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Abstract

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is widely used to detect genome-wide
interactions between a protein of interest and DNA in vivo. Loci showing strong enrichment over adjacent background
regions are typically considered to be sites of binding. Insufficient attention has been given to systematic artifacts
inherent to the ChIP-seq procedure that might generate a misleading picture of protein binding to certain loci. We
show here that unrelated transcription factors appear to consistently bind to the gene bodies of highly transcribed
genes in yeast. Strikingly, several types of negative control experiments, including a protein that is not expected to
bind chromatin, also showed similar patterns of strong binding within gene bodies. These false positive signals were
evident across sequencing platforms and immunoprecipitation protocols, as well as in previously published datasets
from other labs. We show that these false positive signals derive from high rates of transcription, and are inherent to
the ChIP procedure, although they are exacerbated by sequencing library construction procedures. This expression
bias is strong enough that a known transcriptional repressor like Tup1 can erroneously appear to be an activator.
Another type of background bias stems from the inherent nucleosomal structure of chromatin, and can potentially
make it seem like certain factors bind nucleosomes even when they don't. Our analysis suggests that a mock ChIP
sample offers a better normalization control for the expression bias, whereas the ChIP input is more appropriate for
the nucleosomal periodicity bias. While these controls alleviate the effect of the biases to some extent, they are
unable to eliminate it completely. Caution is therefore warranted regarding the interpretation of data that seemingly
show the association of various transcription and chromatin factors with highly transcribed genes in yeast.
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Introduction

The genome-wide mapping of protein localization on
chromatin at high resolution is crucial for understanding the
molecular mechanisms of transcription in vivo. Chromatin
immunoprecipitation (ChIP) followed by deep sequencing
(ChIP-seq) is currently the preferred and widespread method to
accomplish this [1–3]. Because of the power of the ChIP assay,
the Encyclopedia of DNA Elements (ENCODE) and Roadmap
Epigenome Projects have adopted ChIP-seq to map the
genomic locations of many transcription factors, histone marks,
and DNA modifications in both cell lines and model organisms
[4–7]. Because the localization of chromatin-associated factors
is dependent on cell type and environmental conditions [8,9],
ChIP-seq is being increasingly used to explore hundreds of
DNA-binding proteins in different types of cells and under
different conditions.

Yeast is the first and only eukaryote for which nearly every
transcription factor has been ChIP-ed and for which the

resulting immunoprecipitated DNA has been mapped on a
genome-wide scale using microarrays [10,11]. With the advent
of deep sequencing technology, ChIP-seq also has been
broadly applied to yeast genomics [12–14]. Yeast is ideal for
comprehensive studies on protein-DNA interactions due to its
relatively small genome, the resulting low cost of experiments,
and the availability of a tandem affinity purification (TAP)-
tagged collection for 80% of its proteins [15]. This latter benefit
is of particular importance, as TAP-tagged strains do not suffer
from the same non-uniform quality as antibodies, whose
variability can affect the efficiency of ChIP.

Several algorithms have been developed to computationally
identify peaks of enrichment in ChIP-seq data, indicative of
protein binding locations, and to distinguish such peaks from
background reads [1,16]. Experimentally and computationally,
the background signal is typically defined using either a parallel
input sample which has not been subject to the
immunoprecipitation step, after reversal of crosslinks, or a
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mock ChIP sample (where a non-specific IgG antibody, or pre-
immune serum, or an untagged strain is used).

In the course of carrying out ChIP-seq experiments for
various yeast transcription-related proteins, we unexpectedly
found strong enrichment signals suggestive of proteins binding
to genomic loci where genes were highly transcribed,
regardless of which protein was being analyzed. The functions
of the genes exhibiting this universally high protein occupancy
however did not always align with the established roles of the
proteins apparently binding to them. Moreover, the enrichment
for proteins binding to highly-transcribed genes was observed
even in controls like mock ChIP-seq data, which points to an
overall bias that could contaminate any ChIP-seq data with
false positives. A secondary bias of nucleosomal periodicity
was also commonly observed across ChIP-seq datasets and
contributed additional false positives in which proteins falsely
appeared to interact with nucleosomes. We present our
analysis of this phenomenon, and suggest ways in which these
artifacts can be ameliorated by the proper choice of control
experiments. Our data suggest however that the enrichment
bias at highly transcribed genes could be an intrinsic
characteristic of ChIP-seq experiments, and caution is
therefore warranted in interpreting the results of ongoing and
published results purporting to show the association of many
proteins with the transcribed regions of genes.

Materials and Methods

Yeast strains and culture conditions
The yeast strain used in this study as a WT was BY4741

(MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0). For ChIP, the TAP-
tagged yeast strains including SWI6-TAP, TUP1-TAP, RSC2-
TAP and MNN10-TAP strains were obtained from the yeast
TAP-fusion collection (Open Biosystems) [15]. We generated
the HSF1-TAP strain from BY4741 by integrating the TAP-
HIS3MX6 cassette into the 3'-end of HSF1 through
homologous recombination, enabling the expression of C-
terminal TAP-tagged Hsf1. Using the same scheme, we also
generated a SWI6-13XMYC strain from BY4741. For gene
expression profiling, we used the TUP1 deletion strain from the
yeast deletion collection (Open Biosystems) [17]. The identity
of all engineered strains was verified by genomic PCR. Normal
growth conditions were 30°C in YPD (Yeast extract, peptone,
dextrose) media with shaking at 250 rpm. Yeast cells were
grown to mid-log phase (O.D 600 nm of 0.6 to 0.8), fixed with
formaldehyde and collected for ChIP; or, were collected without
fixation for gene expression profiling. For heat shock, mid-log
phase yeast cells were collected and re-suspended in pre-
warmed 39°C YPD media, then incubated for 15 min at 39°C.
For rapamycin treatment, either DMSO or rapamycin was
added to mid-log phase yeast cells and incubated for 30 min at
30°C. Since DMSO is a solvent for rapamycin, control and
rapamycin-added cells were treated with DMSO and rapamycin
to be a final concentration of 0.1% and 100 nM, respectively.

Chromatin immunoprecipitation
Proteins were crosslinked to DNA by adding formaldehyde to

the culture (final concentration of 1%). Crosslinking was done

for 15 min and quenched with glycine (final concentration of
0.125 M) for 5 min. Yeast cells were re-suspended with lysis
buffer and disrupted by agitation with glass beads using a Bead
beater (BioSpec Products). The cell lysates were sheared
using a Branson Sonifier (Emerson Industrial Automation), and
immunoprecipitated using the following beads or antibody: IgG
Sepharose 6 Fast Flow (GE Healthcare Life Sciences) to pull-
down all TAP-tagged proteins used in this study, anti-Myc
conjugated agarose bead (Sigma Aldrich, cat.# E6654) to pull-
down Swi6 in the SWI6-13XMyc strains, and RNAPII Ser5P
antibody (Abcam, cat.# ab5131) to pull-down active RNAPII.
Mock ChIP DNA was prepared by immunoprecipitation with
IgG Sepharose in the wild type strain with no TAP-tagged
protein expression. Input DNA was prepared in parallel with the
SWI6-TAP ChIP sample but leaving out the
immunoprecipitation step. The crosslinks were reversed by
heating at 65°C for 12-16 hours and the immunoprecipitated
DNA was purified using UltraPure Phenol:Chloroform:Isoamyl
alcohol (25:24:1 v/v, Invitrogen).

Sequencing library preparation
Sequencing library preparation with ChIP-ed DNA and input

DNA was carried out by following either the NEB ChIP-seq
library preparation for Illumina (New England Biolabs) or the
SOLiD V3 barcoded fragment library preparation protocol (Life
Technologies). Sequencing was performed through either
Illumina HiSeq 2000 or SOLiD V4 at the University of Texas at
Austin Genome Sequencing and Analysis Facility.

Gene expression profiling
The collected yeast cells were re-suspended with AE buffer

(50 mM Sodium Acetate pH 5.2, 10 mM EDTA) containing
1.7% SDS, and total RNA was extracted with a hot acid phenol
method [18]. Double-stranded cDNA was synthesized from
total RNA, and labeled with Cy3 using the NimbleGen One-
Color DNA labeling kits (Roche NimbleGen). The labeled cDNA
was hybridized onto a NimbleGen S. cerevisiae HX12 array
(Roche NimbleGen), and the array was washed and scanned
with a GenePix 4000B scanner (Molecular Devices). The
scanned image was processed using NimbleScan for
quantification of signal intensities and Robust Multi-array
Average normalization with a large set of other NimbleGen
array datasets in our lab (Roche NimbleGen). Differentially
expressed genes in tup1∆ relative to WT were identified with
Bioconductor limma package version 3.14.4.

Quantitative PCR
Three high TR genes (CCW12, TDH3, and PDC1) and three

low TR genes (PDR8, HKR1, and BIT61) were selected. Two
control primers used for normalization were designed from the
tail-to-tail intergenic regions between YHL004W (MRP4) and
YHL003C, stated as iYHL004W, and between YCR023C and
YCR024C, described as iYCR024C. Primer pairs used in
qPCR were designed to amplify 80-100 bp regions within the
respective ORFs, and their sequences are provided in Table
S1. qPCR was performed using Power SYBR Green PCR
Master Mix (Applied Biosystems) on a ViiA7 Real Time PCR
System (Life Technologies). For relative quantification of target

Widespread ChIP-seq Bias in Yeast

PLOS ONE | www.plosone.org 2 December 2013 | Volume 8 | Issue 12 | e83506



DNA compared to control DNA, qPCR data was analyzed
through a standard curve-based method.

Deep sequencing data analysis
Deep sequencing data were mapped onto the unmasked

sacCer3 reference (http://hgdownload.cse.ucsc.edu/
goldenPath/sacCer3/bigZips/chromFa.tar.gz ) using BWA
(Version: 0.5.9-r16) with default options [19]. Non-uniquely
mapped reads were filtered out in order to remove reads with
low mapping quality. Wig files of sequencing data were loaded
in a local mirror of the UCSC Genome Browser for snapshots
[20]. For average read profiles, reads were counted by bin size
10 bp within 1.5 kb from transcription start sites (unpublished
data), and counts were divided by the total number of mapped
reads and multiplied by 1 million. The graphs were plotted
either using the standard Python library and package matplotlib
and numpy [21], R or Microsoft Excel. Scripts are available
upon request. Peak calling was performed with MACS2
(version: 2.0.9) [22]. Cse4 and untagged control ChIP-seq were
downloaded from Gene Expression Omnibus database (GEO)
Series accession number GSE13322 and GSE20870 [13,23],
respectively. We also downloaded histone MNase ChIP-seq
data from NCBI Sequence Read Archive accession number
SRA012303 [24]. These published datasets were processed
with the same analysis pipeline as above.

Mock and input comparison
We executed the MACS2 module (version: 2.0.9) for 4

different experimental pairs: 1) DMSO Tup1 ChIP and DMSO
input, 2) DMSO Tup1 ChIP and DMSO mock ChIP, 3) Rap
Tup1 ChIP and Rap input, and 4) Rap Tup1 ChIP and Rap
mock ChIP. Also, two thresholds (-log10(q-value) = 2 and 20)
were chosen to compare the efficiency of a threshold to
eliminate expression bias peaks based upon stringency (Table
1). Then, MAnorm was utilized to identify differential binding
targets (DBTs) from the MACS generated data [25]. These
programs were run with default parameters, with the fragment
extension length being set to 75 bases. MAnorm allowed us to
ignore regions where the control showed higher signals than
the treated sample. Thus, by using different controls in MACS
followed by MAnorm analysis, we were able to test the effect of
controls on the removal of background signals based on the
number of DBTs and the percentage of DBTs within gene
bodies. We transferred the MACS peak data from experimental
pairs 1 and 3 (see above) to MAnorm and repeated for
experimental pairs 2 and 4 (see above). We applied the same
cut-off p-value (-log10(q-value) = 5) for DBTs to the MAnorm
results.

Data availability
Sequencing data reported in this manuscript are available

from NCBI GEO as GSE51251 (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51251) and
microarray expression profiling data are available under
GSE51376 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE51376).

Results

Common enrichment signals appear in ChIP-seq
datasets spanning factors, growth conditions, and
sequencing platforms

In order to study the targets of chromatin binding proteins in
response to transcriptional perturbations, we performed ChIP-
seq against multiple chromatin-associated factors after
treatment of cells with rapamycin (with DMSO treatment
serving as control) or heat shock (at 39°C, with growth at 30°C
serving as control). Included among these experiments were
two unrelated transcription factors, Swi6 and Tup1, and various
negative controls. One type of control was a mock ChIP-seq, in
which immunoglobulin G (IgG)-conjugated sepharose beads
were incubated with wild-type (WT) yeast chromatin. In another
control, the input of a Swi6 ChIP sample (the sheared
chromatin from a SWI6 TAP-tagged strain) was sequenced.
Finally, we also ChIP-ed a subunit of Golgi
mannosyltransferase complex Mnn10; as a cytoplasmic
complex, Mnn10 is unlikely to associate with chromatin and
thus was not expected to pull down any DNA.

We noticed that surprisingly, common targets were enriched
across several data sets, including Mnn10 ChIP (Figure 1).
Such peaks were observed across different sequencing
platforms (Illumina or SOLiD), epitope tags (SWI6 TAP-tagged
or SWI6 13XMyc tagged), bead types (IgG-tagged sepharose
beads or c-Myc antibody-conjugated agarose beads), and
immunoprecipitated factors (Swi6 or Tup1) (Figure S1),
indicating that the shared signals were not derived from the use
of a specific protocol or reagent. Perhaps most significantly, the
targets were shared between the standard mock ChIP and
input control experiments, suggesting that these shared targets
represented non-random false positives.

Table 1. Rapamycin-specific Tup1 peaks using MACS
followed by MAnorm analysis.

Category
Cut-off
Stringency

Input
Correction

Mock
Correction

MACS2 peak
calling

Control Low 2478 726

  High 1120 296
 Rapamycin Low 2419 845
  High 725 309
Rapamycin-specific targets by
MAnorm

Low 770 407

 High 384 165
Rapamycin-specific targets within
gene bodies

Low 379 (49.2%) 149 (36.6%)

 High 139 (36.2%) 32 (19.4%)

Low and high stringency cut-offs were -log10(q-value) = 2 and 20, respectively.
Rapamycin-specific targets were those differential binding peaks found by MAnorm
with -log10(q-value) > 5.
doi: 10.1371/journal.pone.0083506.t001
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Highly expressed genes demonstrate widespread,
strong ChIP-seq signals

We next examined whether the phenomenon described
above was generally observable genome-wide. We observed
two features among the strong false positive signals. First, the
signals were present within gene bodies and second, the
strongest signals derived from yeast genes that are known to
be highly expressed. Thus, we termed this artifact an
"expression bias". In order to better define the set of highly
transcribed genes, we performed ChIP-seq against active RNA
polymerase II under the same conditions. The occupancy of
RNAPII phosphorylated at serine 5 of its C-terminal domain
repeats (RNAPII Ser5P) is a better indicator of transcription

rate than steady state RNA levels [26]. We defined the top 100
open reading frames (ORFs) in terms of RNAPII Ser5P
occupancy (after normalizing for gene length and sequencing
depth) as high transcription rate (high TR) genes.

Read counts over genes in several ChIP-seq and control
experiments were strongly enriched for high TR genes
compared to other genes (Figure 2A, B, and C). Consistent
with the example shown in Figure 1, the expression bias was a
recurrent artifact in all ChIP-seq data, although the degree of
expression bias varied from factor to factor. To examine if the
expression bias was an artifact specific to ChIP-seq data from
our lab, we downloaded previously published ChIP-seq data
from other labs and analyzed them using the same pipeline

Figure 1.  Example of high background signal across multiple datasets.  Sequencing datasets from different factors, controls,
epitope tags, transcription factors and growth conditions as indicated are represented in a browser view. Based on the read counts
normalized by transcript lengths from RNA-seq data [44], PHO84 is the 82nd most highly expressed gene under normal conditions in
WT yeast.
doi: 10.1371/journal.pone.0083506.g001
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[13,23]. Specifically, we compared ChIP for a centromere
binding protein, Cse4 [13], and an independent mock ChIP that
had been used as a negative control for the association of the
transcription factor Tbf1 [23]. Cse4 in particular is a
centromere-specific histone H3 variant that is not expected to
occupy transcribed regions. Both of these published datasets
exhibited the same artifacts as we describe above (Figure S2),
suggesting that the expression bias seen for high TR genes is
a commonly occurring phenomenon in yeast ChIP-seq data
and could confound the interpretation of many types of
experiments.

Expression bias of ChIP-seq data is exacerbated by
condition-specific transcriptional activation

The transcript levels of stress-responsive genes are
dramatically altered by rapamycin treatment and heat shock
[27,28]. Given the fact that upregulated genes under stress
conditions show comparable transcription rates to high TR
genes under normal conditions, we wondered whether the
expression bias in ChIP would similarly be detectable in
upregulated genes specifically under stress conditions. To
answer this question, we first measured the condition-specific
occupancy of active RNAPII on chromatin by ChIP-seq after
rapamycin treatment and heat shock. The top 100 ORFs
showing increased occupancy after treatment relative to normal
were defined as transcriptionally upregulated genes in
response to rapamycin and heat shock (or “Rap Up” genes and
“Heat Up” genes), respectively.

As the cell cycle is arrested at G1 by heat shock [29], we
reasoned that Swi6, a well-known transcriptional activator of
the G1/S transition [30,31], would not bind strongly to heat
shock-induced genes. Surprisingly, we found that Swi6 bound
strongly to the transcribed regions of Heat Up genes
specifically after heat shock (Figure 3A). A mock ChIP control
sample for this experiment showed similar enrichment at Heat
Up genes. While this illustrated the expression bias as
manifested for differentially expressed genes during a
perturbation, we investigated a different stress condition to rule
out the possibility that the expression bias was specific to heat
shock or to Swi6. We performed ChIP-seq for Rsc2, a
component of the RSC chromatin remodeling complex, and
Tup1, a component of the TUP1-CYC8 co-repressor complex,
after rapamycin treatment of cells. Both Rsc2 and Tup1
showed high occupancy over the transcribed regions of Rap
Up genes after rapamycin treatment (Figure 3A). Thus,
unrelated transcription factors appear to show increased
binding to the ORFs of genes that are more actively transcribed
after different environmental perturbations.

Expression bias can give misleading information
regarding the biological function of transcription
factors

Despite the expression bias observed in mock ChIP and
other control experiments above, it is possible that certain
transcription factors also truly bind to ORFs as a means of
regulating gene expression. For example, occupancy by a
transcription factor of the ORFs of high TR genes, or of Heat
Up genes specifically after heat shock might suggest a role in

activating transcriptional elongation, something that cannot be
formally ruled out based on our data for Swi6. However, the
case of Tup1 offers a means of testing this notion. The
molecular mechanism of the Tup1-Cyc8 complex as a general
transcriptional repressor has been well established [32]. In
order to confirm that Tup1 does not also serve as a
transcriptional activator, we performed gene expression
profiling of a tup1Δ strain compared to WT. Almost 90% of the
differentially expressed genes were repressed by Tup1,
showing that Tup1 does not, in fact, activate these genes in
wild type cells (Figure 3B). Yet, ChIP-seq data for Tup1
suggested just the opposite. Tup1 occupied high TR genes as
opposed to the low TR genes one would expect for a
repressor. In this instance therefore, occupancy of high TR
genes by Tup1 is likely to give a misleading picture regarding
its biological function.

A common use of ChIP-seq is to examine binding of a given
factor under different growth conditions or backgrounds. Since
only a single variable is changed (the experimental or growth
condition), it might be assumed that comparing binding under
different conditions offers a reliable means of identifying
biologically relevant targets, with most background artifacts
being normalized out. We wondered whether the expression
bias we noted earlier could nevertheless confound the
interpretation of such experiments. We used the MACS
algorithm to identify targets showing increased binding of Tup1
in response to rapamycin treatment [22]. We used vehicle
(DMSO) treated cells as the control and rapamycin treated
cells as the experimental sample, and used MACS to identify
differential binding targets (DBTs) from the ChIP-seq data for
Tup1 under these two parallel conditions. 57 of the top 100 and
322 of the top 500 DBTs identified by MACS were in ORFs.
Strikingly, the majority of these DBT ORFs were ORFs that
were transcriptionally activated by rapamycin treatment. When
superimposed on a scatterplot of gene expression versus
RNAPII Ser5P occupancy, the Tup1 DBT ORFs were
concentrated in the upper right quadrant (Figure 4A and 4B). In
the absence of other knowledge about Tup1 function, one
would misinterpret this data to mean that Tup1, since it
associates with the ORFs of rapamycin-upregulated genes
after rapamycin treatment, likely functions in the activation of
those genes. These results therefore raised the question of
what type of normalization controls might be appropriate for
minimizing false positives in ChIP-seq data, even when
analyzing differential binding under different conditions.

Mock ChIP is a better control for expression bias than
ChIP input, but is not infallible

We observed that mock ChIP-seq data exhibited a stronger
expression bias than the corresponding input samples (Figure
2C), and therefore hypothesized that correction by mock ChIP
(normalization) would more effectively reduce the false-
positives exemplified by Tup1 DBT ORFs than normalization by
input. To test this hypothesis, we first used MACS to normalize
each condition specific ChIP-seq dataset to either its
corresponding input or mock ChIP-seq sample. We used low
and high stringency thresholds to compare their effectiveness
in minimizing false positives (Table 1). We then used MAnorm
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Figure 2.  Genes with high transcription rates (TR) have high average read counts within gene bodies in ChIP-seq and
control experiments.  Lines show average read counts in 10 bp bins for the indicated groups of genes, which are either the 100
most highly transcribed genes based on RNAPII Ser5P occupancy as described in the text (High TR genes, red line) or all the other
genes (All ORFs, blue line). The shaded bands represent the 95% confidence interval of the data. All ChIP samples in this figure
were sequenced using the Illumina platform. (A) Under normal growth conditions (30°C in YPD), mock ChIP had comparable bias to
Swi6 ChIP. (B) Both SWI6 (an activator) and TUP1 (a repressor) show comparable high levels of the expression bias at high TR
genes. (C) Input has a lower expression bias than mock ChIP. For (B) and (C) cells were treated with DMSO, which was a control
for rapamycin treatment.
doi: 10.1371/journal.pone.0083506.g002
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Figure 3.  Condition-specific increase in apparent binding at genes that are transcriptionally activated.  (A) ChIP-seq data
for an activator (Swi6), co-repressor (Tup1), chromatin remodeler (Rsc2), and a mock ChIP control for genes that are
transcriptionally activated by the indicated treatment. "Heat Up" are genes activated by heat shock, and "Rap Up" are genes
activated by rapamycin treatment. Red lines show data after treatment (39°C or rapamycin), while blue lines show data before
treatment (30°C or DMSO) for the same set of genes. (B) Differentially expressed genes comparing a WT strain to tup1∆. The
majority of genes were activated upon deletion of TUP1, demonstrating that Tup1 is primarily a transcriptional repressor.
doi: 10.1371/journal.pone.0083506.g003
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to identify DBTs from this MACS-normalized data [25]. At a
given p-value threshold, fewer Tup1 DBTs were identified when
using mock ChIP-seq data as the normalization control (Table
1).

The use of mock ChIP as a normalization control resulted in
a lower proportion of DBT ORFs (49.2% vs 36.6% and 36.2%
vs 19.4% in Table 1), suggesting that mock ChIP is a more
effective normalization control for expression bias than the
input sample. The use of a more stringent threshold in
conjunction with a mock ChIP normalization control reduced
the number of DBT ORFs that were correlated with high
transcription rates in an obvious manner (Figure 5). However,
even this method of minimizing such likely false positives is not
infallible. For example, GAP1 and ASN1 were activated by
rapamycin and showed Tup1 occupancy signals that were
comparable to true peaks (Figure S3). GAP1 expression
increased by 3.64 fold in a tup1Δ strain compared to WT,
strongly suggesting that Tup1 is a repressor, rather than an
activator of GAP1. Establishing a role for Tup1 in activating
these genes in response to rapamycin is therefore non-trivial.
Thus, while mock ChIP is a more stringent control for the
identification of Tup1 DBTs in response to rapamycin, there is
still strong evidence for apparent differential binding to several

ORFs, where it is difficult to distinguish between expression
bias or true binding with biological significance.

Careful interpretation is required when drawing
conclusions about transcription rates from the strength
of ChIP peak signals

Unlike sequence-specific transcription factors, ChIP for
chromatin remodelers and chromatin-modifying enzymes is
inherently difficult because of how transiently these factors bind
to chromatin [14]. Many chromatin remodeler ChIPs
demonstrate weakly detectable signals to begin with, making it
harder to distinguish them from expression bias. To investigate
the effect of expression bias in chromatin remodeler ChIPs, we
examined MNase ChIP-seq data for the ATP-dependent
remodeler Chd1 from a previously published paper reporting
that Chd1 associated with the transcribed regions of actively
transcribed genes [33]. We mapped these reads with BWA and
discarded non-uniquely mapped reads because the paired-end
reads had a read length of only 25 bases. We plotted the read
profile relative to yeast transcription start sites and observed
the nucleosomal periodicity expected for the association of
chromatin remodelers with chromatin. As reported, Chd1
occupancy on high TR genes was higher than other gene

Figure 4.  Uncorrected Tup1 differential binding targets misleadingly indicate that Tup1 is primarily a transcriptional
activator.  Scatter plots show the differential transcriptional activation after rapamycin treatment as blue points. Differential RNAPII
Ser5P occupancy before and after rapamycin treatment was measured by ChIP-seq and plotted on the X-axis. Differential mRNA
expression levels in the same cultures were measured using microarrays and plotted on the Y-axis, in scatter plots showing 4929
genes. We used MACS to identify differential binding targets (DBTs) of Tup1 as described in the text and plotted them on the same
plots in red. (A) The top 100 DBT peaks ranked by fold change were assigned to 55 ORFs, which are plotted in red. (B) The top 500
DBT peaks were assigned to 295 ORFs, which are plotted in red. Tup1 DBT ORFs tended to be upregulated genes in response to
rapamycin.
doi: 10.1371/journal.pone.0083506.g004
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groups both before and after input correction (Figure 6A and
B). However, the difference in Chd1 occupancy between high
TR genes and low TR genes was very small using input
correction. When we normalized Chd1 occupancy with our
mock ChIP data, however, the correlation with the transcription
rate was no longer observed (Figure 6C). Thus, the association
of Chd1 binding to ORFs and its relationship with transcription

rate remains unclear when expression bias is properly
accounted for.

Expression bias suggests directionality of transcription
activated from divergently regulated promoters

When a transcriptional activator binds to bidirectional
(divergently regulated) promoters, it can be difficult to identify
which of the two divergent ORFs, if any, is transcriptionally

Figure 5.  Mock ChIP is a better normalization control than input for minimizing false positive ChIP-seq targets.  Either ChIP
input or mock-ChIP was used as a control, at two q-value thresholds to obtain high and low significant peaks (see text and Materials
and Methods). The scatter plots were drawn as described in Figure 4, and the numbers of Tup1 DBT ORFs (red) were as follows:
input low stringency=379, input high stringency=139, mock low stringency=149, mock high stringency=32.
doi: 10.1371/journal.pone.0083506.g005
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regulated by its binding. We examined ChIP-seq data for Hsf1
to see if expression bias could shed light on this issue. HSF1 is
a key activator of the transcriptional response to heat shock,
strongly binding to the promoters of the Heat Up genes after
heat shock [34]. We noticed that the signal for Hsf1 binding
was asymmetric across the two divergent ORFs. The peak of
Hsf1 binding occurred between the start sites of TAD2 and
KAR2 but the tail of the Hsf1 ChIP-seq signal extended toward
KAR2, not TAD2 (Figure 7A). Based upon the differential
binding of RNAPII Ser5P after heat shock, KAR2 was strongly
transcriptionally activated, while TAD2 was not. 99 genes out of
the top 200 RNAPII Ser5P heat shock DBTs shared promoters
with another divergently transcribed gene. At these genes, the
tails of Hsf1 binding stretched toward the DBTs (Figure 7B).
Thus, the ChIP-seq binding signals over ORFs for transcription
factors that strongly activate gene expression can potentially
identify the correct target gene from bidirectionally transcribed
ORFs.

The expression bias is amplified during library
construction

To establish whether the expression bias is primarily an
artifact arising during sequencing library construction

procedures or already exists in the immunoprecipitated DNA,
we carried out quantitative PCR using ChIP-ed DNA before
and after library construction. As examples of genes showing
the expression bias, we chose three genes, CCW12, TDH3,
and PDC1, which had the highest expression bias based on
the mock ChIP read counts and also ranked within the top 20
most highly expressed genes based on read counts from RNA-
seq and RNAPII Ser5P ChIP-seq. As negative targets, we
selected PDR8, HKR1, and BIT6 as they had low read counts
in mock ChIP, RNA-seq, and RNAPII Ser5P ChIP-seq. In mock
ChIP DNA, the genes showing high expression bias were
overrepresented, whereas the genes showing no expression
bias were underrepresented, indicating that the expression bias
was present even before sequencing libraries were made
(Figure 8). In the sequencing libraries, these differences in
representation were magnified (Figure 8), indicating that
amplification during sequencing library construction could result
in the over-representation of high TR genomic regions in
sequencing results.

Figure 6.  Expression bias may provide a misleading picture of the relationship between ORF binding and transcription
rate.  (A, B) Previously published ChIP-seq data for Chd1 [33] was plotted either uncorrected (A) or corrected by input (B).
Occupancy is higher at high TR genes compared to low TR genes, when genes are ranked by mRNA/hr [45]. (C) Same Chd1 ChIP-
seq data, after correction by mock ChIP-seq data, no longer shows a strong relationship of Chd1 occupancy with transcription rate.
doi: 10.1371/journal.pone.0083506.g006
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Nucleosomal periodicity of RNAPII Ser5P ChIP is
corrected by input

We observed that many ChIP-seq profile plots showed a
periodicity of mean read counts over regions devoid of strong
peaks (Figure 2 and Figure S1). This periodicity within gene
bodies, which was identical to nucleosomal periodicity, was
also present in RNAPII Ser5P ChIP and especially noticeable
for low TR genes (Figure 9A). The naïve interpretation of these
data would be that active RNAPII binds to individual
nucleosomes and/or that RNAPII stalls at the center of
nucleosomes during transcription. However, this interpretation,
solely based on this observation would be misleading because
even input exhibited similar strong periodicity (Figure 9B), as
did Tup1 and Swi6 (Figure 2 and S1). When we normalized the
RNAPII Ser5P read counts by the input read counts for each
corresponding gene, the nucleosomal periodicity of the RNAPII

Ser5P ChIP-seq was eliminated (Figure 9C), indicating that this
periodicity was not a true signal but rather another artifact.

Discussion

In the analysis of ChIP-seq data, two types of normalization
or correction controls are commonly used: mock ChIP and
input DNA. The input sample has the advantage that all the
regions of the genome are well represented, the sample
concentration is ample and stable for constructing sequencing
libraries, and the same sample can potentially serve as the
control for several related experiments. The input generates a
baseline signal for reads across the genome, factoring in
sequence mappability and copy number differences relative to
the reference genome. For these reasons, input has been
suggested as a more effective control [35]. However, our
results show that a background signal deriving from expression

Figure 7.  ChIP-seq signal from binding of Hsf1 to bidirectional promoters is asymmetrically skewed towards Heat Up
genes.  (A) Hsf1 strongly bound to the shared promoter of TAD2 and KAR2. The binding signals gradually decreased towards the 3’
end of KAR2 which is strongly activated upon heat shock, whereas the signal dropped sharply in the direction of TAD2 transcription.
(B) Average Hsf1 occupancy over the 99 divergent genes out of the top 200 Heat Up genes (red), and all the other divergent genes
(blue) under normal and heat shock conditions. In this representation, Heat Up genes were arranged on the right with respect to the
genes whose promoter was shared, which reveals that Hsf1 binding decreases gradually over the Heat Up genes.
doi: 10.1371/journal.pone.0083506.g007
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bias, namely genes transcribed at high rates, is not adequately
represented in the input (Figure 2C). A mock ChIP sample
processed in parallel through the immunoprecipitation and
subsequent steps better reflects the background enrichment
from highly transcribed genes and therefore is a better control
for minimizing the appearance of occupancy signal over
transcribed regions. However the DNA yield after a mock ChIP
step is typically lower and likely to be more variable from
experiment to experiment.

It is often assumed that measuring the binding of a
transcription factor under two different conditions and

identifying the differentially bound targets (DBTs) offers the
most reliable way to identify targets of biological significance.
This assumes that most sources of background signal are
canceled out between the two samples in such an experimental
strategy. Our results indicate that this assumption is risky.
Because the expression bias derives directly from actively
transcribed genes, and transcription will differ between the two
conditions, it will appear as if the factor under study shows
differential binding when in fact it is the background expression
bias that is differently represented in the two conditions. We
suggest therefore that even in these cases, the ChIP data from

Figure 8.  qPCR shows higher expression bias in sequencing library than mock ChIP.  Three ORFs showing high enrichment
of RNAPII Ser5P and high expression levels by RNA-seq were selected as high TR genes, shown in red (CCW12, TDH3, and
PDC1). Three ORFs were picked as low TR genes using the same criteria, and are shown in green (PDR8, HKR1, and BIT1). For
relative quantification of targets, two different controls were used (iYHL004W, plotted on left and iYCR024C, plotted on right), and
fold-changes were calculated by dividing the mean of target quantities by the mean of control quantities. Three biological replicates
were carried out with two independently prepared mock ChIP samples, one of which was used for sequencing. Error bars represent
the standard deviation of three log2-transformed fold change values from the replicate experiments. Data from individual replicate
experiments are shown in Figure S6.
doi: 10.1371/journal.pone.0083506.g008
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Figure 9.  Nucleosomal periodicity in a ChIP-seq dataset can be corrected with input correction.  ORFs were grouped by
RNAPII Ser5P occupancy into 3 categories as indicated, and normalized sequencing reads of the 3 categories are shown on the Y-
axis. (A) In the RNAPII Ser5P ChIP-seq read profiles, low expressed genes (blue and green lines) exhibited nucleosomal
periodicity. Occupancy within each set was independently scaled and the profiles were set to start at the zero position on the Y-axis.
(B) Input shows strong nucleosomal periodicity although average signal intensity is low (C) By subtracting input signal from RNAPII
Ser5P signals, the apparent nucleosomal periodicity of RNAPII Ser5P was greatly reduced. Scaling factor for each group of genes
was the same as in A.
doi: 10.1371/journal.pone.0083506.g009
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each condition has to be properly corrected by the
corresponding mock ChIP data to minimize false positives.

The expression bias we demonstrate has the potential to
skew ChIP-seq data into representing any chromatin-
associated protein as being associated with gene bodies or
ORFs in yeast, regardless of the protein’s true role. In
particular, this misinterpretation is easy to arrive at when the
proteins of interest are ones that often show low signal strength
in ChIP-seq experiments, such as chromatin remodelers,
histone modifying or associated factors, or components of the
general transcription machinery [33,36,37].

It is beyond the scope of this study to definitively identify the
source and mechanism of this background expression bias in
ChIP-seq data. However, given that it is most strongly
observed at highly transcribed genes, we speculate that in
many cases it arises from direct or indirect non-specific
interactions of the immunoprecipitated protein with DNA in
open chromatin at highly transcribed regions, trapped by the
crosslinking process. It is unclear why the phenomenon exists
even in mock ChIP datasets, where there is no expected
interaction between the non-specific antibody and any cellular
protein that might interact with DNA. Here, it is possible that
even low level non-specific interactions between the antibody
and cross-reacting cellular proteins contribute to this
phenomenon, or that open chromatin shows preferential
recovery through the immunoprecipitation process. Indeed, the
latter property underlies methods such as FAIRE and Sono-
seq, which are aimed at globally recovering open chromatin
regions [38,39].

This pattern of the Hsf1 ChIP-seq signal is informative with
regard to how background peaks derived from expression bias
might be related to true occupancy in some cases. The strong
background starts just downstream of the true Hsf1 binding site
and gradually tapers off toward the 3’ end of the gene (Figure
7A and B, Figure S4). This tail structure suggests a model in
which high TR genes that are opened by the transcription
process facilitate the expression bias. The transcription
machinery and co-factors are recruited onto the open
chromatin of heat-activated genes upon heat shock in
conjunction with Hsf1 recruitment. The close proximity of Hsf1
to this transcription machinery can allow them to be crosslinked
and co-immunoprecipitated. We speculate that this proximity
effect of Hsf1 around open chromatin generates the tail
structure observed. The expression bias in the other ChIP data
may similarly be derived from these open chromatin
interactions. Importantly, to the extent that the expression bias
is always related to transcriptional activity, and will be observed
most strongly when a transcription factor capable of interacting
with chromatin is immunoprecipitated after crosslinking, this
background is essentially indistinguishable from true
"biological" targets, especially when the true targets are seen
at low levels. Our data address this phenomenon only in yeast
ChIP-seq data, but conceivably, this could extend to ChIP-seq
experiments in other eukaryotes as well. For example in
mammals, cell-type or tissue-specific open chromatin is known
to occur at promoters and enhancers [40]. A similar
phenomenon as we described here for yeast could in part
explain observations of hotspots of transcription factor binding

and instances of neutral transcription factor binding, where
such apparent binding has no biological meaning [41,42].

The nucleosomal periodicity observed in input and non-target
regions from ChIP may be the result of the high susceptibility of
linker DNA to shearing. Linker DNA is not protected by
histones and may be easier to break by shearing [43]. As a
result, the ends of sheared DNA even in the input are more
likely to be in linker DNA and have a higher chance of being
ligated by sequencing adapters. The resulting sequenced
fragments would show the nucleosomal periodicity that is
typically observed in MNase-seq experiments (Figure S5).
These low-level nucleosomal periodicity signals are not
typically of concern in transcription factor ChIP because these
experiments usually focus on stronger peaks at regulatory
elements. However, the background nucleosomal periodicity
may give a misleading picture when analyzing ChIP-seq
against proteins that are localized within gene bodies, such as
RNAPII-associated factors or chromatin remodelers, which do
in fact associate with nucleosomes and/or demonstrate peaks
in a similarly low range to the nucleosomal background. Our
findings urge careful choice of ChIP-seq normalization controls
and call for caution in interpreting the signals from ChIP-seq
datasets showing transcription dependent occupancy of
proteins over coding regions.

Supporting Information

Figure S1.  High background signals at high TR genes in
SOLiD sequencing data. SWI6 Myc indicates ChIP against
13XMyc tagged Swi6 using c-Myc antibody conjugated
agarose beads. We pulled down TAP tagged proteins for other
ChIPs. The expression bias in TUP1 was the highest in SOLiD,
and mock ChIP showed expression bias comparable to Swi6
ChIP.
(PDF)

Figure S2.  Two independent, previously published
datasets exhibit similar expression bias. We downloaded
two previously published ChIP-seq datasets and ran our
pipeline. 13XMyc tagged Cse4 was immunoprecipitated with
the same beads as used in 13XMyc Swi6 ChIP in Figure S1
[13]. As a negative control ChIP for 13XMyc Tbf1 ChIP,
monoclonal anti-Myc antibody was incubated with untagged
W303-1A strain [23]. Both ChIP-ed DNA samples were
sequenced using the Illumina platform.
(PDF)

Figure S3.  Examples of high expression bias in
rapamycin-specific targets that are indistinguishable from
true targets. Based on differential binding of RNAPII Ser5P
(DB) and differential expression by microarray (DE) in
response to rapamycin, GAP1 showed 59 and 10 positive fold-
change in terms of DB and DE, respectively, ranking within the
top 10 in both measurements. Although the rank of ASN1 in DE
was 1466, the DB was ranked in top 56 as 15 fold change. The
gene bodies had strong signals for rapamycin-specific
occupancy by Tup1, which could not be corrected by
rapamycin-treated mock ChIP.
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(PDF)

Figure S4.  Hsf1 occupancy signals stretches to the 3' end
of up-regulated genes upon heat shock. Average read
counts of Hsf1 ChIP-seq were plotted for the top 200 up-
regulated genes and all other genes, separately, without
consideration of bidirectional/divergently transcribed promoters.
(PDF)

Figure S5.  Transcription depletes nucleosomes. Both H3
MNase ChIP [24] and MNase-seq from our lab showed lower
nucleosome occupancy in the top 100 highly transcribed genes
under normal growth conditions.
(PDF)

Figure S6.  Relative quantification of genomic regions of
high- and low-transcription in mock ChIP and the
sequencing library by qPCR. Three biological replicates of
qPCR in Figure 8 are shown here individually. Bars with solid
color, bars with slanted lines, and bars with dots were replicate

1, 2, and 3, respectively. Error bars represented the standard
deviations of fold change derived from three technical
replicates of each entity (target and control).
(PDF)

Table S1.  qPCR primers.
(PDF)
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