uniformity

reflects how close the image is to a uniform distribution of the grey

levels: higher entropy and lower uniformity represent increased

heterogeneity [9]. See Appendix S1 for further details for imaging

and analysis.

Pathologic Evaluation
As for tumor sampling, tumor tissue approximately 10 mm

from the entire tumor specimen was placed on a slide. All slides

were scanned to produce a high- resolution digital image (0.25 lm/

pixel at 40?) using the Aperio Slide Scanning System (ScanScope

T3; Aperio Technologies Inc., Vista, CA, USA) [10]. Two

experienced lung pathologists jointly interpreted all tissue sections

by virtual slides using ImageScope viewing software (Aperio

Technologies, Inc.) and a high-resolution monitor [10]. For each

case, comprehensive histologic subtyping was performed for the

primary tumor in a semi-quantitative manner, to the nearest 5%

level, adding up to a total of 100% subtype components per tumor.

The extent of invasive component was measured and the most

predominant subtype was recorded. When evaluating the

predominant pattern, the central fibrosis area and its extent were

disregarded. See Appendix S1 for further details for pathologic

evaluation.

Statistical Analysis
For measuring CT variables, the means of values measured by

two observers were recorded, and interobserver variability was

calculated by using repeated measure data analysis for the

intraclass correlation coefficient (ICC). For analysis of all CT

variables, the average values of measurement by two reviewers

were used. DFS was defined as the time from surgery to

recurrence, lung cancer–related death, or last follow-up evalua-

tion. DFS was estimated using the Kaplan–Meier method, with

patients followed from time of surgery until recurrence or death

from lung carcinoma. Patient demographics and CT parameters

were compared among three different pathologic subtypes (e.g.,

AIS, MIA and invasive adenocarcinoma) by using one-way

ANOVA with post hoc test of Bonferroni. Bonferroni correction

was also used to account for multiple comparisons. As for multiple

GGNs in a patient, we did not take into account within-patient

correlation because each of them was considered as an indepen-

dent synchronous lesion [11]. A multivariate logistic regression

analysis was used to identify the independent factors to predict

Figure 1. DFS curves for AIS, MIA and invasive adenocarcino-
ma (IA) groups.
doi:10.1371/journal.pone.0104066.g001
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invasive adenocarcinoma from minimally or pre-invasive adeno-

carcinoma (AIS), for which characteristics with a P value of less

than 0.10 using one-way ANOVA were all used as the input

variables for logistic regression analysis. In logistic regression

analysis, a backward stepwise selection mode was used, with

iterative entry of variables on the basis of test results (P,0.05).

The removal of variables was based on likelihood ratio statistics

with a probability of 0.10. Also, for multivariate analysis, logistic

regression analysis was used with multi-colinearity examination by

using the variance inflation factor (VIF). Spearman correlation

analyses were performed to evaluate the correlation between the

extent of the invasive component and all imaging variables.

Finally, ROC analysis was performed to evaluate the differenti-

ating performance of logistic regression models in discriminating

invasive adenocarcinoma from AIS or MIA. Statistical significance

was evaluated with software (SPSS, version 19.0, 2010; SPSS,

Chicago, Ill). A P value less than 0.05 was considered to indicate a

statistically significant difference.

Results

Patient Population and Surgical Outcomes
Of 191 tumors, 38 were AIS (20%), 61 were MIA (32%), and 92

were invasive adenocarcinoma (48%). Subtype classification of the

92 invasive adenocarcinomas resulted in 49 lepidic-predominant

(53%), 40 acinar-predominant (43%), and three papillary-

predominant (3%) adenocarcinomas. None had lymphatic, vas-

cular, perineural or pleural invasion. The median extent of

invasion in 92 invasive adenocarcinomas was 9.8 mm (range, 5.1–

19.7 mm). CT findings were pure GGNs without solid component

in 156 tumors. Of 35 tumors showing ,5 mm solid component on

CT images, three were AISs (9%), eight were MIAs (23%), and 24

were invasive adenocarcinomas (69%). The solid component on

CT images of GGNs in three AISs corresponded histopatholog-

ically to the area of collapse or severe narrowing of alveolar air

spaces. In five of eight MIAs, the solid component on CT images

was caused histologically by prominent central scar tissue, and in

the remaining three MIAs, it was due to alveolar airspace collapse.

In 24 invasive adenocarcinomas, the solid component was caused

by myofibroblastic invasive component (n = 21), prominent central

scar tissue (n = 2), or centrally located bronchovascular structures

(n = 1).

All 191 tumors were removed via either sublobar resection (wide

wedge resection or segmentectomy) (81 nodules) or lobectomy (110

nodules). The median follow-up period after surgical resection for

all patients was 44 months (range, 7–116 months). Forty-one

patients (23%) had a follow-up period of more than five years, and

10 patients (5.6%) had a follow-up period of less than one year. By

January 2013, two patients who underwent lobectomy for invasive

adenocarcinomas developed recurrent disease after surgical

resection. One had pulmonary metastasis and the other had

metastases to bone. Five-year DFS was 100% for both AISs and

MIAs, while it was 97.7% for invasive adenocarcinomas (Fig. 1).

Comparison between three different lung
adenocarcinomas based on the degree of invasive
component

Interobserver agreement for measurements of the size was high,

whereas agreement for the tumor volume and mass was moderate.

Intraclass correlation coefficients were 0.96 (95% confidence

interval [CI]: 0.94–0.98) for size in the lung setting, 0.99 (95% CI:

0.99–1.00) for size in the mediastinal setting, 0.75 (95% CI: 0.68–

0.81) for tumor volume, and 0.69 (95% CI: 0.63–0.75) for tumor

mass. Table 1 shows comparisons of all CT parameters according

to three pathologic subtypes. Patient sex showed no differences

among the three subtypes on univariate analysis.

On multivariate analysis, nodule volume showed multi-colin-

earity (VIF .10) on variance inflation factor analysis, and thus,

volume was removed from the multivariate analysis. Logistic

regression analysis (Table 2 and Fig. 2) demonstrated that the

75th percentile CT attenuation value and entropy were indepen-

dent predictors of invasive adenocarcinomas (odds ratio

[OR] = 1.04, P = 0.04, and OR = 3.40, P,0.01, respectively).

Correlation between imaging parameters and pathology
Relationships between all parameters and extent of invasion on

pathology are shown in Table 3. Tumor size in mediastinal

setting, volume, density, mass, the CT attenuation values at the

25th, 50th, 75th, and 97.5th percentiles on the histogram, and

entropy correlated positively with extent of invasion with statistical

significance, whereas uniformity was negatively correlated.

Table 2. Multivariate analysis for stratification among AIS, MIA and invasive adenocarcinoma.

Invasive adenocarcinoma vs. others (AIS or MIA)

Variable Odds Ratio 95% CI P

Age (y) 1.02 0.99–1.06 0.21

Size in lung setting (mm) 1.03 0.94–1.14 0.50

Size in mediastinal setting (mm) 1.01 0.80–1.28 0.91

Density 0.82 0.09–7.87 0.33

Mass (g) 0.03 0.00–343.21 0.45

50th percentile (HU) 1.02 0.99–1.06 0.27

75th percentile (HU) 1.04 1.01–1.96 0.04*

97.5th percentile (HU) 1.01 0.99–1.02 0.10

Uniformity 0.03 0.00–342.21 0.45

Entropy 3.40 2.05–5.64 ,0.01*

Note.— CI confidence interval.
* P,0.05.
doi:10.1371/journal.pone.0104066.t002
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Predictive probability of quantitative CT parameters for
pathologic classification (invasive adenocarcinoma from
AIS or MIA)

Based on multivariate analysis, we investigated whether we

could accurately identify invasive adenocarcinoma by reversely

combining significant predictive factors (Fig. 3). As for the

prediction of invasive adenocarcinoma, when two significant

factors were combined (combination of the 75th percentile CT

attenuation value on histogram $2470 HU and entropy $7.90),

the AUC value of ROC was 0.780 (95% CI: 0.711–0.849, P,

0.01), and 60 of 69 (87%) GGNs, which met both requirements,

were correctly predicted to be invasive adenocarcinoma.

Discussion

We demonstrated that histogram analysis of conventional CT

imaging metrics enables the differentiation of invasive adenocar-

cinoma from AIS or MIA among lesions that appear as GGN with

little solid component on CT scans. The histogram approach

provides a more comprehensive assessment of the tissue, especially

when the distribution is not normal, and it is sensitive in the

detection of tumor heterogeneity. It should be noted that most

imaging variables used to compare tumor subtypes, such as tumor

volume, density, mass, skewness or kurtosis when corrected for

multivariate analysis, failed to achieve statistical significance.

Thus, our results suggest that the proposed histogram analysis of

CT imaging parameters provides higher discriminatory ability

than that with information from conventional CT imaging, and

Figure 2. CT image, histogram distribution of CT attenuation value, and photomicrograph (hematoxylin-eosin stain; original
magnification, X 40). (A) is a case of AIS, (B) is a case of MIA, (C) and (D) are cases of invasive adenocarcinoma. First three cases show pure GGNs
without a solid component, whereas (D) shows GGN with 2 mm-solid component on CT image. As for histogram distribution, the vertical axis in each
histogram shows the number of pixels in the segmented tumor. The red and blue lines indicate the values for 75th and 97.5th percentile. The
horizontal axis shows the CT attenuation values. As compared with histograms of (A) AIS and (B) MIA, those of (B) MIA and (C) invasive
adenocarcinoma show increased values in the 75th and 97.5th percentile. Tumor density was also increased, whereas tumor mass showed no
difference. Histogram of MIA demonstrates a flat peak with high entropy as compared with that of AIS. Histogram graph of (D) shows two peaks,
which is different from one peak of (A),(B), and (C). In a photomicrograph of (A) AIS, this circumscribed nonmucinous tumor grows purely with a
lepidic pattern. No foci of invasion or scarring are seen. A photomicrograph of (B) MIA consists primarily of lepidic growth with a small (4.8 mm)
upper area of acinar invasion. A photomicrograph of (C) invasive acinar adenocarcinoma consists of round to oval-shaped malignant glands invading
a fibrous stroma 7 mm in length and a smaller area of lepidic growth only at the tumor periphery. Another photomicrograph of invasive acinar
adenocarcinoma (D) shows centrally located bronchus, which is the main cause of solid component of CT image.
doi:10.1371/journal.pone.0104066.g002
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aids in improved classification of lung adenocarcinoma of pure

GGNs.

There are several issues regarding the management algorithm of

pure GGN. First, the classification of AIS, MIA and invasive

adenocarcinoma is basically based on pathologic specimens during

the surgery or after resection. By contrast, frozen histologic

examination for intraoperative pathology diagnosis is sometimes

not sufficient to determine three histopathologic categories owing

to severe architectural distortion and complete collapse of the

alveolar spaces during cryosection [12]. Therefore, for the surgical

resection of a tumor to be performed adequately, a precise pre-

operative diagnosis may be critical for choosing the resection

boundary of the tumor. Second, several studies have reported that

pathologic invasive features are not rare, even in small and pure

GGNs [6,13–17]. Therefore, histologic prediction of GGNs by

qualitative visual assessment alone may miss the pathologic

Table 3. Correlation of imaging biomarker features with extent of invasion on pathology.

Imaging variable R+ P

Size In mediastinal setting (cm) 0.33** ,0.01

Volume (cm3) 0.20** ,0.01

Density 0.28** ,0.01

Mass (g) 0.23** ,0.01

Skewness 20.01 0.89

Kurtosis 20.10 0.16

2.5th percentile (HU) 0.004 0.95

25th percentile (HU) 0.17* 0.02

50th percentile (HU) 0.23** ,0.01

75th percentile (HU) 0.29** ,0.01

97.5th percentile (HU) 0.34** ,0.01

Uniformity 20.44** ,0.01

Entropy 0.49** ,0.01

Note—+Data are Spearman correlation coefficients.
* P,0.05.
** P,0.01.
doi:10.1371/journal.pone.0104066.t003

Figure 3. Receiver operating characteristic (ROC) curve for predicting invasive adenocarcinoma with imaging parameters. For
invasive adenocarcinoma prediction, ROC curve based on the combination of the 75th percentile CT attenuation value and entropy also shows
significant diagnostic accuracy (AUC, 0.780).
doi:10.1371/journal.pone.0104066.g003
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invasive component of pure GGN adenocarcinomas. In other

words, some studies revealed pure GGNs on thin-section CT may

show invasive adenocarcinoma on histopathology [18], in which

stromal or myofibroblastic invasion of 5 mm or smaller in MIA or

even of greater than 5 mm in well-differentiated invasive

adenocarcinoma may manifest as pure GGN on high-resolution

CT (HRCT) because of the limited resolution (200–300 mm) of

HRCT images [18].

This study showed that measuring 75th percentile CT attenu-

ation value in GGNs with little solid component can help

differentiate invasive adenocarcinomas from pre-invasive adeno-

carcinomas (AIS or MIA). The reasons why this 75th percentile

was superior to the tumor density or tumor mass could be

enumerated as follows: (1) three different subgroups of AIS, MIA

and invasive adenocarcinoma are all shown as GGNs with little

solid component on CT scan, so the mean value for density or

mass may frequently be similar among the subgroups; (2) because

the 75th percentile indicates the high CT attenuation value zone

within the tumor, differences in the thickening of alveolar septa

and cellularity among AIS, MIA, and invasive adenocarcinoma

may be disclosed. Even in cases where the average value like

tumor density or mass lacked sufficient sensitivity to differentiate

three different subgroups, the value from the high CT attenuation

zone could have local variation with more sensitive preservation of

spatial information. This result might be anticipated based on the

fact that an increasing CT attenuation value from the 50th to

97.5th percentile could enhance differentiation in Table 1. Similar

results were reported previously by other authors [19]. Ikeda

reported that the values of the 75th percentile of AAH, AIS, and

adenocarcinoma show significant differences between AAH and

AIS, and between AIS and adenocarcinoma (P,0.05).

We observed significantly reduced uniformity and increased

entropy in a step-by-step fashion from AIS to MIA and invasive

adenocarcinoma, and entropy remained an independent predictor

for invasive adenocarcinoma after multivariate analysis. Several

studies have suggested that increased heterogeneity (higher

entropy, lower uniformity) is associated with malignancy in non–

small cell lung cancer [20], colorectal cancer [21] and renal cell

cancer [9]. In a study of 17 patients with non–small cell lung

cancer [20], unenhanced CT texture analysis and resultant coarse

texture uniformity also correlated negatively with tumor stage.

According to the natural chronologic evolution of a lung cancer

manifesting as a pure GGN on CT, it is generally accepted that a

GGN increases in size, then the solid portion within the lesion

tends to appear, and finally the solid portion increases in extent

[22]. Heterogeneous changes in entropy and uniformity in our

study reflect well this evolution of the malignant progress. To the

best of our knowledge, the present study is the first study of the

relationship between texture features of CT images in lung

adenocarcinoma and histologic subtypes. In addition, at the

beginning of the present study, we expected that skewness or

kurtosis would help distinguish the three subgroups like other

tumors [23,24]. However, the distinction was not accomplished

with skewness and kurtosis. We presume that the patterns of the

histogram graphs of AIS, MIA and invasive adenocarcinoma

might vary too much to provide separation among the subgroups.

The present study demonstrates that even in patients with

invasive adenocarcinoma, for which the median extent of invasion

was 9.8 mm (range, 5.1–19.7 mm), 97.7% (90 of 92 patients) had

DFS for 5 years. A good prognosis of invasive adenocarcinoma

shown as pure GGN may be explained, in part, by the difference

in the predominant subtypes. All invasive adenocarcinomas in our

study were lepidic, acinar or papillary predominant tumors, which

are known to show good prognosis as compared with micro-

papillary or solid predominant tumors. Travis et al. [1] concluded

that all histologic subtypes other than lepidic predominant

adenocarcinoma show solid nodules on CT. However, as seen in

Fig. 2, well-organized and well-differentiated acinar or papillary

predominant adenocarcinomas can also be seen as pure GGNs.

Our study was limited inherently by its retrospective design, and

we may have had a selection bias. However, we tried to include as

many patients as possible for whom the pathologic assessment of

the whole tumor was feasible. We also included GGNs with #5-

mm solid component on CT scans as well as pure GGNs with the

insight that the nonmucinous type of MIA can appear as a part-

solid nodule consisting of a predominant ground-glass component

and a small central solid component measuring 5 mm or less [1].

As a result, we excluded the patients for whom only a small

fragment of a tumor was available for diagnosis only or in whom

the entire tumor was not available for surgical reasons, and 3 AIS

and 8 MIAs having ,5 mm solid component could be included

for analysis. Another potential limitation is that the pathologic

invasive component was evaluated in a subjective manner.

Thunnissen et al. [25] assessed the reproducibility of invasion of

lung adenocarcinoma among an international group of pulmonary

pathologists, and concluded that there is fair reproducibility

distinguishing invasive from in-situ (wholly lepidic) patterns.

Nevertheless, we tried to reduce inter-observer and intra-observer

variability by using virtual microscopy [10]. Recent related studies

showed that virtual microscopy is a reliable and more reproducible

technology [10,26–28]. Also in our study, digital pathology offered

a rigorous and reproducible method for quantifying invasive and

noninvasive components of histopathology.

In conclusion, quantitative analysis of CT imaging metrics can

help distinguish invasive adenocarcinoma from pre-invasive or

minimally invasive adenocarcinoma shown as GGN with little

solid component on CT scans.

Supporting Information

Appendix S1

(DOC)

Acknowledgments

We wish to thank Ms. Sookyoung Woo at the Biostatistics Unit of Samsung

Biomedical Research Institute for her statistical assistance.

Author Contributions

Conceived and designed the experiments: HYL. Performed the experi-

ments: JYS KSL JHK JYJ. Analyzed the data: JYS HYL KSL.

Contributed reagents/materials/analysis tools: JH OJK YMS. Contributed

to the writing of the manuscript: JYS HYL KSL.

References

1. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, et al.

(2011) International association for the study of lung cancer/american thoracic

society/european respiratory society international multidisciplinary classification

of lung adenocarcinoma. J Thorac Oncol 6: 244–285.

2. Borczuk AC, Qian F, Kazeros A, Eleazar J, Assaad A, et al. (2009) Invasive size

is an independent predictor of survival in pulmonary adenocarcinoma.

Am J Surg Pathol 33: 462–469.

3. Sakurai H, Maeshima A, Watanabe S, Suzuki K, Tsuchiya R, et al. (2004)

Grade of stromal invasion in small adenocarcinoma of the lung: histopatholog-

ical minimal invasion and prognosis. Am J Surg Pathol 28: 198–206.

4. Suzuki K, Asamura H, Kusumoto M, Kondo H, Tsuchiya R (2002) "Early"

peripheral lung cancer: prognostic significance of ground glass opacity on thin-

section computed tomographic scan. Ann Thorac Surg 74: 1635–1639.

Quantitative CT Analysis of Pulmonary GGO Nodular Adenocarcinoma

PLOS ONE | www.plosone.org 7 August 2014 | Volume 9 | Issue 8 | e104066



5. Noguchi M, Morikawa A, Kawasaki M, Matsuno Y, Yamada T, et al. (1995)

Small adenocarcinoma of the lung. Histologic characteristics and prognosis.

Cancer 75: 2844–2852.

6. Lee HY, Lee KS (2011) Ground-glass opacity nodules: histopathology, imaging

evaluation, and clinical implications. J Thorac Imaging 26: 106–118.

7. Travis WD, Garg K, Franklin WA, Wistuba II, Sabloff B, et al. (2005) Evolving

concepts in the pathology and computed tomography imaging of lung

adenocarcinoma and bronchioloalveolar carcinoma. J Clin Oncol 23: 3279–

3287.

8. Lim HJ, Ahn S, Lee KS, Han J, Shim YM, et al. (2013) Persistent Pure Ground-

Glass Opacity Lung Nodules ./ = 10 mm in Diameter at CT: Histopathologic

Comparisons and Prognostic Implications. Chest 144: 1291–1299.

9. Goh V, Ganeshan B, Nathan P, Juttla JK, Vinayan A, et al. (2011) Assessment of

response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture

as a predictive biomarker. Radiology 261: 165–171.

10. Ozluk Y, Blanco PL, Mengel M, Solez K, Halloran PF, et al. (2012) Superiority

of virtual microscopy versus light microscopy in transplantation pathology. Clin

Transplant 26: 336–344.

11. Kim HK, Choi YS, Kim K, Shim YM, Jeong SY, et al. (2009) Management of

ground-glass opacity lesions detected in patients with otherwise operable non-

small cell lung cancer. J Thorac Oncol 4: 1242–1246.

12. Xu X, Chung JH, Jheon S, Sung SW, Lee CT, et al. (2010) The accuracy of

frozen section diagnosis of pulmonary nodules: evaluation of inflation method

during intraoperative pathology consultation with cryosection. J Thorac Oncol

5: 39–44.

13. Honda T, Kondo T, Murakami S, Saito H, Oshita F, et al. (2013) Radiographic

and pathological analysis of small lung adenocarcinoma using the new IASLC

classification. Clin Radiol 68: e21–26.

14. Kato F, Hamasaki M, Miyake Y, Iwasaki A, Iwasaki H, et al. (2012)

Clinicopathological characteristics of subcentimeter adenocarcinomas of the

lung. Lung Cancer 77: 495–500.

15. Ikeda N, Maeda J, Yashima K, Tsuboi M, Kato H, et al. (2004) A

clinicopathological study of resected adenocarcinoma 2 cm or less in diameter.

Ann Thorac Surg 78: 1011–1016.

16. Hashizume T, Yamada K, Okamoto N, Saito H, Oshita F, et al. (2008)

Prognostic significance of thin-section CT scan findings in small-sized lung

adenocarcinoma. Chest 133: 441–447.

17. Shimizu K, Yamada K, Saito H, Noda K, Nakayama H, et al. (2005) Surgically

curable peripheral lung carcinoma: correlation of thin-section CT findings with
histologic prognostic factors and survival. Chest 127: 871–878.

18. Lee HY, Choi YL, Lee KS, Han J, Zo JI, et al. (2014) Pure ground-glass opacity

neoplastic lung nodules: histopathology, imaging, and management. AJR
Am J Roentgenol 202: W224–233.

19. Ikeda K, Awai K, Mori T, Kawanaka K, Yamashita Y, et al. (2007) Differential
diagnosis of ground-glass opacity nodules: CT number analysis by three-

dimensional computerized quantification. Chest 132: 984–990.

20. Ganeshan B, Abaleke S, Young RC, Chatwin CR, Miles KA (2010) Texture
analysis of non-small cell lung cancer on unenhanced computed tomography:

initial evidence for a relationship with tumour glucose metabolism and stage.
Cancer Imaging 10: 137–143.

21. Miles KA, Ganeshan B, Griffiths MR, Young RC, Chatwin CR (2009)
Colorectal cancer: texture analysis of portal phase hepatic CT images as a

potential marker of survival. Radiology 250: 444–452.

22. Min JH, Lee HY, Lee KS, Han J, Park K, et al. (2010) Stepwise evolution from a
focal pure pulmonary ground-glass opacity nodule into an invasive lung

adenocarcinoma: an observation for more than 10 years. Lung Cancer 69: 123–
126.

23. Chandarana H, Rosenkrantz AB, Mussi TC, Kim S, Ahmad AA, et al. (2012)

Histogram analysis of whole-lesion enhancement in differentiating clear cell
from papillary subtype of renal cell cancer. Radiology 265: 790–798.

24. Wang S, Kim S, Zhang Y, Wang L, Lee EB, et al. (2012) Determination of grade
and subtype of meningiomas by using histogram analysis of diffusion-tensor

imaging metrics. Radiology 262: 584–592.
25. Thunnissen E, Beasley MB, Borczuk AC, Brambilla E, Chirieac LR, et al. (2012)

Reproducibility of histopathological subtypes and invasion in pulmonary

adenocarcinoma. An international interobserver study. Mod Pathol 25: 1574–
1583.

26. Kayser G, Kayser K (2013) Quantitative pathology in virtual microscopy:
History, applications, perspectives. Acta Histochem.

27. Neltner JH, Abner EL, Schmitt FA, Denison SK, Anderson S, et al. (2012)

Digital pathology and image analysis for robust high-throughput quantitative
assessment of Alzheimer disease neuropathologic changes. J Neuropathol Exp

Neurol 71: 1075–1085.
28. Onozato ML, Klepeis VE, Yagi Y, Mino-Kenudson M (2012) A role of three-

dimensional (3D) reconstruction in the classification of lung adenocarcinoma.
Stud Health Technol Inform 179: 250–256.

Quantitative CT Analysis of Pulmonary GGO Nodular Adenocarcinoma

PLOS ONE | www.plosone.org 8 August 2014 | Volume 9 | Issue 8 | e104066


