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Abstract

The prevalence and impact of bacteriophages in the ecology of bacterial communities coupled with their ability to control
pathogens turn essential to understand and predict the dynamics between phage and bacteria populations. To achieve this
knowledge it is essential to develop mathematical models able to explain and simulate the population dynamics of phage
and bacteria. We have developed an unstructured mathematical model using delay-differential equations to predict the
interactions between a broad-host-range Salmonella phage and its pathogenic host. The model takes into consideration the
main biological parameters that rule phage-bacteria interactions likewise the adsorption rate, latent period, burst size,
bacterial growth rate, and substrate uptake rate, among others. The experimental validation of the model was performed
with data from phage-interaction studies in a 5 L bioreactor. The key and innovative aspect of the model was the
introduction of variations in the latent period and adsorption rate values that are considered as constants in previous
developed models. By modelling the latent period as a normal distribution of values and the adsorption rate as a function of
the bacterial growth rate it was possible to accurately predict the behaviour of the phage-bacteria population. The model
was shown to predict simulated data with a good agreement with the experimental observations and explains how a lytic
phage and its host bacteria are able to coexist.
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Introduction

(Bacterio)phages, or bacterial viruses, can be found wherever

bacteria exist which includes every conceivable habitat as a result

of their bacterial parasitism. Their presence in the biosphere is

especially predominant in coastal water and in the oceans

presenting an excess of 107–108 phage particles per millilitre and

even higher concentrations in lakes. Phages are also abundant in

pelagic marine environments and pointed as responsible for a

significant loss of bacterioplankton. Roughly 109 phages per gram

can be found in marine sediments and comparably high numbers

in other sources like sewage and faeces, soil, sediments, deep

thermal vents and in natural bodies of water. Phages are an

extremely diversified group and it has been estimated that ten

bacteriophage particles exist for each bacterial cell, accounting for

an estimated size of the global phage population to be

approximately 1031 particles, making phages the most abundant

living entities on earth [1–12]. As a consequence of this high

prevalence and ubiquity, even rare phage-induced events will be

represented at a high frequency at the global level [7]. This fact,

coupled with phage primitiveness and ability to infect bacteria,

together with the accumulating data from both phage and

bacterial genome sequencing projects, have highlighted their

ecological impact acting as agents in the recycling of organic

matter (including cells), their key role in the adaptive evolution of

bacteria and also as tools in molecular biology and epidemiology

[2,13–16]. The existing interactions between phages and bacteria,

as well as all the predator–prey dynamics, have long been

recognized to play a central role in the structure of ecological

communities, or, in this particular case, in the relative proportions

of different bacterial species or strains in a community [7,17].

The increasing problem of antibiotic-resistance bacteria togeth-

er with the environmental costs caused by the use of chemother-

apeutic agents, have motivated the renewed interest in the use of

phages as alternative antimicrobial agents in pathogens control

[18–21]. For an efficient therapeutic use of phages it is also vital to

understand the phage-bacteria interactions in order to design

efficient protocols, optimize phage production, determine optimal

dose concentration and predict the outcome of phage therapy.

In order to understand phage ecology it is imperative to study

the interaction between phages and their bacterial hosts making

use of (and developing) mathematical models. However, the

knowledge of the interactions between virus–host systems in their

complex natural environments is still limited [20,22]. To improve

this knowledge it is generally accepted that the development of
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mathematical and computer simulation models is essential. Such

explicit models deal with phages density-dependent replication

characteristics and have been used to study the population and

evolutionary dynamics of phages [22–25]. It is thus critical to first

obtain basic information on the behavior of specific virus–host

systems during controlled conditions in the laboratory which may

disclose some of the peculiar kinetics present even in complex

environments, consequently predicting the outcome of an

encounter between phage and bacteria [22,26]. Such studies will

enable to fill the existing gap between mathematical models and

natural communities by allowing the comparison between the

outputs of mathematical models and the experimental data

obtained from controlled, reproducible and easily manipulated

biological systems, before conclusions can be extrapolated and

applied to uncontrolled and complex natural systems [27]. If

experimental results do not reflect the simulated ones, then the

residues will be used to refine the model. These iterative

experimental tests and refinement of the simulations allow for

the understanding of relationships otherwise difficult to observe

[25].

The first model which attempted to explain the kinetics of

phage-bacteria interactions was developed by Levin (1977) from

which subsequent models were adapted from [24]. According to

the models developed so far, phage-bacteria population dynamics

are typically modelled as three interacting populations: susceptible

uninfected bacteria, phage-infected bacteria, and free-phage,

which depend on phage growth kinetic parameters such as burst

size, latent period, and adsorption rate [20,26].

The work presented herein aims at developing a mathematical

model able to predict and explain the basic behaviour of the

phage-bacteria population dynamics of lytic phages based on

fundamental phage-bacteria biological parameters. Such a model

was here developed and the output was found to mimic the

experimental data. The key innovative aspects of the model are the

incorporation of a normal distribution equation that rules the

values of the latent period and the integration of a function that

describes the variation of the adsorption rate according to the

bacteria growth rate.

Materials and Methods

Media
LB broth, Miller (Sigma-Aldrich Inc., St. Louis MO, USA) was

prepared according to the manufacturer’s instructions. Agar plates

were prepared by adding 1.2% of agar (Applichem, Darmstadt,

Germany) to the LB broth and Molten Agar was prepared by

adding 0.6% of agar to the LB broth. Minimal Medium was

prepared based on M9 medium [28] using the following:

Na2HPO4 6 g/L, KH2PO4 3 g/L, NH4Cl 1 g/L, NaCl 0.5 g/

L, MgSO4 0.12 g/L, and glucose 5 g/L.

Bacteriophage and Bacteria
The Salmonella phage PVP-SE1 isolated from a Regensburg

(Germany) wastewater plant as part of the European Project

‘‘PhageVet-P’’(FP6) was used along with its host, Salmonella
enterica serovar Enteritidis strain S1400 which belongs to the

University of Bristol private collection [29,30].

Determination of Phage Titre
The phage titre, expressed as plaque forming units (PFU), was

determined using the Plaque Assay Modified with Antibiotic

(PAMA) in LB medium as described by Santos et al. [31].

Single-Step Growth Curve Experiments
These experiments were carried out at 37uC, 120 rpm in

minimal medium as described by Sambrook and Russell [28],

using an overnight pre-inoculum of the bacteria in the same

medium. The experiments were made in duplicate and repeated in

two different occasions.

Adsorption Rate
Adsorption rate (d) was determined based on Kropinski [32]

using cells grown in minimal medium. Briefly, phage was added to

an initial log phase of bacteria suspension at a multiplicity of

infection (MOI) below 0.01 to assure that each phage has the

opportunity to bind to one, and only one, bacterium. At fixed time

intervals, 0.1 ml sample was taken and immediately diluted in

0.89 ml SM buffer (100 mM NaCl, 8 mM MgSO4, 50 mM Tris-

HCl at pH = 7.5) and 0.01 ml chloroform. Dilution was immedi-

ately vortexed and centrifuged at 9000 g for 5 min. Serial dilutions

were carried in SM buffer and phage titre determined. The

adsorption rate was calculated by the least squares fitting of the

data to equation 1 [33].

ln
P tð Þ
P0

� �
~{d

XS0

m S tð Þð Þ

� �
em Sð Þt{1
� �

ð1Þ

where m(S) is the bacteria multiplication rate, d is the adsorption

rate, XS is the susceptible uninfected bacteria concentration, P is

the phage concentration and t is the time. The subscript 0 refers to

concentration at initial time.

This equation was obtained by solving the differential equations

2 (valid for t , latent period) and 3, representing the phage and

host dynamics respectively:

dP tð Þ
dt

~{dXS tð ÞP tð Þ ð2Þ

dXS tð Þ
dt

~m Sð ÞXS tð Þ ð3Þ

The bacteria multiplication rate depends on the substrate

concentration and is modelled by the Monod kinetics equation 4:

m Sð Þ~ mmax|S tð Þ
S tð ÞzKs

ð4Þ

To determine the maximum rate of exponential growth (mmax)

and the half-saturation constant (Ks), an overnight pre-inoculum of

the bacteria in minimal medium was transferred to fresh liquid

minimal medium containing different concentrations of glucose

(0.01–8 g/L of glucose) in order to obtain an Optical Density (OD)

at 600 nm of 0.07 and incubated aerobically at 37uC with

120 rpm agitation. Successive determinations of bacterial cell

concentration were accomplished every 20 min by reading the

OD at 600 nm. The determination of the two parameters

mentioned above was made by the least squares fitting of the

data to the Monod’s model (equation 4). Glucose (substrate)

concentration was measured using the kit Glucose-TR (Spinreact,

Spain) according to the manufacturer’s instructions. The amount

of substrate needed for a new bacterium (a) was determined using

equation 5.
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a~
S tð Þ
Xs tð Þ ð5Þ

Infection Assays
In these assays an overnight pre-inoculum of the bacteria in

minimal medium was transferred to fresh liquid minimal medium

in order to obtain an OD at 600 nm of 0.07 and incubated

aerobically at 37uC with 120 rpm of agitation. Phages were added

to the bacterial suspension during initial log phase in order to

obtain the desired final concentration. The resultant suspension

was incubated aerobically at 37uC with agitation (120 rpm) and

samples were collected at fixed intervals to determine bacteria

concentration through OD, phage concentration through PAMA

and glucose (substrate) concentration using the kit Glucose-TR.

These experiments were carried on in a 250 ml Erlenmeyer flask

and in a 5 L bioreactor operating in batch mode and using an air

inflow of 1 volume/volume of medium.

Model simulations
The DDEs were solved in Matlab (The Mathworks, Natick,

MA, USA) using the dde23 function/solver. The fminsearch
function in Matlab was also used for least squares parameter

fitting.

To assess the differences between the simulations obtained by

the model and the experimental data, we have calculated the root-

mean-square deviation (RMSD) normalized by the range of

observed values of the simulated variable (NRMSD). Values are

presented in percentage. Given the data range of each variable,

NRMSD was calculated using the log10 values of the data from

total bacteria and free phage to avoid favouring the simulated

lower values. In the case of substrate the natural values were used

instead of log10. Since the NRMSD is based on the residuals, the

closer the value is to zero the best is the simulation fitting to the

experimental data. It is important to mention that besides its good

accuracy NRMSD cannot be used to compare between variables,

but only for a particular variable since it is scale dependent.

A relative NRMSD (r.NRMSD) was calculated when assessing

the deviation of the model output to a base-case, corresponding to

the quotient of the obtained NRSMD due to the parameter

variation and the NRMSD of the base-case. To easily interpret the

values, when r.NRMSD is below the unity the value presented

corresponds to {1=r:NRMSD. This way, a value of 2 means that

the NRMSD is twice higher the NRMSD of the base-case, while a

value of -2 means that the NRMSD is twice lower the NRMSD of

the base-case and corresponds in this case to a better fitting of the

simulation to the experimental data.

Results

Phage and bacteria interact with each other in a similar way to

that of a predator and its prey. The simplest classical model

explaining such behaviour is that of Lotka-Volterra. In this simple

model the number of preys increase in the absence of predators

and decreases as a function of their number. On the other hand,

the number of predators decreases in the absence of their substrate

(preys) and increases in its presence, proportionally [17,20,25].

We have constructed a mathematical model based in Levin et
al. (1977) [24], a modification of the classical Lotka-Volterra

model. The model developed includes the essential characteristics

that rule the phage-bacteria behaviour. One of the most important

features included is temporal heterogeneity, the existence of a time

delay in the conversion of bacteria predation in phage progeny, an

intrinsic characteristic of these systems. The proposed model is

composed by the following five delay differential equations

(DDEs):

dS tð Þ
dt

~{am Sð ÞXt tð Þ ð6Þ

dXs tð Þ
dt

~m Sð ÞXs tð Þ{dXs tð ÞP tð Þ ð7Þ

dXi tð Þ
dt

~dXs tð ÞP tð Þ{dXs t{tð ÞP t{tð Þ ð8Þ

dXr tð Þ
dt

~m Sð ÞXr tð Þ ð9Þ

dP tð Þ
dt

~bdXs t{tð ÞP t{tð Þ{dXs tð ÞP tð Þ ð10Þ

and

dXs t{tð ÞP t{tð Þ~0, while tvt ð11Þ

State variables: S is the substrate concentration, Xs is the

susceptible uninfected bacteria concentration, Xi is the infected

bacteria concentration, Xr is the resistant bacteria concentration,

and P is the free phage concentration.

Parameters: m(S) is the bacteria multiplication rate, a is the

substrate needed for a new bacterium, d is the adsorption rate, t is

the latent period, and b is the burst size.

Total bacteria (Xt) is calculated as:

Xt tð Þ~Xs tð ÞzXi tð ÞzXr tð Þ ð12Þ

The substrate S is uptake by the susceptible uninfected bacteria

Xs, infected Xi and resistant bacteria Xr (i.e. the total bacteria Xt)

by an amount of a for each newly formed bacterium. The grow

rate m(S) of resistant bacteria is assumed to be the same as the

sensitive bacteria. The life cycle of the phage starts with its

irreversible adsorption to the sensitive bacteria Xs at an infection

rate d, proportional to the product of their concentrations given by

the law of mass action, and resistant bacteria are obviously not

infected by the phage. The phage injects its DNA into the sensitive

bacterium (Xs), which becomes infected (Xi), driving the cell to

phage replication in order to produce their progeny, and thus it is

assumed that the infected bacteria does not grow but still compete

for substrate. The phage progeny is not released until the time

needed for phage genome injection into the host progeny, phage

proteins production and assembly have elapsed, the latent period

t, after which the cell lyses releasing an average number of b (burst

size) new phages able to start a new cycle. This is ensured in the

model by using delays in the variables of the differential equations.

When tvt, the delayed variables Xs t{tð Þ and P t{tð Þ in

equations 8 and 10 are set to zero and turning the term

dXs t{tð ÞP t{tð Þ null (equation 11). Consequently, before the

latent period, the infected bacteria (equation 8) will only vary as a

Population Dynamics of a Salmonella Phage
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consequence of phage adsorption to sensitive bacteria, increasing

this way the concentration of infected bacteria. On the other hand,

free phages will decrease at the same rate and equation 10 will

assume the form of equation 2. This behaviour is in accordance

with the biological data. As a consequence of the time needed for a

bacterium to produce new phages, the population dynamics of a

phage-bacteria system does not depend only on the phage and

bacteria concentration at time t but also on their concentration t
hours earlier.

The parameters bacterial growth rate, phage adsorption rate,

burst size, latent period, and substrate amount needed for a new

bacterium, were determined through independent experiments as

described in the section ‘‘Materials and Methods’’ and are listed in

Table 1. The model was used to simulate the data obtained during

the one-step growth experiments and assess the validity of the

determined parameters (Figure 1).

It was observed that using the model as presented above, the

data generated showed an overgrowth of the phage population in

comparison to the experimental data due to a rapid increase of

phage titre right after the latent period. In order to overcome this

limitation, a rise period (r) was introduced in the model to soften

the predicted release of the phage by its host. This was

accomplished by introducing a normal distribution function

(equation 13) with an average x~tzr=2 and standard deviation

s~r=6.

Nd xð Þ~ 1

s
ffiffiffiffiffiffi
2p
p exp {

1

2

x{�xx

s

� �2
" #

Dx ð13Þ

with x[ t,tzr½ � and Dx~r=100.

The normal distribution function when multiplied by Dx, the

increment in x, will rule the distribution of the latent period

determining the proportion of bacteria that will burst at each time

t and which were infected at an elapsed time period between t and

tzr (or x). The proportion of bacteria that will burst with a latent

period x will then be multiplied by the number of bacteria infected

x hours earlier giving the number of bacteria that will burst with a

latent period of x in each iteration step (equation 14):

Bb xð Þ~dXs t{xð ÞP t{xð ÞNd xð Þ ð14Þ

with x[ t,tzr½ �.
The sum of all bacteria bursting with a latent period between t

and tzr, that is
Ptzr

x~t
Bb xð Þ, will give the number of bacteria that

will burst at each time t, and thus will replace the term

dXs t{tð ÞP t{tð Þ in equations 8 and 10. The introduction of

such a function enabled a better agreement between the simulated

and the experimental data (Figure 1).

After assessing the model in a single phage cycle, the model was

tested to explain the phage-bacteria behaviour during a longer

period. For that, an initial log phase bacterial culture (100 ml) was

infected with phage at a MOI of 1.861022 in a 250 ml

Erlenmeyer flask and the phage, bacteria, and substrate concen-

trations were determined. This assay was carried out using

minimal medium with no addition of substrate during the

experiment. This means that the amount of substrate during the

experiment will change over time due to bacterial consumption,

influencing bacterial physiology. The infection assay was scaled up

using a 5 L bioreactor operating in a batch mode with 2 L of

medium, where phages were able to infect an initial log phase

bacterial culture at a MOI of 5.161024. The data obtained was

Table 1. Phage-bacteria interaction parameters determined experimentally.

Parameter Symbol Values Units

Maximum bacterial growth rate mmax 0.356 h21

Half-saturation constant Ks 390 mg L21

Substrate for a new bacterium a 1.2361023 mg L21

Burst size b 58 PFU CFU21

Phage adsorption rate dr 1.0061029 ml CFU21 PFU21 h21

Latent period t 0.5 h

Rise period r 0.55 h

lambda parameter (eq. 15) l 160

bacterial growth at dr mSr 0.326 h21

doi:10.1371/journal.pone.0102507.t001

Figure 1. Simulating the one step growth curve using a normal
distribution function (equations 6–14). Legend: N experimental
data; … data from the model using the average value of the latent
period (equations 6–12); ___ data from the model using a distribution
of values of the latent period (introduction of equations 13 and 14). The
x axis represents time in hours.
doi:10.1371/journal.pone.0102507.g001
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used to assess the suitability of the model presented and the

behaviour of the phage-bacterium system at these two scale

volumes (Figure 2 and Figure 3).

The data simulated by the model showed a good agreement

with the experimental data but only during the first three hours of

the experiment. This might suggest that at least one of the

parameters in the model may not be constant but instead should

vary in the course of the experiment. During the one-step growth

experiments it was observed that the time at which the phage was

added to the bacterial culture influenced the value of such

parameters. In fact, phage infection of stationary grown cultures

gives rise to lower burst sizes and higher latent periods than

infection of cells growing exponentially (data not shown).

The variation of the burst size was included in the model but no

significant improvement was achieved. Since the bacteria size and

phage receptors in the cell wall vary with the different growth

phases we have thus included a new equation (equation 15) to

define the adsorption rate that allows it to vary along the

experiment.

d m Sð Þð Þ~A � exp l�m Sð Þð Þ ð15Þ

with A~2:22 � 10{32,l~160

This equation decreases the phage adsorption rate in function of

the bacterial growth rate. The function passes through the

experimental determined value of the adsorption rate of 161029

for a bacterial growth rate of 0.326 (log phase) and decreases to a

value close to zero for a very low bacterial growth rate (stationary

cells). Taking into account the experimental coordinates, the

parameter A was written in order of l which was fitted using the

Matlab fminsearch function with the experimental data from

Figure 2. Since the adsorption is no longer constant, the term

dXs t{tð ÞP t{tð Þ in equation 14 will be replaced by

d t{tð ÞXs t{tð ÞP t{tð Þ. The inclusion of this term in the model

allowed a better agreement of the simulated data during all the

experiment time periods (Figure 4 and Figure 5). The model was

further tested with additional experimental data from an infection

assay in the same conditions as the one from Figure 5 but at a

Figure 2. Simulating the phage and bacteria population dynamics using a distribution of values of the latent period (equations 6–
14) in a 250 ml Erlenmeyer flask for a MOI = 1.8E1022. Legend: N experimental data; ___ model simulation; - . - model simulation of susceptible
uninfected bacteria (Xs); … model simulation of infected bacteria (Xi); _ _ model simulation of resistant bacteria (Xr). The x axis represents time in
hours.
doi:10.1371/journal.pone.0102507.g002
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MOI of 2.861023 (Figure 6). Also in this case, the simulation

values presented a good agreement with the experimental data.

In order to evaluate the influence of the different parameters

(inputs) on the model variables (outputs), a sensitivity analysis was

conducted using the OAT (one-at-a-time) method, that is,

changing the value of each parameter one at a time for a

magnitude of 20% (610%). This local sensitivity analysis was

carried using as the base-case the simulation and data from

Figure 5 and all the parameters included in the model were

subjected to analysis (Figure 7).

For the sensitivity analysis we have determined a relative

NRMSD (r.NRMSD) for each parameter variation which includes

in its calculation the value of NRMSD of the base-case (as

described in the section ‘‘Materials and Methods’’). The

r.NRMSD enables the determination of the parameter that causes

the greatest deviation to the base-case and consequently the

parameter for which the model is more sensitive.

To assess the outcome of a variation in the state variables we

have modelled the outcome of the Salmonella phage and its host

by changing each of the state variables alone in 610% (Figure 8),

using as the base-case the same data from Figure 5.

Discussion

Modelling the phage–bacteria interactions
The unpredictability of the population dynamics of the phage–

bacteria interactions is related to the intrinsic self-replicating

nature of phages. Therefore, the awareness and understanding of

kinetics and dynamics of phages and bacteria is important to

predict the outcome of the interaction between these two

populations in a given environment. To accomplish this, it is

crucial to develop mathematical models able to explain and reveal

the interaction between phages and bacteria [25]. When these

models produce simulations with a good agreement with

experimental data they can be powerful tools for the optimization

of phage infection parameters towards the improvement of phage

production or for the assessment of phage therapy outcome.

Nevertheless, it is important to be aware that it is not possible to

include all factors accounting for the population and evolutionary

dynamics of the interactions between bacteria and phage in a

mathematical model [20].

Structured models (models which consider the behaviour of

intracellular metabolic pathways in response to environmental

Figure 3. Simulating the phage and bacteria population dynamics using a distribution of values of the latent period (equations 5
and 13) in a 5 L bioreactor for a MOI = 5.1E1024. Legend: N experimental data; ___ model simulation; - . - model simulation of susceptible
uninfected bacteria (Xs); … model simulation of infected bacteria (Xi); _ _ model simulation of resistant bacteria (Xr). The x axis represents time in
hours.
doi:10.1371/journal.pone.0102507.g003
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changes) provide a more comprehensive description of microbial

behaviour than unstructured models, however they are limited,

complex and the majority of reported models are not validated

with experimental data, in part due to difficulties for the

knowledge in vivo of the reaction rates of the implied enzymes

[34]. On the other hand, unstructured models describe the

production of biomass being more simple but equally useful and

descriptive of the experimental reality. Essentially, unstructured

models of viruses keep track of virus as well of uninfected and

infected host populations [35]. The results generated by such

unstructured models can be useful in interpreting large data sets

and identifying useful new experiments to perform [36].

Populations present in the model
We have here developed an unstructured model useful to

understand the generic kinetic phenomena of the self-replicating

nature of phages. Models describing phage-bacteria population

dynamics are characterized by the interaction of three different

populations: susceptible uninfected bacteria, phage-infected

bacteria, and free phage [37]. Variations in these populations

represent the core of a phage-bacteria unstructured model [35].

Another important population considered in the model developed

herein consists of resistant bacteria. Even though this population

do not interact with phages and generally do not contribute to the

other two, its prevalence in a given environment will vary as a

result of the interaction between phages and sensitive bacteria.

Moreover, in a scenario where resistant bacteria are able to

overcome the susceptible bacteria they will obviously compete for

substrate with up to the same fitness. Nevertheless, due to the low

proportion of resistant cells in the bacterial population and the

time length of the experiments, resistant cells did not produce a

significant impact in the results. This may constitute a particular

case of the phage used in the experimental assays since it presents

a broad lytic spectrum (a characteristic found more frequently in

Myoviridae phages than in other Caudovirales) and thus bacteria

may have more difficulty in developing resistance against this

phage [7,29,38].

Figure 4. Simulating the phage and bacteria population dynamics using a distribution of values of the latent period and a variation
of the adsorption constant (d) as a function of the bacterial growth rate (m) in a 250 ml Erlenmeyer flask for a MOI = 1.8E1022.
Legend: N experimental data; ___ model simulation; - . - model simulation of susceptible uninfected bacteria (Xs); … model simulation of infected
bacteria (Xi); _ _ model simulation of resistant bacteria (Xr). The x axis represents time in hours.
doi:10.1371/journal.pone.0102507.g004
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Assumptions of the model
Some assumptions were made in the development of the model.

The suitability of the model is only for lytic phages and not for

temperate phages which can follow the lysogenic cycle not leading

to the death of the bacterial cell and thus not acting always as a

predator [39]. Phages encounter bacteria at random and will only

adsorb to susceptible bacteria which can be infected by only one

phage, since infection of the bacterium by a phage can inactivate

the remaining receptors [23]. Consequently, the super-infection

phenomenon that may exist when the multiplicity of infection

(MOI) is high was not included. The infected bacteria do not grow

by cell division, a commonly and more accurate assumption in

phage-bacteria models, since after infection, phages take control of

the bacterial machinery driving the cell only for phage production

[23,37,40].

Resistant bacteria are assumed to not present a fitness

disadvantage over sensitive bacteria and thus their grow rate

m(S) is assumed to be the same as the latter [18]. As infected

bacterial cells are still metabolically active and requires a

significant commitment of host resources in producing phage

progeny, it was assumed that infected bacteria compete for

substrate with the resistant and susceptible bacteria, an assumption

found in other models like the one from Beretta and Kuang [41].

This assumption is corroborated by the work of Middelboe that

showed that bacteria continue to uptake thymidine after cell

infection until cell lysis, that is, during the lytic cycle of the phage

[22]. Also, different studies found that viral production may even

increase the rate of glycolysis of infected cells [42–45]. The work

from Jain and Srivastava compared the major pathways in the

infected cell metabolome with those in the uninfected cell. Even

though that host metabolism is shifted for phage production

diverting resources away from the TCA cycle and from the

synthesis of cell wall components in order to upregulate the

pentose phosphate pathway, the glucose uptake rates of uninfected

and infected cells were found to be similar [36]. Conversely, the

model developed by Jain and Srivastava to describe the interaction

between the MS2 phage and E. coli predicted that the host cell do

not grow since the value of the flux corresponding to the biomass

production was zero [46]. Moreover, modelling infected bacteria

as a growing population increases the phage growth rate, resulting

Figure 5. Simulating the phage and bacteria population dynamics using a distribution of values of the latent period and a variation
of the adsorption constant (d) as a function of the bacterial growth rate (m) in a 5 l bioreactor for a MOI = 5.1E1024. Legend: N
experimental data; ___ model simulation; - . - model simulation of susceptible uninfected bacteria (Xs); … model simulation of infected bacteria (Xi); _
_ model simulation of resistant bacteria (Xr). The x axis represents time in hours.
doi:10.1371/journal.pone.0102507.g005
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in an increased distance to the observed biological data [37], fact

that we also observed.

Acquired resistance of bacterial cells during the experiment time

period and the possibility of bacteria to use cell contents of lysed

cells as substrate were not included in this model since they are not

relevant during the time scale used in this study [18,22].

Setting the latent period and inclusion of asynchronous
bursts

The factors known to primarily rule phage-bacteria population

dynamics are bacteria multiplication rate and substrate consump-

tion, phage adsorption rate, burst size and latent period and thus

these factors constitute the model parameters. The distribution of

variation in these parameters also plays a critical role [20]. This

last parameter, latent period, is an intrinsic characteristic of the

phage-bacteria system (within a given environment) and has been

neglected in the model presented by Levin and Bull (1996) and

treated by Payne and Jansen (2001) as a lysis rate [47,48]. Without

this parameter, simulated data will result in a higher phage growth

due to an early release of phage progeny, leading to the

appearance of new phages right after phage infection and before

the latent period has passed. In the model presented herein, delay

differential equations were used to include this temporal hetero-

geneity by treating the latent period as it is, a time period without

phage release.

Experimental determination of the latent period is made

through the single-step growth curve and corresponds to the time

elapsed between infection and the time at which the phage

concentration starts to rise. After this time point, the phage

concentration continues to rise during a time period (the rise

period) until a plateau is reached, showing that the infected

bacteria do not all burst at the same time. These asynchronous

bursts are due, in a lesser extent, to the different time at which

phages adsorb (which depends on the adsorption rate that is

usually very fast) but mainly to different latent periods within the

infected-bacteria population, fact that will be reflected in the

length of the rise period (r). Observing the single-step growth

curve of a phage (as the one from Figure 1), the higher slope of the

curve during the rise period, usually at its midpoint, reflects the

majority of the infected cells bursting and releasing the progeny

Figure 6. Simulating the phage and bacteria population dynamics using a distribution of values of the latent period and a variation
of the adsorption constant (d) as a function of the bacterial growth rate (m) in a 5 l bioreactor for a MOI = 2.8E1023. Legend: N
experimental data; ___ model simulation; - . - model simulation of susceptible uninfected bacteria (Xs); … model simulation of infected bacteria (Xi); _
_ model simulation of resistant bacteria (Xr). The x axis represents time in hours.
doi:10.1371/journal.pone.0102507.g006

Population Dynamics of a Salmonella Phage

PLOS ONE | www.plosone.org 9 July 2014 | Volume 9 | Issue 7 | e102507



Figure 7. OAT sensitivity analysis of model parameters using as the base-case data from Figure 5. Legend: N experimental data; ___
model simulation when increasing the parameter in 10%; - . - model simulation when decreasing the parameter in 10%. The text on the left side of
each line graph identifies the parameter being analysed. mmax: maximum rate of exponential growth, Ks: half-saturation constant, a: substrate needed
for a new bacterium, b: burst size, t: the latent period, r: rise period, l: lambda parameter used in equation 15, dr: experimental determined
adsorption rate, mSr: bacterial growth rate at which the adsorption rate was calculated, The x- and y-axis are the same as Figure 5 (x: time [1 8] hours,
ySubstrate: [0 5000]; yBacteria: [107 1010]; yPhage: [105 1012]).
doi:10.1371/journal.pone.0102507.g007
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phages. The non-inclusion of these asynchronous bursts in the

model is common practice in modelling phage-bacteria popula-

tions but it will produce a faster increase in the phage release right

after the latent period, enabling phages to start a new cycle much

sooner, with the consequent overgrowth of simulated phage

concentration when compared to the experimental data and

leading to a larger decrease of the sensitive bacteria when

compared with the real data [37]. Such behaviour was also

observed in our model (Figure 1) as a result of the non-inclusion, in

a first approach, of these asynchronous bursts. Figure 1 shows an

overgrowth - more than two logs in only one phage cycle - of the

simulated phage concentration in comparison to the experimental

data. The model was readjusted to deal with the asynchronous

bursts by including a normal distribution function (equation 13).

The centre of the distribution curve is t+r/2, the midpoint of the

rise period, which corresponds to the higher number of infected

bacteria bursting. Using r/6 as the value of s enables to include

the limits of the distribution curve inside the rise period time

length. The inclusion of this normal distribution function will rule

the latent period distribution along the rise period by determining

the proportion of infected bacteria that will burst at each possible

time inside the limits t and t+r during the experiment. In contrast

to what was observed by Weld and colleagues [37], this

modification to the model enabled a much better agreement

between the simulated and experimental data, as can be seen in

Figure 1. Weld and colleagues distributed the burst over 10 min

around the end of the latent period, apparently in the same way as

Schrag and Mittler [49], as an even distribution over that period

and not as a normal distribution, which seems to be the reason for

this divergence.

Non-eradication of the bacterial population
Understanding the predator nature of phages and their ability to

replicate each time a bacterium is infected lead us to speculate that

the interaction between these two populations will result in a rapid

growth of the phage population and the extinction of all sensitive

bacterial population. Indeed, using the model with constant

parameters and allowing for a normal distribution of the latent

period to simulate the population and evolutionary dynamics of

the phage–bacteria interactions, this behaviour is observed

Figure 8. Variations in the model simulation when varying each of the state variables alone in 10% (using as the base case the data
from Figure 5). Legend: N experimental data; ___ model simulation when increasing the variable in 10%; - . - model simulation when decreasing the
variable in 10%. The text on the left side of each line graph identifies the variable being analysed. D(Si): variation in initial substrate concentration,
D(Xti): variation in initial total bacteria concentration, D(Pi): variation in initial free phage concentration. The x- and y-axis are the same as Figure 5 (x:
time [1 8] hours, ySubstrate: [0 5000]; yBacteria: [107 1010]; yPhage: [105 1012]).
doi:10.1371/journal.pone.0102507.g008
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(Figure 2 and Figure 3). This has also been reported in other

models [17,20,24,47,49]. Nevertheless, experimental data report-

ed herein and described by several other authors [22,49,50] shows

that the phage concentration rapidly increases but the sensitive

bacteria are not eradicated and are still found in the reactor even

after the phage concentration have stopped increasing (Figure 2

and Figure 3). Two reasons have been pointed out to the non-

eradication of the sensitive bacteria: the presence of surfaces,

biofilms or others that may act as physical shelters to bacteria,

consequently preventing phage adsorption [20,49]; and the

physiological state of bacteria, since that stationary cells (due to

its reduced metabolism) may preclude phage infection and

replication [7,22]. This means that the bacterial cell needs to be

accessible to the phage and in an appropriate physiological state to

produce phage progeny [7]. As in the reactor experiment reported

herein, the majority of bacteria are suspended and most likely not

enclosed in physical shelters, the not eradication of sensitive

bacteria is probably due to cells that are not in an appropriate

physiological state to produce phage progeny. Indeed, we have

observed that as the bacteria growth rate decreases, the rate of

phage production also decreases (Figure 2 and Figure 3).

Physiological changes of stationary cells
The physiology of the bacterial cell will change through the

different growth phases. When entering into the stationary phase,

which is usually due to the depletion of available main nutritive

components, the cell metabolic activity is greatly reduced, the

bacterial growth declines due to reduced cell division, the outer

membrane presents high degree of local charge heterogeneity, the

receptors in the cell membrane may change in quantity and

morphology, the bacterial motility is reduced and cells become

smaller, in some cases changing their morphology from rod-

shaped to cocci [51–53]. These changes on the physiology of the

bacteria will induce variations in the parameters that rule the

interaction between the phage and bacteria. Phage production and

cell lysis were found to present a positive correlation with the

bacterial growth rate of hosts in bioreactors suggesting a strong

dependence of phage-bacteria population dynamics on the

physiological state of bacteria [22].

Dependence of the adsorption rate on the cells
physiology

The first step in the growth cycle of a phage is its adsorption to

specific receptors on the susceptible bacterial surface representing

the fitness of the phage in capturing its host. This characteristic has

been found to vary to a great extent with the physiological state of

the host cell [20,23,54]. An increase in the cell surface, a large

number and density of receptors in the host cell surface and a

higher motility of bacteria will be reflected in the adsorption rate

constant increasing its value [17,54]. The collisions between the

phage and bacteria happen at random Brownian motion and the

adsorption rate is dependent on the concentration of both

intervenients being typically modelled by the law of mass action

[23]. The experimental determined adsorption rate constant will

thus represent the density of phage receptors in the host cell

surface, the diffusion rate in the medium, the size of both phage

and bacteria and the efficiency of phage infection in relation to

collisions [55]. Therefore, the adsorption rate constant will

strongly depend on the physiological state of the bacterial cells

which will in turn produce variations in that parameter during the

time period of the experiment. This fact will also produce not only

variations in the determined value of the constant between

experiments carried at different physiological states of bacteria, but

also difficulties in its determination since even slight physiological

variations in the host cells may occur during an experiment [54].

Modelling phage-bacterial populations as a function of
the growth rate

Although bacterial cells in stationary phase do not produce, or

present minimal production of phage progeny, the resumption of

cell growth by addition of nutrients results in an immediate lysis of

host cells and phage production [7,22]. This fact suggests that

phage production yield, and consequently the kinetic parameters,

do not depend on the cell density or quorum sensing but rather on

bacterial growth rate which can be determined by the amount of

substrate available following a kinetic model such as that described

in Monod’s equation (equation 4). Consequently, the phage

population (predators) starts to be primarily limited by the number

of available preys but when the bacterial growth rate decreases it

will be primarily limited by the host physiology (in this case as a

consequence of resource availability). Hurley and colleagues [56]

also found that the parameters that significantly influenced the

simulation outcomes of their in vivo model for the SP6 phage-

Salmonella system were phage adsorption rate and bacterial

growth rate, however these authors did not related these two

parameters and assumed a constant value in each simulation.

Levin and Bull also concluded that a variation in phage adsorption

and burst size values in time would eliminate the inconsistencies

between the experimental results and their model, which predicted

that the phage (combined with the immune defences) should

eradicate the bacteria [47]. Even so, those variations were not

implemented to avoid complexity of the model. Moreover, Hadas

and colleagues observed that the rate of the irreversible step in T4

phage adsorption increased with the host growth rate [57].

Along these lines, we have modelled the adsorption rate as a

function of the bacterial growth rate. Thus, phage adsorption will

present its maximum when the growth rate equals the maximum

bacterial growth rate and will decrease as the bacterial growth rate

decreases until reaches a value of zero. This variation in the

adsorption rate enabled a good fitting of the simulations with the

experimental data for phage, bacteria and available substrate and

was able to explain why (and how) sensitive uninfected bacteria are

able to coexist with lytic phages (Figure 4 and Figure 5) as has been

observed not only in therapy but also in environmental and

ecological niches [17,24,49].

Like other authors we have also found dependence of the latent

period and burst size on the host growth rate. The burst size seems

to present a direct variation with that of the growth rate while the

latent period presents an opposite variation, that is, the latent

period is lengthened and the burst size reduced when the growth

rate decreases, reducing the growth rate of phage progeny.

Although the burst size presents a wide variation reaching the

value of 1 when cells achieve stationary phase, the variation of the

latent period is at a lesser extent. The variation of these two

parameters as a response to growth rate was already observed

[7,22,37,58]. The value of 1 for burst size of stationary cells

reinforces the conclusion that infected stationary cells release

progeny phage only after resumption of cell growth, which in this

case, happens only after plating the cells, since no substrate was

added during the experiments. These variations have been

introduced in the model but no significant improvement in the

simulations was observed. The wide variation of the burst size may

be a result of a low adsorption of phage to cells that was already

taken into account in the model, which may explain why these

variations did not significantly improved the model simulations.

Consequently, and due to the increasing complexity that it
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produces, we did not maintained these modifications for the sake

of simplicity.

The dependence of phage fitness, represented by its biological

parameters, on the bacterial growth rate will certainly have

implications in environmental simulations and in phage therapy.

In vitro (or in laboratory controlled conditions) studies of the

population dynamics of phage and bacteria are usually carried at

optimal conditions of bacterial growth which do not happen in the

bacteria natural environments or organisms subjected to phage

therapy. Therefore, kinetic parameters determined in vitro using

exponential growth cells in optimal physiological state for phage

infection cannot be used straightforward to model phage bacteria

interactions in real environments since they will change while

bacteria grow, due to variations in the cells physiological state.

Accordingly, the presence of a phage and a sensitive bacterium

is not sufficient for infection to occur.

Sensitivity analysis
The complexity of the model and the number of parameters

included turns difficult to understand the existing relationships

between the inputs (parameters) and the outputs. Having this in

mind we have carried a sensitivity analysis using the OAT method.

This enables to vary a parameter and observe its effect on the

model output, unambiguously showing the contribution of that

particular parameter on the simulation. From this analysis

(Figure 7), using the data from Figure 5 as the base-case, we have

observed that the parameters that produce a wider deviation from

the base case are the bacterial growth rate (mSr) at which the

adsorption rate was calculated (dr), the maximum rate of

exponential growth (mmax) and the half-saturation constant (Ks).

The analysis showed that the Monod’s parameters, and specially

its output (bacterial growth rate), exert major influence in the

model output. All these three parameters are directly related with

the bacterial growth and confirm the influence that it has on the

model. As a result, the identified parameters should be the focus of

attention and need to be reliably determined. More important

than determining the adsorption rate of reference (the one

determined experimentally to define the adsorption equation,

equation 15) is assessing the growth rate at which it was

determined. Furthermore, the influence of the bacterial growth

rate, and consequently the phage adsorption to the bacteria, is

even higher than the burst size, a parameter commonly used to

select for phage fitness. Using the values of the r.NRMSD (the

higher absolute value from the 610% variation) the parameters

can be ranked in order of its higher impact on the model output:

bacterial growth rate at which the adsorption rate was calculated

(mSr), the maximum rate of exponential growth (mmax), the half-

saturation constant (Ks) and at a lesser extent the substrate needed

for a new bacterium (a), the latent period (t), the lambda

parameter used in equation 15 (l), the substrate needed for a new

bacterium (a), the experimental determined adsorption rate (dr),

the burst size (b) and the rise period (r).

Variations in the state variables
Phage, bacterium and substrate concentrations are key variables

when setting up conditions to produce phage, to use phages as

antimicrobial agents or to understand changes in a phage-

bacterium community. To assess the outcome of a variation in

these state variables and consequently its influence in a phage-

bacterium population we have modelled the outcome of the

Salmonella phage and its host by changing each of the state

variables alone in 610% (Figure 8). The determination of the

r.NRMSD was made using as the base-case the same data from

Figure 5):

i) Substrate (Figure 8, line 1) – by increasing the initial substrate

concentration in only 10% the sensitive bacteria are almost

completely eradicated decreasing the total bacteria popula-

tion (composed mostly by infected and resistant bacteria).

The final phage concentration in the other hand is increased.

At a first glance the increase in the substrate should favour

bacterial growth but this will also increase the number of

bacteria susceptible to the phage with a higher growth rate.

As stated before, according to our model, the increased

bacteria growth rate will increase phage infectiveness through

a higher adsorption rate and therefore an equally increased

phage progeny. The decrease in the substrate concentration

does not have a great impact when comparing with the base-

case. There is a slight increase in the bacteria population that

will stop their growth sooner due to the depletion of

substrate. Also, a slight increase in the phage concentration

is observed.

ii) Bacteria (Figure 8, line 2) – increasing the total bacteria

concentration will increase the number of sensitive bacterium

able to be infected by phages and consequently it would be

expectable an increase in the final phage concentration. Even

though, the final concentration of phage decreased. Such

behaviour is explained by the decrease in the substrate

concentration in the medium due to the increase in bacterial

population. This decrease in substrate concentration will

lower the growth rate of the bacteria (calculated through the

Monod equation, equation 4) that in turn will decline the

adsorption rate leading to less phage infections and

consequently less phage progeny. Moreover, the growth rate

for which the phage adsorption is close to zero will be

achieved sooner and thus the phage concentration will also

stagnate sooner. When decreasing the total bacteria, beside

the lower number of susceptible bacteria, the final phage

concentration achieved will be higher than the positive

variation of this state variable. This is a consequence of the

higher availability of substrate per bacterium, since the

substrate was maintained at its base line, which will lead to a

higher growth rate of bacteria and in turn a higher phage

infectiveness, as explained above. The phage concentration is

primarily limited by the lower number of susceptible bacteria

(until half the time) but then, the higher growth rate of cells

leads to a higher phage population.

iii) Phage (Figure 8, line 3) - the variation of 610% in the initial

phage concentration produced a very small variation in the

final phage and bacteria concentration when compared with

the base case. These changes are almost imperceptible

showing that small differences (at least up to 10%) in the

initial phage concentration will not compromise/improve

phage production and phage effectiveness in the control of

the bacterial host;

This analysis showed that variations in the initial conditions of

the state variables are not those that would be the most expectable.

Increase in the bacterial substrate will lead to bacteria reduction

and phage increase while decrease in the substrate may enable

bacteria survival when confronted with a phage attack and an

initial higher population of bacteria, if not supplemented with a

higher amount of substrate, will lead to lower phage production.

Only the increase of phage titre seems to have the expectable

output, a higher final phage concentration and a lower bacterial

population, but even so, for a population that reproduces

exponentially, the variation is almost imperceptible.

From these variations it is possible to observe that the initial

substrate concentration was the state variable that produced the
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most pronounced changes. From a clinical point of view or for

phage production purposes it seems that, in contrary to what

would be expected, to reduce the bacterial population or increase

the final phage concentration it is advisable to increase the

substrate available for the bacteria. Consequently, changes in the

substrate may have dramatic impact in bacteria control with

consequences for the success of therapy and phage production.

The proposed model clearly shows the major role of the

physiological state of the bacteria in the population dynamics of a

lytic phage and its respective host. The model contributed to give

further insights about the role of the growth rate (as well the

parameters that mostly can influence it, as is the case of the

maximum rate of exponential growth - mmax - and the half-

saturation constant - Ks - and the state variable initial resource

concentration - Si) in the course and outcome of the interaction

between a lytic phages and its respective host.

Conclusions

In conclusion, an unstructured mathematical model has been

developed using delay differential equations to predict and explain

the basic behaviour of the phage-bacteria population dynamics of

lytic phages based on fundamental biological parameters which

rule these interactions. The model is directed to lytic phages only,

due to their significance in microbial ecology and in their

therapeutic use as antimicrobial agents. The results have shown

that the growth rate of the bacterial host plays a critical role in

defining the value of the biological parameters of the phage-

bacteria population dynamics, mainly the adsorption rate, and

consequently in predicting the extent at which phages will grow

and control the sensitive bacteria, i.e., the population dynamics of

phages and bacteria. Although only the phage adsorption was

modelled as a function of the growth rate, the variation of the

phage adsorption may also reflect changes in the burst size and

latency time that may be a consequence (or not) of that variation.

This dependence is able to explain why phages and sensitive

bacteria are able to coexist and may be the reason why phages are

so successful in controlling bacteria in in vitro studies and are not

able to achieve such a high performance in vivo (where substrate

can be limiting). As a consequence, it is essential to understand the

influence of environmental conditions (including, but not limited

to, substrate availability) on bacterial growth to predict the phage-

bacteria behaviour. This dependence will have implications on the

use of phages therapeutically and also on their production in

bioreactors.

Although the modification of simple models to allow accurate

predictions of the in vivo interactions of phage and bacteria is

complex, the construction of more accurate and precise models

will for sure improve our understanding on the role of phages in

natural systems and in therapy, diminishing the existing gap

between in vitro and in vivo modelling. Therefore the presented

model intends to be a step forward in this domain by introducing

variations in the parameters as a function of the bacterial growth

rate and also by treating the latent period as a mean value

following a normal distribution and not as a single value valid to all

the phage-bacteria present, an approximation never included in

previous models.

Models explaining the phage-bacteria population dynamics are

developed almost exclusively to understand the evolution of these

populations in ecological studies and therapy. Nevertheless, in a

time where the interest in phages as commercial products is

growing exponentially, these models can be of extremely

importance in monitoring, control and optimize phage production

at large scales.
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