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Abstract

Due to advances in the acquisition and analysis of medical imaging, it is currently possible to quantify the tumor phenotype.
The emerging field of Radiomics addresses this issue by converting medical images into minable data by extracting a large
number of quantitative imaging features. One of the main challenges of Radiomics is tumor segmentation. Where manual
delineation is time consuming and prone to inter-observer variability, it has been shown that semi-automated approaches
are fast and reduce inter-observer variability. In this study, a semiautomatic region growing volumetric segmentation
algorithm, implemented in the free and publicly available 3D-Slicer platform, was investigated in terms of its robustness for
quantitative imaging feature extraction. Fifty-six 3D-radiomic features, quantifying phenotypic differences based on tumor
intensity, shape and texture, were extracted from the computed tomography images of twenty lung cancer patients. These
radiomic features were derived from the 3D-tumor volumes defined by three independent observers twice using 3D-Slicer,
and compared to manual slice-by-slice delineations of five independent physicians in terms of intra-class correlation
coefficient (ICC) and feature range. Radiomic features extracted from 3D-Slicer segmentations had significantly higher
reproducibility (ICC = 0.8560.15, p = 0.0009) compared to the features extracted from the manual segmentations
(ICC = 0.7760.17). Furthermore, we found that features extracted from 3D-Slicer segmentations were more robust, as the
range was significantly smaller across observers (p = 3.819e-07), and overlapping with the feature ranges extracted from
manual contouring (boundary lower: p = 0.007, higher: p = 5.863e-06). Our results show that 3D-Slicer segmented tumor
volumes provide a better alternative to the manual delineation for feature quantification, as they yield more reproducible
imaging descriptors. Therefore, 3D-Slicer can be employed for quantitative image feature extraction and image data mining
research in large patient cohorts.
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Introduction

Lung cancer affects approximately 1.6 million people worldwide

every year [1]. The majority of lung cancer cases are non-small

cell lung cancer (NSCLC), which has substantially poor prognosis

and low survival rates [2].

Medical imaging is one of the major disciplines involved in

oncologic science and treatment. By assessing human tissues non-

invasively, imaging is extensively used for the detection, diagnosis,

staging, and management of lung cancer. Due to the emergence of

personalized medicine and targeted treatment, the requirement of

quantitative image analysis has risen along with the increasing

availability of medical data. Radiomics addresses this issue, and

refers to the high throughput extraction of a large number of

quantitative and minable imaging features, assuming that these

features convey prognostic and predictive information [3,4]. It

focuses on optimizing quantitative imaging feature extraction

through computational approaches and developing decision

support systems, to accurately estimate patient risk and improve

individualized treatment selection and monitoring.

Quantitative imaging features, extracted from medical images,

are being extensively examined in clinical research. Several studies

have shown the importance of imaging features for treatment

monitoring and outcome prediction in lung and other cancer types

[5–7]. For example, Ganeshan et al. assessed tumor heterogeneity

in terms of imaging features extracted from routine computed
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tomography (CT) imaging in NSCLC, and reported their

association with tumor stage, metabolism [8], hypoxia, angiogen-

esis [9] and patient survival [10]. Furthermore, several studies

have uncovered the underlying correlation between gene expres-

sion profiles and radiographic imaging phenotype [11,12]. This

kind of radiogenomic analysis has raised the utility of medical

image descriptors in clinical oncology by projecting them as

potential predictive biomarkers [13,14].

To ensure the reliability of quantitative imaging features,

accurate and robust tumor delineation is essential. Tumor

segmentation is one of the main challenges of Radiomics, as

manual delineation is prone to high inter-observer variability and

represents a time-consuming task [3,4]. This makes the require-

ment of (semi)automatic and efficient segmentation methods

evident. It has been shown that semiautomatic tumor delineation

methods are better alternatives to manual delineations [15,16].

Recently, we have shown that for NSCLC, semiautomatic

segmentation using 3D-Slicer (a free open source software

platform for biomedical imaging research) reduces inter-observer

variability and delineation uncertainty, compared to manual

segmentation [17]. During the evaluation of quantitative imaging

features as prognostic or predictive factors, it is essential to

determine their variability with respect to the tumor delineation

process. We hypothesize that quantitative imaging features

extracted from semi-automatically segmented tumors have lower

variability and are more robust compared to features extracted

from manual tumor delineations, a step forward towards

reproducible imaging based models.

In this study we analyzed the robustness of imaging features

derived from semi-automatically and manually segmented primary

NSCLC tumors in twenty patients. We extracted fifty-six CT 3D-

Radiomic features from 3D-Slicer segmentations made by three

independent observers, twice, and compared them to the features

extracted from manual delineations provided by five independent

physicians. As 3D-Slicer is publicly available and easily accessible

by download, it can have a large application in Radiomics to

extract robust quantitative image features, and be employed for

high-throughput data mining research of medical imaging in

clinical oncology.

Results

In order to assess the robustness of 3D-Slicer segmentation on

CT imaging for quantitative image feature extraction, we assessed

fifty-six 3D-radiomic features quantifying I) tumor intensity, II)

tumor shape, and III) tumor texture (Fig. 1 and Supplement S1).

From twenty-lung cancer patients we extracted the radiomic

features from 3D-volumes defined by three independent observers

twice using 3D-Slicer, and compared them to manual delineations

by five independent radiation oncologists.

Since two 3D-Slicer segmentations from each of the three

observers were considered for the analysis, the six 3D-Slicer

segmentations were divided in to two sets, each having three

segmentations (one from each observer). We calculated the intra-

class correlation coefficient (ICC) for the radiomic features

extracted from these two sets of three 3D-Slicer segmentations

and five manual delineations. We observed that the radiomic

features extracted from 3D-Slicer segmentations, had significantly

higher reproducibility (avg. of two 3D-Slicer segmentation sets

ICC = 0.8560.15) as compared to the features extracted from the

manual segmentations (ICC = 0.7760.17) (p = 0.0009, Fig. 2).

Overall 38 out of the 56 features (68%) showed higher ICC values

for 3D-Slicer segmentations as compared to the manual ones. ICC

values of all the assessed features are reported in Supplement S2.

To evaluate the robustness against multiple algorithmic initializa-

tions of the same observer, we computed ICC for the three intra-

observer 3D-Slicer segmentation sets, each having two 3D-Slicer

segmentations from the same observer. High ICC values (avg.

of three intra-observer 3D-Slicer segmentation sets ICC = 0.906

0.17) were observed for intra-observer segmentation groups. Fig. 3
depicts the ICC values corresponding to the inter-observer manual

delineations and intra- & inter-observer 3D-Slicer segmentations.

Intensity statistics and textural features showed significantly

higher reproducibility (two sided Wilcoxon test p = 0.0006,

p = 0.009, respectively) for 3D-Slicer based segmentations (avg.

inter-observer ICC = 0.8260.13, ICC = 0.8860.09, respectively)

as compared to manual delineations (ICC = 0.6360.16,

ICC = 0.8260.12, respectively). No statistically significant differ-

ence (two sided Wilcoxon test p = 0.31) was observed in ICC

values for shape based features between the manual

(ICC = 0.8060.22) and semiautomatic (avg. inter-observer

ICC = 0.7560.31) groups. Fourteen out of 15 statistical features

(93%), and 20 out of 33 textural features (67%), showed higher

reproducibility (higher ICC) for 3D-Slicer segmentations as

compared to manual delineations. For shape based descriptors

there was no clear winner between the two segmentation strategies

as 4 out of 8 (50%) features turned out having higher ICC for

3D-Slicer segmentations.

We next classified the 56 features into three groups according to

their ICC values, as (I) having a high (ICC$0.8), (II) medium

(0.8.ICC$0.5), or (III) low (ICC,0.5) reproducibility (Supple-

ment S2). For manual delineations, 52% of all the assessed features

had high, 45% had medium, and 3% had low reproducibility on

the other hand for 3D-Slicer based semiautomatic segmentations,

70% features had high, 25% had medium, and 5% had low

reproducibility. Therefore, reproducibility of the features was, in

general, higher for 3D-Slicer segmentations.

Furthermore, it becomes important to determine whether the

features extracted from semiautomatic segmentations capture the

same tumor image properties as with manual delineations.

Therefore, we compared the normalized range for all features

between these two segmentation groups (Fig. 4). We normalized

every feature value with respect to all 11 (5 manual+6 3D-Slicer)

segmentations, using Z-score normalization. We observed that the

features extracted from 3D-Slicer based segmentations, spread

over significantly smaller range across observers as compared to

those of the manual delineations (two sided Wilcoxon test

p = 3.819e-07). Moreover, the features derived from 3D-Slicer

segmentations overlapped in range with those of the manual

delineations, as the lower(higher) limit(s) being significantly

higher(lower) for the 3D-Slicer features (two sided Wilcoxon test

p = 0.007, p = 5.863e-06). This corroborates that the feature set,

extracted from both the semiautomatic and manual strategies,

correspond to similar tumor image characteristics, with the

features from 3D-Slicer having less variability across observers.

Discussion

Medical imaging is considered as one of the fundamental

building blocks of clinical oncology. It is routinely used for cancer

staging, treatment planning, and treatment response monitoring.

Furthermore, recent developments in computational imaging, data

mining and predictive analysis have broadened the scope of the

imaging in clinical oncology. For example, quantitative imaging

features extracted from CT images have been shown to predict

78% of the gene expression variability in hepatocellular carcinoma

[11]. In a similar study, image descriptors, extracted from contrast

enhanced MRI images of glioblastoma patients, predicted
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immunohistochemical identified protein expression patterns

[12,18]. Recent computational approaches for image quantifica-

tion, such as Radiomics, hypothesize that image descriptors

extracted from tumor regions are associated with the risk of

adverse events after treatment and could provide improved

prognostic information for patient management [3,4].

Accurate and efficient tumor segmentation is one the main

challenges for the extraction of robust quantitative imaging

features [4]. Manual segmentation suffers from high inter-observer

variability and is time consuming [19]. It has been reported that

semiautomatic segmentation strategies, as compared to manual

delineation can improve tumor segmentation by reducing

uncertainty as well as time [15,17,19]. These studies focused on

tumor volumes while comparing semiautomatic and manual

segmentation methods. However, tumor segmentation should also

be evaluated in terms of the reliability of radiomic features derived

Figure 1. Schematic diagram depicting the overview of the analysis. A: First, we performed five manual delineations and six 3D-Slicer
segmentations (three observers twice) on twenty lung tumors. B: Second, fifty-six radiomic features quantifying tumor intensity, texture and shape
were extracted from these segmentations. C: Third, the resulting feature matrices were compared for robustness of the feature values.
doi:10.1371/journal.pone.0102107.g001
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from the volume of interest (VOI), to be used subsequently in

prognostic or predictive models.

In this study, we investigated the robustness of quantitative

imaging features, extracted from 3D-Slicer tumor segmentations,

as compared to those, extracted from manual tumor delineations.

Overall 3D-Slicer based semiautomatic segmentation method

produced more reproducible radiomic features (p = 0.0009). We

also analyzed different feature groups for their reproducibility, and

observed that the difference in ICC, for intensity statistics and

textural features, was statistically significant (p = 0.0006,

p = 0.0094, respectively) between the two segmentation strategies.

The shape features, however did not significantly differ in

reproducibility between the two strategies (p = 0.31).

We believe the reason for this is that the semiautomatic

segmentation covers in more detail the tumor shape, outlining

subtle details on shape irregularity i.e. small spiculations in the

tumor surface. This may introduce shape irregularities that are not

robust between multiple segmentation attempts. Manual contours

are usually smoother, by manually contouring a tumor those subtle

shape details are smoothed out, so the effect of varying shape is

less. Surface area and volume are not be affected by this issue, and

Figure 2. Feature wise comparison of Intra-class correlation coefficients (ICC) between manual and 3D-Slicer segmentations. A: First
order statistics features. B: Shape based features. C: Textural features.
doi:10.1371/journal.pone.0102107.g002
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that is a reason why they have high ICC values, even higher than

manual delineations.

We also analyzed intra– and inter–observer reproducibility for

3D Slicer based semiautomatic segmentations. Three independent

observers segmented each tumor twice, with different algorithmic

initialization. Image descriptors demonstrated high intra-observer

reproducibility for 3D-Slicer segmentations, which indicates their

robustness over different seed point initializations. We also

observed high inter-observer reproducibility in image descriptors

for semiautomatic segmentations. Further reduction of inter-

observer variability could be achieved by improving the semiau-

tomatic segmentation strategy, i.e., by reducing observer interac-

tion. Fully automatic methods requiring minimum user interac-

tion, that may solve the complex problem of accurately defining

the tumor boundaries, particularly in the case of large tumors with

pleural attachment, are still a matter of investigation [20].

Although, current investigation shows that 3D-Slicer segmentation

provides a more robust alternative to manual contouring.

Furthermore, as 3D-Slicer is publicly available and easily

accessible by download, we expect its large utility in the field of

quantitative imaging.

Recently the reproducibility of quantitative image features has

been evaluated against repetitive test-retest CT image scans,

acquired within fifteen minutes time interval, and was used to

select the most informative radiomic features [4]. This work was

expanded by Hunter et al, to evaluate the robustness of CT image

features over three different imaging machines for identifying high

quality multi-machine robust radiomic features [21]. In both these

studies, since the NSCLC tumors were segmented by a single

observer (by using a semiautomatic segmentation), the inter-

observer reproducibility of the imaging features could not be

evaluated. Leijenaar et al, have analyzed the stability of FDG-PET

image features with respect to test-retest scans and inter-observer

delineations independently and reported a strong correlation

Figure 3. Box-plot comparing intra- and inter-observer reproducibility (ICC) of radiomic features. High inter- and intra- observer
reproducibility (ICC) was observed for 3D-Slicer segmentations compared to the inter-observer reproducibility (ICC) of manual delineations. From left
the first box refers to the manual inter-observer reproducibility (ICC), second and third boxes refer to the inter-observer reproducibility (ICC) of two
different 3D-Slicer segmentation runs. Remaining three boxes refer to the intra-observer reproducibility (ICC) of 3D-Slicer segmentations.
doi:10.1371/journal.pone.0102107.g003
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between them [22]. Although they quantified the PET-based

radiomic features for manual delineation stability, they did not

compare it with that of semiautomatic tumor segmentations. No

previous study, in our knowledge, has evaluated the reproducibility

of quantitative CT-based imaging features in NSCLC, with

respect to tumor segmentation methods.

One of the limitations of our study is not being able to associate

these image descriptors with patient outcome due to cohort size

and unavailability of clinical data. It would be interesting to

investigate the effects of manual and semiautomatic segmentations

on the image descriptor based prognostic performance. However,

in a recent study, we evaluated the importance of these features for

prognosis [23]. A larger number of imaging features showed

prognostic performance for both lung and head and neck cancer

patients. The scope of the present study was to evaluate feature

reproducibility using semiautomatic and manual segmentation

techniques. Based on the results presented here, we anticipate that

the prognostic performance of imaging markers is likely to increase

by using semiautomatic segmentation. For validating the clinical

utility further, future studies have to evaluate semiautomatic

segmentation vs. manual in terms of prognostic or predictive

performance of imaging features in large prospective cohorts.

Besides segmentation methods, other sources of variation should

also be considered while evaluating quantitative image features.

For instance, Galavis et al. investigated the variability in

quantitative image descriptors due to different image acquisition

modes and reconstruction parameters [24]. It has also been shown

that different ways of image discretization influence the variability

of textural features [25]. Although image acquisition, reconstruc-

tion and delineation protocols are typically standardized in the

clinical practice, there still exists significant variation between

imaging studies. Standardized protocols using semiautomatic

segmentation tools are also warranted. Therefore, imaging

features should be selected based on their robustness towards

these sources of variation as well as their prognostic performance.

In conclusion, 3D-Slicer based semiautomatic segmentation

significantly improves the robustness of radiomic feature quanti-

fication and thus could serve as a potential alternative to the time

consuming manual segmentation process. 3D-Slicer can have a

large application in radiomic research to extract robust quantita-

tive image features, and be employed for high-throughput data

mining research of medical imaging in clinical oncology.

Methods

CT-PET scans of NSCLC patients
The imaging data was acquired at MAASTRO Clinic in The

Netherlands, as reported previously by Baardwijk et al [26]. In

short, twenty patients with histologically verified non-small cell

lung cancer, stage IB-IIIB, were included in this study. All patients

received a diagnostic whole body positron emission tomography

(PET)-computed tomography (CT) scan (Biograph, SOMATOM

Sensation 16 with an ECAT ACCEL PET scanner; Siemens,

Erlangen, Germany). Patients were instructed to fast at least six

hours before administration of 18F-fluoro-2-deoxy-glucose (FDG)

(MDS Nordion, Liège, Belgium), followed by physiologic saline

(10 mL). After the injection of FDG, the patients were encouraged

to rest for a period of 45 minutes. Next, free-breathing PET and

CT images were acquired. The whole thorax spiral CT scan was

acquired with intravenous contrast. The PET images were

obtained in 5-min bed positions. The complete data set was then

reconstructed iteratively with a reconstruction increment of 5 mm.

Figure 4. Comparison of normalized feature range between manual and 3D-Slicer segmentation groups. Radiomic features derived
from 3D-Slicer segmentations had significantly smaller and overlapping range compared to that from manual delineations.
doi:10.1371/journal.pone.0102107.g004
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This study was approved by the local Medical Ethics Committee

(Maastricht University Medical Center) and according to the

Dutch law. As it was a retrospective study the requirement for

informed consent was waived. Imaging data are available on www.

cancerdata.org [27].

Semiautomatic segmentation in 3D slicer
For the semiautomatic segmentation, the GrowCut algorithm

implemented in 3D-Slicer was used (www.slicer.org). GrowCut is

an interactive region growing segmentation strategy. Given an

initial set of label points the algorithm automatically segments the

remaining image by using cellular automation. The algorithm uses

a competitive region growing approach and is considered to

provide good accuracy and speed for both the 2D and 3D image

segmentation. For N-class segmentation the algorithm needs N

initial sets of labeled pixels (one set corresponding to each class)

from the user. Based on these, the algorithm automatically

generates the region of interest (ROI), which is the convex hull of

the user-labeled pixels with an additional margin. Next, it

iteratively labels all the remaining pixels in the ROI using user-

given pixel labels. Pixel labeling is done using a weighted similarity

score, which is a function of the neighboring pixel weights. An

unlabeled pixel is labeled corresponding to the neighboring pixels

that have the highest weights. The algorithm converges when all

the pixels in the ROI have unchanged labels across several

iterations.

3D-Slicer provides a graphical user interface (GUI) as the

frontend and an efficient algorithm as the backend for the

GrowCut segmentation. After loading the patient data, the process

begins with the user initialization of the foreground and

background by manually marking the area inside and outside

the tumor region. Next, the Growcut automatic competing region-

growing algorithm gets activated, and segments the ROI into

foreground and background regions. Thereafter, background and

the surrounding isolated foreground pixels are removed following

visual inspection. If needed, the foreground tumor can be

manually edited in a finalization phase. This is a semi-automatic

segmentation algorithm because it involves user definition of

tumor and background as well as optional manual editing of the

final contour.

Manual Tumor Delineations
Five physicians manually delineated the gross tumor volume

(GTV) of the primary tumor based on fused PET-CT images using

standard delineation protocol [which includes fixed window-level

settings of both CT (lung W 1,700; L 2300, mediastinum W 600;

L 40) and PET scan (W 30,000; L 15,000) [2,26]. Radiation

oncologists were mutually blind of each other’s delineations. The

primary GTV was defined for each patient based on combined

CT and PET information along the axial plane. The physicians

were given transversal, coronal, sagittal and 3D views simulta-

neously. A treatment planning system (XiO; Computer Medical

System, Inc., St. Louis, MO) was used for performing delineations.

Image processing and feature extraction
All image data were loaded and analyzed in Matlab R2012b

(The Mathworks, Natick, MA) using an adapted version of CERR

(Computational Environment for Radiotherapy Research) [28],

extended with in-house developed Radiomics image analysis

software to extract imaging features.

From the five manual and the six 3D-Slicer segmentations, we

extracted fifty-six 3D-Radiomic features for the computed

tomography scans. See Fig. 1 for an illustration of the employed

methodology. A mathematical description of all features is shown

in Supplement S1. The radiomic features were divided in three

groups: (I) tumor intensity, (II) shape, and (III) texture. The tumor

intensity features consisted of features describing histogram of

voxel intensity values contained within the volume of interest

(VOI). Shape features were calculated, describing the three-

dimensional shape and size of the lesions. Textural features

describing patterns or spatial distribution of voxel intensities, were

calculated from gray level co-occurrence (GLCM) [29] and gray

level run-length (GLRLM) matrices respectively [30]. Determining

texture matrix representations requires the voxel intensity values

within the VOI to be discretized. This step not only reduces image

noise, but also normalizes intensities across all patients, allowing

for a direct comparison of all calculated textural features between

patients. Texture matrices were determined considering 26-

connected voxels (i.e. voxels were considered to be neighbors in

all 13 symmetric directions in three dimensions), and a distance of

one voxel between consecutive voxels was set for computing co-

occurrence and gray level run-length matrices. Features derived

from co-occurrence and gray level run-length matrices were

calculated by averaging their value over all 13 considered

symmetric directions in three dimensions. Overall, the extracted

imaging features comprised 15 features describing tumor intensity,

8 shape features and 33 textural features.

Statistical analysis
Intra-class correlation coefficient (ICC) was calculated in order

to quantify the feature reproducibility. The ICC is a statistical

measure, ranging between 0 and 1, indicating null and perfect

reproducibility, respectively. In order to determine the ICC for

inter-observer segmentations, variance estimates were obtained

from two-way mixed effect model of analysis of variance

(ANOVA). McGraw and Wong [31] defined ICC in case 3A to

measure the absolute agreement as,

ICC~
MSR{MSE

MSRz(k{1)MSEz
k

n
(MSC{MSE)

ICC values for intra-observer segmentations were obtained from

one-way analysis of variance (ANOVA). It is defined using case 1

of McGraw and Wong [31] as,

ICC~
MSR{MSW

MSRz(k{1)MSW

Where MSR = mean square for rows, MSW = mean square for

residual sources of variance, MSE = mean square error,

MSC = mean square for columns, k = number of observers

involved and n = number of subjects. R package IRR (inter rater

reliability) was used for ICC computation [32].

Wilcoxon rank-sum test was used to compare the reproducibility

of image features derived from manual and 3D-Slicer segmenta-

tions methods. Two methods were considered to be significantly

different when the p-value was lower than 0.05. All data are

expressed as mean 6 SD. All the analyses were performed in

Matlab (The MathWorks Inc., Natick, MA, USA) and R (R

Foundation for Statistical Computing, Vienna, Austria).

Supporting Information

Supplement S1 Mathematical definitions of imaging
features.

(PDF)
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Supplement S2 Results for the reproducibility analysis,
showing ICC for radiomic features, derived from
manual and 3D-Slicer segmentations, as well as feature
reproducibility class, defined as high (ICC$0.8), medi-
um (0.8.ICC$0.5), or low (ICC,0.5).
(PDF)
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Mature results of an individualized radiation dose prescription study based on
normal tissue constraints in stages I to III non–small-cell lung cancer. Journal of

Clinical Oncology 28: 1380–1386.
3. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, et al.

(2012) Radiomics: Extracting more information from medical images using

advanced feature analysis. European Journal of Cancer 48: 441–446.
4. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, et al. (2012) Radiomics: the

process and the challenges. Magnetic Resonance Imaging 30: 1234–1248.
5. Vaidya M, Creach KM, Frye J, Dehdashti F, Bradley JD, et al. (2012) Combined

PET/CT image characteristics for radiotherapy tumor response in lung cancer.

Radiotherapy and Oncology 102: 239–245.
6. El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, et al. (2009) Exploring

feature-based approaches in PET images for predicting cancer treatment
outcomes. Pattern Recognition 42: 1162–1171.

7. Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, et al. (2011) Intra-
tumor heterogeneity on baseline 18 F-FDG PET images characterized by

textural features predicts response to concomitant radio-chemotherapy in

esophageal cancer. Journal of Nuclear Medicine (JNM) 52: 369–378.
8. Ganeshan B, Abaleke S, Young RC, Chatwin CR, Miles KA (2010) Texture

analysis of non-small cell lung cancer on unenhanced computed tomography:
initial evidence for a relationship with tumour glucose metabolism and stage.

Cancer Imaging 10: 137–143.

9. Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, et al. (2013) Non–
small cell lung cancer: histopathologic correlates for texture parameters at CT.

Radiology 266: 326–336.
10. Ganeshan B, Panayiotou E, Burnand K, Dizdarevic S, Miles K (2012) Tumour

heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis:
a potential marker of survival. European Radiology 22: 796–802.

11. Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, et al. (2007) Decoding global

gene expression programs in liver cancer by noninvasive imaging. Nature
Biotechnology 25: 675–680.

12. Zinn PO, Majadan B, Sathyan P, Singh SK, Majumder S, et al. (2011)
Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in

glioblastoma multiforme. PLoS One 6: e25451.

13. Buckler AJ, Bresolin L, Dunnick NR, Sullivan DC (2011) Quantitative imaging
test approval and biomarker qualification: interrelated but distinct activities.

Radiology 259: 875–884.
14. Buckler AJ, Bresolin L, Dunnick NR, Sullivan DC (2011) A collaborative

enterprise for multi-stakeholder participation in the advancement of quantitative
imaging. Radiology 258: 906–914.

15. Rios Velazquez E, Aerts HJ, Gu Y, Goldgof DB, De Ruysscher D, et al. (2012) A

semiautomatic CT-based ensemble segmentation of lung tumors: Comparison
with oncologists’ delineations and with the surgical specimen. Radiotherapy and

Oncology 105: 167–173.
16. Heye T, Merkle EM, Reiner CS, Davenport MS, Horvath JJ, et al. (2013)

Reproducibility of Dynamic Contrast-enhanced MR Imaging. Part II.

Comparison of Intra-and Interobserver Variability with Manual Region of
Interest Placement versus Semiautomatic Lesion Segmentation and Histogram

Analysis. Radiology 266: 812–821.

17. Rios Velazquez E, Parmar C, Jermoumi M, Mak RH, van Baardwijk A, et al.
(2013) Volumetric CT-based segmentation of NSCLC using 3D-Slicer. Scientific

Reports 3: DOI: 10.1038/srep03529.
18. Zinn PO, Sathyan P, Mahajan B, Bruyere J, Hegi M, et al. (2012) A novel

volume-age-KPS (VAK) glioblastoma classification identifies a prognostic

cognate microRNA-gene signature. PLoS One 7: e41522.
19. Egger J, Kapur T, Fedorov A, Pieper S, Miller JV, et al. (2013) GBM Volumetry

using the 3D Slicer Medical Image Computing Platform. Scientific Reports 3.
20. Gu Y, Kumar V, Hall LO, Goldgof DB, Li C-Y, et al. (2012) Automated

delineation of lung tumors from CT images using a single click ensemble

segmentation approach. Pattern Recognition 46: 692–702.
21. Hunter LA, Krafft S, Stingo F, Choi H, Martel MK, et al. (2013) High quality

machine-robust image features: Identification in nonsmall cell lung cancer
computed tomography images. Medical Physics 40: DOI:10.1118/

1111.4829514.
22. Leijenaar RT, Carvalho S, Velazquez ER, Van Elmpt WJ, Parmar C, et al.

(2013) Stability of FDG-PET Radiomics features: An integrated analysis of test-

retest and inter-observer variability. Acta Oncologica 52: 1391–1397.
23. Aerts H, Rios Velazquez E, Leijenaar R, Parmar C, Grossmann P, et al. (2014)

Decoding the tumor phenotype by non-invasive imaging using a quantitative
radiomics approach. Nature Communications.

24. Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R (2010) Variability of

textural features in FDG PET images due to different acquisition modes and
reconstruction parameters. Acta Oncologica 49: 1012–1016.

25. Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, et al. (2012)
Reproducibility of tumor uptake heterogeneity characterization through textural

feature analysis in 18F-FDG PET. Journal of Nuclear Medicine 53: 693–700.
26. Van Baardwijk A, Bosmans G, Boersma L, Buijsen J, Wanders S, et al. (2007)

Pet-ct–based auto-contouring in non–small-cell lung cancer correlates with

pathology and reduces interobserver variability in the delineation of the primary
tumor and involved nodal volumes. International Journal of Radiation

Oncology* Biology* Physics 68: 771–778.
27. Cancerdata websit. Available: http://www.cancerdata.org. Accessed 2014 June

20.

28. Deasy JO, Blanco AI, Clark VH (2003) CERR: a computational environment
for radiotherapy research. Medical Physics 30: 979–985.

29. Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image
classification. IEEE Transactions on Systems, Man and Cybernetics SMC-3:

610–621.
30. Galloway MM (1975) Texture analysis using gray level run lengths. Computer

Graphics and Image Processing 4: 172–179.

31. McGraw KO, Wong S (1996) Forming inferences about some intraclass
correlation coefficients. Psychological methods 1: 30–46.

32. Gamer M, Lemon J, Fellows I, Singh P (2013) IRR: Various coefficients of
interrater reliability and agreement. R package version 0.84. CRAN: http://

www.r-project.org.

Radiomics Features and Volumetric Segmentation

PLOS ONE | www.plosone.org 8 July 2014 | Volume 9 | Issue 7 | e102107

http://www.cancerdata.org
http://www.r-project.org
http://www.r-project.org

