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Abstract

Systematic reviews that employ network meta-analysis are undertaken and published with increasing frequency while
related statistical methodology is evolving. Future statistical developments and evaluation of the existing methodologies
could be motivated by the characteristics of the networks of interventions published so far in order to tackle real rather than
theoretical problems. Based on the recently formed network meta-analysis literature we aim to provide an insight into the
characteristics of networks in healthcare research. We searched PubMed until end of 2012 for meta-analyses that used any
form of indirect comparison. We collected data from networks that compared at least four treatments regarding their
structural characteristics as well as characteristics of their analysis. We then conducted a descriptive analysis of the various
network characteristics. We included 186 networks of which 35 (19%) were star-shaped (treatments were compared to a
common comparator but not between themselves). The median number of studies per network was 21 and the median
number of treatments compared was 6. The majority (85%) of the non-star shaped networks included at least one multi-arm
study. Synthesis of data was primarily done via network meta-analysis fitted within a Bayesian framework (113 (61%)
networks). We were unable to identify the exact method used to perform indirect comparison in a sizeable number of
networks (18 (9%)). In 32% of the networks the investigators employed appropriate statistical methods to evaluate the
consistency assumption; this percentage is larger among recently published articles. Our descriptive analysis provides useful
information about the characteristics of networks of interventions published the last 16 years and the methods for their
analysis. Although the validity of network meta-analysis results highly depends on some basic assumptions, most authors
did not report and evaluate them adequately. Reviewers and editors need to be aware of these assumptions and insist on
their reporting and accuracy.
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Introduction

Indirect comparisons between interventions have been fre-

quently conducted in meta-analytic studies during the last few

years [1–3]. In 1997 Bucher et al. introduced the ‘adjusted indirect

comparison’ method and established it as a valid statistical tool to

infer about the relative effects of two treatments [4]. The method

implies that we can indirectly compare treatments B and C

(allowing for uncertainty) via a common comparator treatment A

using information from ‘A versus B’ and ‘A versus C’ randomized

control trials (RCTs). More advanced methods have been

developed since and they are used to synthesise direct and indirect

evidence over a network of studies that compare many competing

interventions. The increasing need to compare more than two

alternative treatments and classify them according to their relative

effectiveness or safety has underpinned the rapid development of

network meta-analysis (NMA).

NMA can be seen under different perspectives. Lumley fitted

NMA as a meta-regression model with dummy variables that

define the various comparisons [5]. Lu and Ades suggested a

hierarchical NMA model fitted in a Bayesian framework by

extending the model initially introduced by Higgins and White-

head [6,7]. Recently, White et al. showed that NMA is a special

case of multivariate meta-analysis [8]. The models can be fit in a

Bayesian or frequentist software and several approaches to

evaluate statistically the assumption of consistency (that is

agreement between direct and indirect evidence) have been

proposed [9,10].

The ease of application of the various methods to fit the NMA

or to evaluate consistency largely depends on the network

structure. For example, data from star-shaped networks (when

the treatments in the network have been compared directly to a

common reference but not between themselves) can be easily

synthesized using any standard meta-regression routine whereas in

the presence of multi-arm studies more appropriate (and often

more cumbersome) methods are needed. A simple z-test that

compares direct and indirect estimates might be enough to

evaluate statistically the assumption of consistency in a network
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with only a couple of closed loops. In contrast, a sophisticated

approach like the design-by-treatment interaction model is needed

for networks with many loops and multi-arm studies [10]. The

prevalence of such important network features (e.g. multi-arm

studies, closed loops) can direct methodologists into investing

resources in developing statistical models and software that are

relevant to the majority of the networks encountered in the

medical literature.

The NMA framework has been recently established and

consequently the properties of the various methods are still under

investigation. The first simulation and empirical studies that

evaluate or compare NMA-related methods have recently

appeared in the literature [11–17]. The simulation studies have

been largely designed according to the characteristics of pairwise

meta-analyses. However, this might not be appropriate and

simulation scenarios should ideally draw on the characteristics of

published networks.

In this paper we aim to provide an overview of the

characteristics of the published networks of interventions. We

anticipate that our results will be a useful resource to investigators

planning simulations or empirical studies but will also steer the

development of methods towards directions relevant to the

majority of the networks rather than special cases. Finally, we

aim to explore the uptake of new methodologies by meta-analysts

and to investigate whether the choice of a particular NMA

methodology is associated with the network’s structural charac-

teristics.

Methods

Search Strategy and Eligibility Criteria
We searched PubMed for research articles published until 12/

2012 using the following search code: (network OR mixed

treatment* OR multiple treatment* OR mixed comparison* OR

indirect comparison* OR umbrella OR simultaneous compari-

son*) AND (meta-analysis). All meta-analyses of RCTs including

at least four treatments and any form of indirect comparison were

eligible. When the method of indirect inference was not reported,

we included the network if the reported indirect estimates were

identical or similar to the Bucher method. We excluded meta-

analyses of diagnostic test accuracy studies as well as those

including observational studies. We also excluded all articles using

the naı̈ve approach to derive indirect inferences (e.g. pooling

patient outcomes across study arms) [18]. To ensure a substantial

mass of data per network we excluded studies in which the number

of trials was not greater than the number of competing treatments.

We excluded networks with three treatments since the character-

istics of such networks have been described in previous studies

[3,12].

Data Extraction
Four authors (HV, AC, AV, AN) independently extracted data.

For all networks published until 12/2012, we extracted the name

of first author, year of publication, journal of publication, the

primary outcome or (if not specified) the outcome reported first in

the analysis, the number of included studies, the synthesis method

(when reported), the control intervention (e.g. placebo, no

treatment or standard care), the type of outcome, and the number

and type of competing treatments. For all networks published up

to 3/2011 we also extracted outcome data for the primary

outcome or the outcome reported first in the article. We preferred

arm-level data, if available, to study-level data.

We categorised the networks that met the inclusion criteria into

two categories; star-shaped networks and full networks (networks

with one or more closed loops). We categorised each outcome as

beneficial or harmful. We categorised each network according to

the reported outcome type (objective, semi-objective or subjective)

and treatment comparison (pharmacological interventions versus

placebo, pharmacological versus pharmacological or non-phar-

macological versus any intervention) using previously suggested

definitions [19]. Categorisation of outcomes and comparisons is

important for making inferences about the amount of heteroge-

neity expected in the network [19]. If a network included at least

one non-pharmacological treatment we categorised it as pertaining

to ‘non-pharmacological versus any intervention’ type of compar-

ison. When a network included pharmacological treatments and

placebo or control we categorised it to pharmacological versus

placebo/control intervention comparison type, whereas when

placebo and an obvious control group were absent we categorised

it as pharmacological versus pharmacological comparison type.

Any disagreements during data extraction were resolved by

discussion.

We further categorised networks according to the type of

outcome measure into four categories; dichotomous, continuous,

time-to-event or rate data. We also recorded the effect size that

each network has used in the analysis (for dichotomous data odds

ratio (OR), risk ratio (RR), risk difference (RD), for continuous

data mean difference (MD), standardized mean difference (SMD)

and ratio of means (RoM), and for time-to-event or rates hazard

ratio (HR) and rate ratio respectively). Finally we extracted data

about the method used to derive indirect inference (Bucher

method, meta-regression, Bayesian hierarchical model or multi-

variate meta-analysis) and the method used to evaluate statistically

the presence of inconsistency (such as node-splitting, Lumley

model etc.). A description of the methods and their references can

be found in Table 1 and Table 2.

Analyses
We derived descriptive statistics for publication characteristics

(year of publication, journal) and size-related characteristics such

as number of studies and number of treatments per network. We

estimated the prevalence of each type of outcome and treatment

comparison and the frequency of each statistical method employed

for NMA. We describe more in detail networks published up to 3/

2011 and we provide network-specific, loop-specific and compar-

ison-specific characteristics as appropriate (such as sample size,

number of loops etc.).

Descriptive statistics were calculated separately for star and full

networks and jointly when the two categories could be merged.

We observed how often different methodologies have been

employed over years and we describe the relationship between

analysis method and characteristics related to the network size. We

present continuous characteristics with the median and inter-

quartile range (IQR) and we compare them in groups using the

Mann-Whitney test.

Results

Identified Networks
After screening 1394 abstracts, we identified 380 potentially

eligible networks of interventions. The full text of these publica-

tions was assessed and we ended up with 186 networks that met

our inclusion criteria. Out of the total 186 networks, 35 (19%)

were star networks and 151 (81%) were full networks. We

identified 88 networks published before 3/2011 for which we

extracted study outcome data; 20 were star networks and 68 full

networks. The network selection process is shown in the flowchart

Characteristics of 186 Networks of Interventions
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of Figure 1. The full list of the 186 networks and their

characteristics can be found in http://www.mtm.uoi.gr/.

Publication Characteristics
The number of networks published by year is shown in Figure 2.

There is a steep increase in the publication of networks with time,

which is more pronounced for full networks rather than for star

networks.

Most networks were published in British Medical Journal (BMJ)

(12 (6%)) and in BioMed Central (BMC) (12 (6%)). Figure 3 shows

the number of published networks in the seven most prevalent

journals.

Size and Density Characteristics (Table 3)
Table 3 summarizes the structural characteristics of the

networks. In the sample of 186 networks the median number of

studies per network was 21 with IQR 13 to 40. The median

number of treatments included in a network was 6 (IQR 5 to 9).

Full networks appear to contain more studies (median 21) and

treatments (median 7) than star networks (median number of

studies 19 and median number of treatments 5) (P = 0.096 for the

comparison of studies and P = 0.017 for the comparison of

treatments). The subset of 88 networks published until 3/2011 had

similar characteristics; a median number of studies 22 (IQR 13 to

38) and a median number of treatments 6 (IQR 4 to 9). Full

networks published until 3/2011 had a median number of studies

Table 1. Description of methods to derive indirect and mixed estimates.

Network Meta-Analysis Methods

Bucher method Bucher’s method for indirect comparison (also called the adjusted indirect comparison method) is a statistical method
to derive an indirect estimate for the relative effectiveness of two treatments via a common comparator. If studies
comparing directly the two treatments are also available, their summary effect can be combined with the indirect
estimate to obtain the mixed summary effect estimate [4].

Bayesian hierarchical model This model relates the observed relative treatment effects with their ‘true’ underlying treatment effects in studies that
are assumed to be fixed or random around the comparison-specific summary mean effect. Then, the consistency
equations link the mean effects. The hierarchical model was first described in [7] for three treatments and extended in
[6].

Meta-regression A meta-regression model with dummy variables that denote the observed direct comparisons that relate to the basic
parameters (the smallest set of comparisons that can generate all possible comparisons via the consistency
equations). In such a meta-regression model without an intercept the estimated regression coefficients are the
network meta-analysis summary treatment effects [3].

Multivariate meta-analysis model This model treats the different treatment comparisons observed in studies as different outcomes. Using a data
augmentation technique to ‘impute’ a common reference arm in all studies, a standard multivariate meta-analysis
model can be employed [8]. We included this method for the sake of completeness although we do not anticipate
any network to have used it as it was first introduced in 2012.

doi:10.1371/journal.pone.0086754.t001

Table 2. Description of statistical methods used to evaluate the consistency assumption.

Local tests (identify comparisons or loops associated with inconsistency)

Loop-specific approach This method estimates inconsistency as the difference between direct and indirect evidence in each closed loop of the network.
The z-test is repeatedly used to assess the assumption of consistency. It is often called the Bucher method [4].

Node-splitting and back-calculation The node-splitting approach compares the direct and indirect evidence, the latter estimated from the entire network after
excluding the comparison of interest.
The back-calculation method is based on the same idea but the indirect evidence is calculated as a weighted difference between
the NMA and the direct estimate [9].

Caldwell test A ‘composite’ -test to evaluate inconsistency between the direct and the various indirect estimates derived from all independent
loops in the network for each specific comparison [20].

Global tests (infer about consistency in the entire network)

Comparison of model fit and
parsimony

A global test using the deviance information criterion (DIC) to infer about the presence of inconsistency in the entire network.
Both the standard network meta-analysis model and the inconsistency model (a model equivalent to a series of unrelated
pairwise meta-analyses with common heterogeneity) are fit. Then, if the DIC for the inconsistency model is lower by more than
three units, the consistency assumption is challenged [21].

Lumley model A method to estimate inconsistency using a linear model with additional comparison-specific random terms, the common
variance of which is a measure of the statistical inconsistency for the entire network [5].

Lu and Ades model A NMA model that includes an additional term in each loop. These terms (often called inconsistency factors) are usually assumed
exchangeable and their common variance is the inconsistency variance in analogy to the heterogeneity variance [22].

Design-by-treatment model A regression model where additional terms (random or fixed) are used to denote disagreement between study designs, where
the latter is defined as the set of treatments compared in a study. This approach is the only one insensitive to parameterization of
the multi-arm studies [10]. We included this method in the list for the sake of completeness although we do not anticipate any
network to have used it as it was first introduced in 2012.

doi:10.1371/journal.pone.0086754.t002

Characteristics of 186 Networks of Interventions

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e86754



22 and median number of treatments 6 with the respective

medians in star networks being 19 and 5 (P = 0.262 for the

comparison of studies and P = 0.169 for the comparison of

treatments).

Out of the 88 networks published until 3/2011, for 6 full

networks that reported study-level outcome data (that is effect sizes

and variances) we could not estimate the sample size in the

network and for 8 (7 full networks and 1 star network) we could

not estimate the sample size per comparison. The overall median

sample size per network (estimated in the remaining 82 networks)

was 7729 with IQR 3043 to 24987. The median sample size per

full network (8491 patients) was considerably larger than median

sample size per star network (2995 patients, P = 0.025). However,

the median sample size per comparison in full networks was 576

(IQR 185 to 1785), whereas in star networks it was slightly larger

(median 600, IQR 366 to 1217, P = 0.181). Star networks tend to

have also a larger number of studies per comparison (median 3)

than full networks (median 2, P,0.01). Thus, full networks are

Figure 1. Flow chart of identified networks.
doi:10.1371/journal.pone.0086754.g001

Figure 2. Number of meta-analysis articles with full and star networks published between 1997–2012.
doi:10.1371/journal.pone.0086754.g002
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larger than star networks in terms of total number of studies,

treatments and sample size but star networks are more ‘dense’

having larger number of studies and patients per comparison. Star

networks could be described as more compact networks; examine

fewer comparisons than full networks but these comparisons

contain more data.

Characteristics of the Primary Outcome (Table 4)
The primary outcome was an objective outcome in 36 (19%)

out of 186 networks, 72 (39%) networks had a semi-objective

primary outcome and 78 (42%) a subjective outcome. In almost

half of the 186 networks (91, (49%)) the primary outcome was

beneficial. The majority (111 (60%) networks) had a dichotomous

primary outcome and 53 networks (28%) had a continuous

outcome. Less often networks had time-to-event (17 (9%)

networks) or rate (5 (3%) networks) primary outcomes. Out of

111 networks with a dichotomous outcome 66 (59%) employed

OR, 44 (40%) RR, none used RD and one (1%) used all three

effect sizes (OR, RR and RD). Out of 53 networks that used a

continuous outcome 43 (81%) reported results on MD scale, 9

Figure 3. Number of meta-analysis articles with full and star networks published by journal. BMC: BioMed Central BMJ: British Medical
Journal CDSR: Cochrane Database of Systematic Reviews CMRO: Current Medical Research & Opinion HTA: Health Technology Assessment JCE:
Journal of Clinical Epidemiology.
doi:10.1371/journal.pone.0086754.g003

Table 3. Structural characteristics of full and star networks.

Size and density characteristics All networks Full networks Star networks

Comparison of full and star
networks (p-value of Mann-
Whitney test)

Median number of studies per
network (IQR)

21 (13–40) [186] 21 (13–45) [151] 19 (11–29) [35] 0.096

Median number of treatments
per network (IQR)

6 (5–9) [186] 7 (5–9) [151] 5 (4–7) [35] 0.017

Median sample size per
network (IQR)

7729 (3043–24987) [82] 8491 (4587–27659) [62] 2995 (1829–12499) [20] 0.025

Median sample size per
comparison (IQR)

577 (208–1707) [80] 576 (185–1785) [61] 600 (366–1217) [19] 0.181

Median number of studies per
comparison (IQR)

2 (1–4) [88] 2 (1–4) [68] 3 (2–6) [20] ,0.001

Median number of loops per
network (IQR)

– 4 (1–70) [68] – –

Median sample size per loop (IQR) – 2159 (989–8379) [61] – –

Median number of studies per loop – 8 (6–15) [68] – –

Some characteristics could be estimated for all networks (186, published until 12/2012) whereas some other characteristics require outcome data and were estimated
from 88 networks published until 3/2011 or their subsets. The exact number of networks evaluated in each case is given in square brackets. In parenthesis we present
the interquartile range.
doi:10.1371/journal.pone.0086754.t003
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(17%) used the SMD and one used RoM. All 17 networks with

time-to-event data employed HR and the 5 networks with rate

data employed rate ratio. Star networks had a dichotomous

outcome more often than full networks (77% vs 56%). Out of 88

networks published by 3/2011, one in four (20 networks) reported

study-level data (relative treatment effects and variances) whereas

three quarters (68 networks) reported arm-level data.

Table 4 summarizes the outcome characteristics of the 186 full

and star networks.

Treatments Compared in Networks (Table 5)
The 186 networks evaluated a wide range of interventions

(Table 5). The most common comparison type was pharmacolog-

ical intervention versus placebo or control (129 networks, 69%). In

36 (19%) networks the comparison type was non-pharmacological

versus any intervention and 21 (12%) networks compared only

pharmacological interventions. Six networks (3%) included both

placebo and control, 117 networks included only placebo (66%)

and 26 networks included control or no treatment but not placebo

(15%).

Network Meta-Analysis Methods (Table 6)
In our sample of 186 networks, the most frequent method

employed to synthesise the data was the Bayesian hierarchical

model reported in 113 (61%) networks (Table 6). Meta-regression

(28 (15%) networks) and Bucher method of indirect comparison

(29 (15%) networks) were also widely used in the published

networks.

Methods for indirect comparison varied between full and star-

shaped networks. Most full networks used Bayesian hierarchical

models (100 (65%)) and one in ten networks (18 (11%)) used the

Bucher method for indirect comparisons. Only 13 (37%) star

networks employed a Bayesian hierarchical model and 11 (31%)

used the Bucher method. The proportion of networks performing

meta-regression was greater in full than star networks (17% vs

6%). Finally, over one in four star networks (9 (26%)) did not

report which synthesis method they used whereas the respective

proportion in full networks was only 6% (9 networks).

The methods used to synthesise evidence seem to have changed

over time. Figure 4 shows the number of networks published

between 1997 and 2012 according to the synthesis method. In the

networks published before 2008 (39 networks) Bucher was the

most prevalent method (12 (31%) networks), followed by meta-

regression (10 (26%) networks) and Bayesian hierarchical model (9

(23%) networks). Over 71% of the 147 networks published after

2009 used a Bayesian hierarchical model (104 networks) while the

Bucher method and meta-regression were less frequently em-

ployed. What is alarming, however, is that a sizeable number of

articles did not specify the analysis method and this number has

not changed much during the last six years (11% of networks

published in 2007, 5% in 2011 and 8% in 2012).

Networks analyzed with a Bayesian hierarchical model had a

median number of studies 21 (IQR 14 to 45) and a median

number of treatments 7 (IQR 5 to 9). The size of networks that

used the Bucher method was smaller having a median number of

studies 19 (IQR 11 to 38, P = 0.569) and median number of

treatments 5 (IQR 4 to 8, P = 0.014). Networks using meta-

regression had a median number of studies 20 (IQR 13 to 31,

P = 0.423 compared with the Bayesian hierarchical model) and

median number of treatments 7 (IQR 5 to 8, P = 0.174 compared

with the Bayesian hierarchical model). The size of the network did

not differ between networks that employed meta-regression and

those that employed the Bucher method neither in terms of

number of studies (P = 0.848) nor in terms of number of treatments

(P = 0.259). Most recently published networks (after 2009) used a

Bayesian hierarchical model whereas the most prevalent method

before 2009 was the Bucher method. The popularity of the

hierarchical model in the last years cannot be fully attributed to

the fact that recently published networks are larger and dense. The

median number of studies and the median number of treatments

do not seem to differ much between networks published before

2009 (median number of studies 19 (IQR 14 to 38) and median

number of treatments 6 (IQR 4 to 8)) and after 2009 (median

number of studies 21 (IQR 13 to 40) and median number of

treatments 7 (IQR 5 to 9)) (P = 0.872 for the comparison of studies,

P = 0.150 for the comparison of treatments).

Characteristics of Closed Loops of Evidence and
Evaluation of Inconsistency (Table 7)

To examine the prevalence of closed loops in networks, we

consider the 68 full networks for which we had outcome data

(Table 7). We found that the majority included at least one three-

arm trial (56 (82%) networks) and 18 networks (26%) included at

least one four-arm trial. The median number of two-arm trials per

network was 19 (IQR 11 to 31) and the median number of three-

arm trials per network was 2 (IQR 1 to 4). The number of loops

per network had IQR 2 to 9 with median 4 and the total number

of loops from the 68 networks was 426.

Out of the 151 identified full networks, the assumption of

consistency was evaluated by using the loop-specific approach in

22 (14%) networks. Ten (7%) networks used the Lumley model to

evaluate inconsistency, whereas 9 (5%) performed the node-

splitting method. The Lu and Ades model was employed to

evaluate consistency in one network; in 2 networks (2%) the

authors performed comparison of model fit and parsimony. Four

(3%) networks used combinations of appropriate statistical

Table 4. Characteristics of the primary outcomes and their
measures in full and star networks published until 12/2012.

Full networks
151

Star networks
35

Total
186

Type of outcome

Objective 29 (19%) 7 (20%) 36 (19%)

Semi-objective 66 (44%) 6 (17%) 72 (39%)

Subjective 56 (37%) 22 (63%) 78 (42%)

Outcome measured as

Dichotomous 84 (56%) 27 (77%) 111 (60%)

Continuous 47 (31%) 6 (17%) 53 (28%)

Time-to-event 15 (10%) 2 (6%) 17 (9%)

Rate 5 (3%) – 5 (3%)

Effect size

OR 57 (37%) 9 (26%) 66 (35%)

RR 26 (17%) 18 (51%) 44 (23%)

OR RR RD 1 (1%) – 1 (1%)

HR 15 (10%) 2 (6%) 17 (9%)

Rate ratio 5 (3%) – 5 (3%)

MD 39 (26%) 4 (11%) 43 (23%)

SMD 7 (5%) 2 (6%) 9 (5%)

Ratio of Means 1 (1%) – 1 (1%)

The table shows the number of networks and the respective percentage in
parenthesis.
doi:10.1371/journal.pone.0086754.t004
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methods to evaluate inconsistency such as the loop-specific

approach and comparison of model fit and parsimony (2

networks), Lu and Ades model and comparison of model fit and

parsimony (1 network). In 36 networks (24%) the authors used

inappropriate methods to evaluate inconsistency. A popular but

inappropriate method was the comparison of direct and estimates

derived from NMA which was performed in 21 (14%) networks;

this approach is inappropriate because the network estimate

comprises the direct estimate and hence they are not expected to

differ much. In 14 (9%) networks the authors compared informally

(without using an appropriate statistical tool) their results with

results from previous meta-analyses and in one network the

authors compared informally direct to indirect estimates (see

Table 7).

Authors’ awareness about the importance of evaluating the

consistency assumption has increased during the last few years and

they employ statistical methods more frequently than before

(Figure 5). Fewer than half (42%) of the networks published in

2011 did not report or did not evaluate the assumption of

consistency whereas the respective proportion in networks

published in 2012 was 26%.

Discussion

NMA is increasingly used in medical literature and provides a

useful contribution to evidence based decision making. The ability

to compare treatments that have never been compared directly,

the increase in power and precision and the potential of NMA to

provide a ranking of the available treatments are the main

advantages of the methodology.

Previous studies have explored the characteristics of networks of

interventions using indirect comparisons to evaluate different

aspects of the NMA methodology [11,14,23]. The recently

published article by Bafeta et al. employed slightly different

eligibility criteria to end up with 121 networks published until

7/2012 [24]. The results of their study are comparable with ours

for those characteristics evaluated in both papers (e.g. median

number of treatments and studies). Our study was however more

focused on the statistical aspects of the methodology whereas

Bafeta et al. yielded more information about the general review

methodology employed; hence the two studies can be thought of as

complementary. For instance Bafeta et al. reported that half of the

networks (44%) did not mention the consistency assumption and

we found that only one in three (32%) networks undertook

appropriate statistical methods to evaluate inconsistency. In our

study we placed more importance on structural characteristics that

are associated with important methodological aspects (such as the

presence of multi-arm studies and closed loops) and we extracted

outcome data to provide more information about sample size. On

the other hand, Bafeta et al. investigated and found that the

reporting of the search strategy, the assessment of risk of bias and

the evaluation of publication bias was suboptimal in many network

articles.

Our results show that there is substantial variation in the

statistical methodological approaches used to synthesize evidence

across networks. Until recently, it was easier to account for

correlations induced by multi-arm studies and to estimate the

probabilities for each treatment of being the best within a Bayesian

framework. The flexibility of this specific approach possibly

explains why most investigators choose a Bayesian hierarchical

model to synthesize evidence (61%). This finding is in line with

other studies that conclude that Bayesian hierarchical models have

been increasingly used [11,25,26]. An inconsistent network of

interventions is unlikely to form a reliable basis for choosing the

best available intervention for a specific condition. Despite that,

many NMA publications did not employ or did not report the use

of any method to evaluate inconsistency (44%) or they used

informal and inappropriate methods to do so (24%).

Evaluation of inconsistency and model fitting become more

complex in the presence of multi-arm studies as within-study they

are consistent by definition [27]. We found that full networks

include a median number of 2 multi-arm studies and that the

Table 5. Characteristics of the treatment comparisons in full and star networks published until 12/2012.

Full networks 151 Star networks 35 Total 186

Intervention comparison type

Pharmacological vs pharmacological 16 (11%) 5 (14%) 21 (12%)

Pharmacological vs placebo/control 99 (65%) 30 (86%) 129 (69%)

Non- pharmacological vs any 36 (24%) – 36 (19%)

The table shows the number of networks and the respective percentage in parenthesis.
doi:10.1371/journal.pone.0086754.t005

Table 6. Methods employed to synthesise data in full and star networks published until 12/2012.

Network Meta-Analysis method Full networks 151 Star networks 35 Total 186

Bucher method 17 (11%) 11 (31%) 28 (15%)

Bayesian hierarchical model 98 (65%) 13 (37%) 111 (59%)

Meta-regression 25 (16%) 2 (6%) 27 (15%)

Bucher method and Bayesian hierarchical model 1 (1%) – 1 (1%)

Meta-regression and Bayesian hierarchical model 1 (1%) – 1 (1%)

Not reported 9 (6%) 9 (26%) 18 (9%)

For a description of the network meta-analysis methods see Table 1. The table shows the number of networks and the respective percentage in parenthesis.
doi:10.1371/journal.pone.0086754.t006
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presence of multi-arm studies is likely. Consequently, investigators

and trainers should use methods that are more complex but

account for the implications of multi-arm studies in the data, such

as the design-by-treatment model [10].

One limitation of our study is that we may not have included all

published meta-analyses that performed indirect comparisons

because some may not have been indexed using the search code

specified. Furthermore, networks of interventions could be

identified only if they were indexed in PubMed. However, we

think that our database is a representative sample of published

networks of interventions in medical literature. This is also

supported by the fact that our results are comparable to those

reported by Lee who conducted a review of network meta-analyses

up to 6/2012, searched more databases as well as conference

abstracts [28]. Our reliance on the information reported by

authors about the methodologies employed might also have

impact on our study’s conclusions. Authors may have used

appropriate statistical methods to synthesize evidence and evaluate

inconsistency but have reported them inadequately. It has been

shown that reporting of NMA is suboptimal [11,23,24] and

guidelines based on consensus are needed. Despite these limita-

tions, to our knowledge this is the largest study exploring and

describing in detail the structural and analytical characteristics of

networks of interventions.

Figure 4. Number of published networks by year (1997–2012) and the Network Meta-Analysis method. Networks that used more than
one method are included in all relevant categories.
doi:10.1371/journal.pone.0086754.g004

Table 7. Statistical methods used to evaluate consistency in 151 full networks published until 12/2012.

Method employed Full networks 151

Appropriate statistical methods

Loop-specific approach 22 (14%)

Lumley model 10 (7%)

Lu and Ades model 1 (1%)

Node-splitting 9 (5%)

Comparison of model fit and parsimony 2 (2%)

Combination of appropriate statistical methods 4 (3%)

Inappropriate methods

Comparison of network estimates with the direct estimates 21 (14%)

Informal comparison of the results with previously conducted meta-analyses 14 (9%)

Informal comparison of indirect estimates with the direct estimates 1 (1%)

None reported

None reported 67 (44%)

For a description of the methods to evaluate inconsistency see Table 2. The table shows the number of networks and the respective percentage in parenthesis.
doi:10.1371/journal.pone.0086754.t007
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Conclusions
Our descriptive analysis offers an insight into the characteristics

of networks of interventions over the last 16 years. The typical

network included in our database is a network with a dichotomous

semi-objective outcome and compares pharmacological interven-

tions vs placebo. It includes 6 treatments examined in 21 studies. It

is likely to be a full network with 3 closed loops of evidence, 2

three-arm and none four-arm trial. A Bayesian hierarchical model

is the most popular method to synthesise the data. However, the

use of appropriate methods to evaluate the assumptions underlying

NMA is still limited, moderating the strength of studies’

conclusions. Awareness of assumptions by authors, reviewers and

editors is crucial to improve reporting of relevant methodological

aspects.
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