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Abstract

The objective of this work is to quantify how patterns of cortical activity at different spatial scales are measured by
noninvasive functional neuroimaging sensors. We simulated cortical activation patterns at nine different spatial scales in a
realistic head model and propagated this activity to magnetoencephalography (MEG), electroencephalography (EEG),
diffuse optical tomography (DOT), and functional magnetic resonance imaging (fMRI) sensors in arrangements that are
typically used in functional neuroimaging studies. We estimated contrast transfer functions (CTF), correlation distances in
sensor space, and the minimum resolvable spatial scale of cortical activity for each modality. We found that CTF decreases
as the spatial extent of cortical activity decreases, and that correlations between nearby sensors depend on the spatial
extent of cortical activity. For cortical activity on the intermediate spatial scale of 6.7 cm2, the correlation distances (r.0.5)
were 1.0 cm for fMRI, 2.0 cm for DOT, 12.8 for EEG, 9.5 cm for MEG magnetometers and 9.7 cm for MEG gradiometers. The
resolvable spatial pattern scale was found to be 1.43 cm2 for MEG magnetometers, 0.88 cm2 for MEG gradiometers,
376 cm2 for EEG, 0.75 cm2 for DOT, and 0.072 cm2 for fMRI. These findings show that sensitivity to cortical activity varies
substantially as a function of spatial scale within and between the different imaging modalities. This information should be
taken into account when interpreting neuroimaging data and when choosing the number of nodes for network analyses in
sensor space.
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Introduction

Brain activity measured by noninvasive functional brain

imaging techniques is typically assumed to be generated on the

cortical surface. For functional magnetic resonance imaging

(fMRI), activation can be constrained to the cortical surface

during reconstruction [1,2]. Diffuse optical tomography (DOT)

techniques can also constrain the reconstruction of brain activity

to the cortical surface [3]. Electroencephalography (EEG) and

magnetoencephalography (MEG) methods often model neural

activity sources as single dipoles or a small number of patches of

activity on the cortical surface [4]. The spatial extent of activity on

the cortex obtained experimentally from these neuroimaging

modalities and models varies widely. Data analysis methods in

fMRI commonly include smoothing on the cortical surface with a

gaussian kernel with a radius of 1.5–5 mm [5,6]. Dipole models of

neural activity for MEG and EEG assume that cortical activity is

on an arbitrarily small spatial scale, while other methods for

reconstructing MEG and EEG activity assume spatially distributed

sources [7,8].

Given these different assumptions about the spatial extent of

brain activity, it can be difficult to compare the spatial resolutions

of these functional imaging methods. MEG, EEG, and DOT all

have spatial resolutions, as measured by localization error, on the

order of a centimeter [9,10]. The spatial resolution of fMRI is

usually thought to be the same as the voxel size (usually

approximately 36363 mm3), however voxel size does not equate

to the spatial scale of cortical activity discrimination because the

cortical surface and brain activity does not inherently conform to

the defined voxel geometries. Comparing the spatial resolution of

these methods can be important when doing multimodal imaging

or when comparing the results of similar studies using different

imaging methods.

Different neuroimaging methods may also have differing

assumptions about the nature of brain activity. In this study, we

model cortical activity as occurring in multiple regions of the brain

that are active simultaneously, and these regions may be of varying

spatial scales. This perspective is commonly used in fMRI analysis,

where recording from large numbers of voxels enables multivariate

pattern analysis (MVPA) methods, which can classify the brain

response to particular stimuli [11–13]. The question of which

spatial scale is the most informative for MVPA methods is an area

of active research, but the hemodynamic response on a voxel scale

and larger has been shown to contain useful signals [14,15]. Large

spatial scales are also of interest in fMRI, where the cortex may be

divided into active and inactive cortical regions in standard fMRI

analysis. In MEG and EEG imaging, cortical activity may be

modeled as localized to a single dipole at a particular timepoint.

However, the spatial scale of synchronized neural activity is

important when related to oscillations with local and long-range

connectivity [16]. Positron emission tomography has also shown

that there is widespread metabolic activity throughout the cortex
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even at baseline [17]. Despite the evidence for widespread,

synchronized cortical activity, many studies of the spatial

resolution of these functional imaging methods do not account

for spatially extended cortical activity.

This study is designed to look at how the spatial scale of activity

patterns on the cortical surface affect measurements in sensor

space for noninvasive functional neuroimaging methods. We used

simulation methods to generate spatially extended activation

patterns to quantify correlations between the sensors. The spatial

scale of the simulated brain activity in these patterns ranged from

small, dipole-sized patches to whole hemisphere activation, as

cortical activity across this broad range of spatial scales may be of

interest [18]. Simulation methods are necessary for this analysis

because we want to separate spatial correlations at the sensors due

to extended activation regions from sensor correlations due to

functional connectivity between multiple activation areas. One

prior study has carried out a simpler version of this analysis for

EEG by modeling the brain and head as concentric spheres [19].

Understanding how patterns of cortical activity propagate to

functional imaging sensors is important for network analysis

studies and multimodal imaging studies. Most network analyses

using EEG, MEG, and DOT are done on the sensor level [20,21].

Structuring network analyses in sensor space raises the important

issue of determining how many nodes to include [22]. Performing

our analysis in a similar way on four brain imaging methods allows

for comparisons between modalities, which is especially important

for multimodal imaging studies. Sensitivity to cortical activation

may vary as a function of spatial scale within and between

neuroimaging modalities due to the measurement biophysics. The

heuristic that sensors that are located near each other are

measuring similar regions of the brain may not be accurate when

it comes to estimating the spatial extent of measured cortical

activity.

Another area where understanding the cortical extent of

activation is important is in constraining inverse problems,

especially for EEG, MEG, and DOT. One approach to this

problem has been to use spherical wavelets as a basis function and

allow the cortical activation size to vary for MEG [7] and DOT

[23]. Knowing how sensitivity inherently varies with spatial scale

could be used to set appropriate weighting functions to correct for

bias in measured spatial scale.

Multimodal brain imaging studies are also increasingly used as a

way to understand how the same cortical activity is measured by

different imaging techniques. Multimodal studies may also be

designed to probe neurovascular coupling, and therefore use

simultaneous neural and hemodynamic imaging methods [24].

These studies often use the heuristic that sensors that are located

near each other are measuring similar regions of the brain, while

not accounting for the fact that different brain imaging methods

may be measuring different volumes of brain tissue due to the

different measurement biophysics.

The objective of this work is to quantify how cortical activation

patterns at different spatial scales propagate to functional imaging

sensor measurements. We generated 1000 cortical activation

patterns at 9 different spatial scales of cortical activity in a realistic

head model and propagated this activity to MEG magnetometers,

MEG gradiometers, EEG electrodes, DOT source-detector pairs,

and fMRI voxels. This Monte Carlo experiment allows us to

evaluate and compare the contrast transfer functions for the four

imaging modalities. We are also able to estimate the correlation

distances in sensor space and minimum resolvable spatial pattern

scale. These results indicate the approximate minimum node

spacing for network analysis in sensor space for each modality and

the minimum spatial scale where the activation shape information

can be discerned.

Materials and Methods

Anatomical head model
An MRI and corresponding segmentation from the BrainWeb

Database [25] was selected to create the multimodal anatomical

head model. The generating segmentation is voxel-based and has

a probability assigned for each tissue type in each voxel. The

BrainWeb segmentation contained more tissue types than we

required for this study, so the ‘‘fat,’’ ‘‘around fat,’’ ‘‘muscle,’’ and

‘‘muscle/skin’’ tissues were mapped to the scalp class, and the

‘‘dura’’ and ‘‘bone marrow’’ classes were mapped to the skull class.

Cortical surface models were created using Freesurfer version 4.5

[26] from the simulated T1 image. Cortical surface models

included representations of the gray matter and white matter

surfaces, as well as a spherical mapping of the geometry.

Additional surfaces were created that mapped the midpoint

between the gray and white matter boundaries. The full, high-

resolution cortical geometries had over 160,000 nodes per

hemisphere.

Noninvasive functional brain imaging forward models
In general, functional brain imaging can be modeled by

y~Axze, ð1Þ

where y is the measured signal at the sensors, A is the forward

model, x is the discretized cortical activity and e is an error term.

The forward matrix A has the dimensions N 6M, where N is the

number of sensors for each imaging modality and M is the cortical

source locations. In this work, the source space was the same for all

modalities and consisted of 160,000 source locations on each

hemisphere. The number of sensors varied according to the

modality. The measurement vector y is a N61 column vector, and

the source vector x is an M61 column vector. All forward models

were normalized by the sensor ‘1 norms prior to simulating the

response to different spatial scales of activity. Normalizing the

forward models in this way ensures that the sensor responses with

respect to spatial scale are independent of overall sensor-to-sensor

gain variations within the forward models. This normalization

procedure preserves sensitivity variations in the brain due to

cortical folds, and the orientation, strength, and position of cortical

sources.

DOT forward modeling
DOT forward modeling was carried out as described in [27].

Briefly, an optical probe based on the 10/5 system [28] was placed

on the scalp using the NFRI tools [29]. Sources and detectors were

arranged in alternating rows, and the probe design included all

source-detector pairs with a spacing in the range of 2–3 cm. The

head model and positions of the optical sources and detectors are

shown in Fig. 1. The photon propagation was modeled for each

optode using MMC [30]. The forward model A was calculated for

each source-detector pair sd and at each location r using the Rytov

approximation

ADOT (sd,r)~
Ws(r)Wd (r)

Ws(d)
, ð2Þ

where Ws(r) is the fluence from the source, Wd (r) is the fluence

from the detector, and the denominator is the fluence from the

Scale of Brain Activity and Imaging Sensitivity

PLOS ONE | www.plosone.org 2 December 2013 | Volume 8 | Issue 12 | e83299



source as measured at the detector locaiton. The mesh-based

forward model was sampled on the cortical surface to model how

cortical activation propagates to the optical source-detector

measurements.

EEG and MEG forward modeling
A three-layer boundary element model was created from the

segmented head model for EEG and MEG forward modeling. The

segmentation used for the boundary element model was the

BrainWeb probabilistic segmentation. EEG sensor locations were

represented as 286 10/5 locations that were mapped to the scalp

surface. The MEG sensor array used was the Neuromag Eleckta

Vectorview array of 306 sensors: 102 magnetometers and 204

gradiometers. This sensor array has one magnetometer and two

perpendicular gradiometers at 102 locations. The MEG sensor

helmet was positioned in a realistic location using experimental

data. Positions of the EEG and MEG sensors are shown in Fig. 1.

The forward models for MEG and EEG, AMEG and AEEG, are

represented as A in Eqn. 1. These models were calculated using

MNE software tools [31] and the linear collocation method [32].

The forward model was calculated for the high resolution cortical

node geometries using the assumption that source dipoles are

perpendicular to the cortical surface. The scalp and brain

compartments had a conductivity of 0.3 S/m, and the skull

conductivity was 0.006 S/m.

Functional MRI modeling
The fMRI inverse problem is well-posed assuming an adequate

k-space reconstruction of the raw data, which is unlike the other

functional imaging methods discussed. However, fMRI is a coarse

sampling in voxels of the undulating cortical surface. For the

purposes of this analysis, we devised an fMRI forward model

AfMRI that averaged the cortical nodes in 36363 mm3 voxels,

represented as A in Eqn. 1. This forward model does not account

for a spatiotemporal model of neurovascular coupling, but instead

models the spatial extent of cortical activity as measured by fMRI.

Because of the high resolution of fMRI images, only one

horizontal slice was chosen to show representative results. This

slice was located at approximately z = 19 in Talairach coordinates

and contained 820 simulated gray matter voxels. To be included

in the analysis, voxels had to be at least 50% gray matter as

calculated by a volumetric analysis, accounting for the area

between the reconstructed gray and white matter surfaces. Voxels

also had to include at least 4 cortical nodes. Nodes were

considered to be in a voxel if their gray matter node location,

white matter node location, or midpoint between the two was in

the voxel. Voxels were permitted to contain cortical nodes from

cortical surfaces that are on opposite banks of a sulcus. The voxels

on the anatomical image are shown in Fig. 1.

Cortical activation simulation
Cortical surface activations were simulated on 9 different spatial

scales, ranging from approximately 0.03 cm2 to 1000 cm2. The

number of independent nodes was increased on a roughly

logarithmic level between scales (1, 6, 14, 42, 162, 642, 2565,

10242, and 40962 seed nodes per hemisphere). The independent

nodes were distributed evenly over the whole cortical surface using

Freesurfer’s surface icosahedron downsampling capability [33] for

the six smallest cortical scales. For the largest cortical scale, one

node was randomly chosen as the independent node. For spatial

scales with 6 and 14 independent nodes, the 6 nodes where two

axes are zero in cartesian coordinates were used, for 14

independent nodes the 8 quadrant midpoint positions were also

added. One thousand independently generated activation patterns

were simulated at each spatial scale. The activation patterns were

generated on the spherical surface and folded to respect the

geometry of the cortical ribbon.

The activation patterns were constructed by generating random

numbers drawn from a normal distribution at each of the

independent seed nodes as located on the spherical representation

of the cortical surface. Spatial smoothing was then performed in

the volume by convolving the independent nodes with a spherical

gaussian that had a full-width-half-max equal to the estimated

spacing between independent nodes at each scale. The patterns

were then z-transformed to ensure that the mean was still zero and

the standard deviation was still one. The spherical activation

Figure 1. Imaging model design. Top row: Left, example slice through volumetric head mesh model. Color indicates tissue type. Center, Optode
locations on the head model, red indicates sources, blue indicates detectors. Right, map with black lines showing source-detector pairs. Red
diamonds are optical sources, blue circles are detectors. Bottom row: Left, MEG sensor helmet and head positioning. Center, locations of EEG
electrodes on the scalp. Right, fMRI horizontal slice. Gray scale shows gray matter over three high-resolution anatomical voxels. Red grid shows the
size and locations of voxels used.
doi:10.1371/journal.pone.0083299.g001
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pattern was then mapped to the left and right spherical cortical

surfaces. Each cortical activation pattern was then randomly

rotated in 3 dimensions to randomize the locations of the

independent nodes and break up hemispheric symmetry. Finally,

the ‘‘noncortical’’ locations on the Freesurfer surface representa-

tions, such as the corpus callosum, were set to zero.

The physiological meaning of positive and negative values in the

activation patterns varies by imaging modality. For DOT, positive

and negative activations refer to increases and decreases in

chromophore concentrations, respectively. For EEG and MEG,

the sign of the activation indicates the direction of the current,

either into or out of the cortex. For fMRI, positive and negative

cortical activations represent positive and negative blood oxygen

level dependent (BOLD) signals. Despite the differences in the

physiological interpretation of positive and negative activations in

different imaging modalities, all modalities have established

interpretations for both positive and negative signals, and positive

and negative signals can cancel each other out in each modality.

Fig. 2 shows an example of simulated cortical activation at the

6.7 cm2 scale as it is generated in spherical space, on the inflated

surface, and on the pial surface, which was the geometry used to

propagate the activation to the sensors. We show sample activation

simulations for all spatial scales displayed on the inflated cortical

surface geometry in Fig. 3.

Sensitivity, correlation distance, and resolution metrics
Sensitivity to cortical activation patterns for each modality was

determined by characterizing how contrast propagates through

the forward models to sensor space. The contrast transfer function

(CTF) for each sensor at a spatial scale s was quantified as

CTFs~
RMSn,s

RMSc,s
, ð3Þ

where RMSn,s is the root-mean-square of the sensor response over

the Monte Carlo instances and RMSc,s is the root-mean-square of

the cortical activation. Since the cortical activations were z-

transformed, RMSc,s~1. If RMSn,s~1, CTFs~1 for that sensor

which indicates that there was no attenuation of the cortical signal

by the forward model. If CTFv1, the cortical contrast has been

attenuated by the forward model. The overall CTF for each

modality is the mean of the CTF of the sensors. All forward

models were normalized by ‘1 norms for each sensor prior to the

CTF calculation.

The functional connectivity between sensors was also calculated

by using a set of simulated measurements at the sensors as a

pseudo-timecourse. Each sensor was used as a seed location, and

then the maximum distance to a sensor correlated with r.0.5 was

calculated using the realistic 3-dimensional sensor positions for

each modality. If no sensors were significantly correlated, the

minimum sensor separation was used. The mean and standard

deviation over sensors was calculated for each spatial scale to

represent the correlation distance for each modality.

The minimum resolvable spatial pattern scale for each modality

was estimated by determining the minimum cortical activity scale

where the correlation distance was one standard deviation larger

than the minimum correlation distance. This quantity was

calculated by fitting a smoothing spline of order 4 and smoothing

parameter 0.95 to the correlation distances for each modality. This

resolvable spatial pattern scale indicates the smallest scale of

cortical activity where the correlations between neighboring

sensors are due to the spatial extent of cortical activations and

not just blurring introduced by the forward model.

Results

CTF for different modalities
A comparison of CTF over modality and spatial scales is shown

in Fig. 4. We found that sensitivity to cortical activity generally

increases with increasing spatial scale of activity. FMRI and DOT

have sensitivity that stays high for spatial scales down to 26 cm2,

though DOT falls off faster. The CTF for EEG drops off the

quickest, while the CTF for MEG is less dependent on spatial

scale. The MEG magnetometer and gradiometer CTF plateaus for

cortical activity above the 6.7 cm2 scale. All other modalities have

the largest CTF for the largest cortical activation scale. CTF

normalized by its maximum value allows us to compare the shape

of the CTF response curve between modalities. EEG falls off the

fastest with decreasing spatial scale of cortical activity, while fMRI

falls off the slowest, indicating the best preservation of CTF. DOT

sensors and MEG magnetometers have similarly shaped CTF

curves for cortical activity on the spatial scale of 77 cm2 and

smaller.

Sensitivity is variable over the sensor montages
A spatial map of variability in CTF for different modalities and

spatial scales is shown in Fig. 5. Sensor values are interpolated over

locations to better compare between modalities. Variability in

CTF between sensors generally decreases with decreasing cortical

spatial scale of activity, with the exception of fMRI, which has

increased spatial variability with decreased activity scale. MEG

magnetometers have particularly uneven sensitivity depending on

location in the sensor montage for large cortical activation scales.

Figure 2. Example cortical activation pattern at 6.7 cm2.
Representations from left to right are spherical, inflated, pial lateral,
and pial medial. Non-cortical areas are set to zero.
doi:10.1371/journal.pone.0083299.g002

Figure 3. Example activation patterns shown on the inflated
lateral surface. Spatial scale increases from left to right, top to
bottom. The spatial scales are 0.026 cm2, 0.11 cm2, 0.42 cm2, 1.7 cm2,
6.7 cm2, 26 cm2, 77 cm2, 180 cm2, and 1100 cm2.
doi:10.1371/journal.pone.0083299.g003
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Different spatial patterns of CTF emerge at differing spatial scales

of activity, reflecting complex interactions between functional

imaging sensitivity and cortical activation spatial pattern scale on

the folded brain surface.

Sensor correlations for different modalities
Fig. 6 shows the correlations for one sensor and one spatial scale

over all modalities. The seed sensor is exactly C4 (EEG), or near

C4 (DOT, MEG), or near the central sulcus (fMRI). The

simulated cortical activity was on the scale of 1.7 cm2. Both

orientations of MEG gradiometers exhibit the effect of gradiom-

eter direction on sensor correlations. FMRI and DOT have the

smallest correlation distances. In this example, there are 16 MEG

magnetometer sensors, 10 MEG gradiometer sensors, 124 EEG

sensors, 2 DOT sensors, and 9 fMRI voxels with r.0.5 with the

seed sensor for each modality.

The correlation distances for each modality and spatial scale are

summarized in Fig. 7. Correlation distance generally increases

with increased spatial scale of cortical activity. DOT and fMRI

have shorter correlation distances for all spatial scales than MEG

or EEG. EEG correlation distance remains relatively independent

of spatial scale at around 13.6 cm. The resolvable spatial pattern

scale was found to be 1.43 cm2 for MEG magnetometers,

0.88 cm2 for MEG gradiometers, 376 cm2 for EEG, 0.75 cm2

for DOT, and 0.072 cm2 for fMRI.

Discussion

Overall, we found that sensitivity to differing spatial scales of

cortical activity is highly dependent on the choice of imaging

modality. DOT and fMRI appear to preserve higher spatial

frequency responses, with higher CTFs and lower correlation

distances than EEG and MEG. Cortical activity as measured by

EEG and MEG on the surface of the scalp appears to be weighted

toward spatial patterns with low spatial frequencies. The

dependency of sensitivity on the extent of cortical activity suggests

that node density for sensor-space network analyses of brain

activity should be based on the scale of the expected cortical

activation pattern. A size scale of cortical activation extent that

Figure 4. Contrast transfer functions dependency on spatial scales of brain activation. Top left: Hemodynamic functional imaging
methods. Top right: Neural imaging methods. Bottom: All methods, normalized by max response.
doi:10.1371/journal.pone.0083299.g004
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may be of interest is at the level of cortical regions, which are

typically defined as patches that are functionally related and have

widths on the cortex on the order of several centimeters. One

example atlas has defined cortical regions with sizes ranging from

from 2 cm2 to 57 cm2, mean size of 13.7 cm2 and a standard

deviation of 9.7 cm2 [34]. For cortical activations on the spatial

scale of 6.7 cm2, we found correlation distances of 1.0 cm for

fMRI, 2.0 cm for DOT, 12.8 for EEG, 9.5 cm for MEG

magnetometers and 9.7 cm for MEG gradiometers. These results

suggest a minimum spacing for nodes used in network analyses of

brain activity using each neuroimaging modality. The correlation

distance results also support the practice of ensuring that network

nodes or regions of interest for EEG and MEG have sufficient

spacing. Nodes may also be defined by keeping all potential

sensors in the analysis while eliminating short range connections

using a distance threshold [35]. For DOT, averaging over source-

detector pairs to create a network node should be limited except in

cases with very close spacing of the source-detector pairs (e.g.

[21,26]).

The MEG magnetometers showed a relatively large amount of

variability in the spatial profile of the CTF for brain activity at

large spatial scales. The CTF is lower for sensors that are

Figure 5. Spatial variability in CTF for five spatial scales and five sensor types. 3D sensor locations are represented in 2D. Maps are
interpolated in sensor space, the top of the diagram is the most anterior sensors. Color shows normalized CTF.
doi:10.1371/journal.pone.0083299.g005

Figure 6. Correlations between sensors. A seed sensor is located at either exactly C4 (EEG), or near C4 (DOT, MEG), or near the central sulcus
(fMRI). Cortical activity was on the scale of 1.7 cm2. Seed sensor is marked with a black circle.
doi:10.1371/journal.pone.0083299.g006
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approximately halfway between the midline and the edge of the

sensor array. This initially puzzling result has not been observed in

cortical spatial resolution metrics, such as signal to noise ratio [37],

source localization probability [38], or point spread functions [9],

although modeling work has shown that MEG magnetometers are

more sensitive to cortical orientation than EEG which may result

in cancellation for extended sources [39]. However, cortical spatial

resolution metrics are not directly comparable to our sensor-based

metrics. Upon further investigation, it appears that the MEG

sensors with low CTF for large cortical spatial scales are sensitive

to an unusually large number of cortical sources due to the oblong

shape of the head cerebral hemispheres. MEG magnetometers

near the frontal, occipital, or midline regions of the brain are

sensitive to fewer cortical source locations due to the shape of the

brain and head in those locations. The percentage of sources that

are greater than or equal to half of the maximum of the forward

model for each sensor location are shown in Fig. 8. Sensors that

are sensitive to more cortical sources will have a lower CTF when

the simulated cortical patterns have a large spatial scale.

For MEG magnetometers and gradiometers, the highest

sensitivity was not observed for activation patterns at the largest

spatial scale. There have been recent reports of MEG cancellation

for extended sources [8,40], although these studies used smaller

spatial extents for the sources and did not report what happened

when there were multiple active sources. Cancellation may be

more likely at larger scales of activation that may extend around

the gyral and sulcal folds of the cortical surface. These large scales

of activation may be seen during seizures, which are defined by

widespread synchronous neural activity. Our results show that

MEG and EEG are most sensitive at differing spatial scales of

cortical activity, from which it follows that large cortical seizures

would be easier to detect with EEG and more moderate sized

activations would be easier to detect with MEG.

Resolvable spatial pattern scale was larger in EEG compared to

the other modalities. Our estimated resolvable spatial scale

376 cm2 is on the same order of magnitude as reported elsewhere

[41]. Using the Laplacian of the EEG may reduce its resolvable

spatial pattern scale, perhaps up to an order of magnitude [41],

which would still leave EEG as the functional imaging technique

with the largest resolvable spatial pattern scale. MEG sensors have

a resolvable spatial pattern scale that is similar to the resolvable

spatial pattern scale of DOT, and the resolvable spatial pattern

scale of DOT is an order of magnitude larger than the scale for

fMRI. These results support the use of DOT and fMRI to

constrain source localization for EEG [42], and combining EEG

and MEG for source localization [43].

Variability in underlying physiology of the imaging modalities is

not addressed by this study. We have reported different sizes of

correlations at the sensors for hemodynamic and neural imaging

methods based purely on the biophysics of how cortical activation

extent propagates to the sensors. A complicating factor in

interpreting the presented results for multimodal neuroimaging

studies is that the cortical extent of the hemodynamic response

may be different from the extent of the neural response. The

spatiotemporal dynamics of the neurovascular coupling relation-

ship are an area of active research [44].

The spatial resolution of fMRI has been empirically measured

in the occipital cortex in response to visual stimulation. The full-

width-half-max of the point spread functions of fMRI activity on

the cortical surface were reported to be 3 to 4 mm at 3 tesla [45]

and 2.34 mm at 7 tesla [46]. These measures correspond to a

spatial extent of 0.043 to 0.13 cm2, and agree well with our

theoretical calculation of a resolvable spatial pattern scale of

0.072 cm2 for fMRI.

DOT has previously been considered to be a low-resolution

neuroimaging modality that is similar to EEG and MEG in

reconstruction accuracy [47]. However, recent experimental work

has indicated that the spatial resolution of high-density DOT is

comparable to fMRI in that it is sufficient to resolve retinotopic

patterns in the visual cortex [48,49]. DOT resolution as quantified

by the point-spread function is on the order of a centimeter

[50,51], a finding that is in agreement with our resolvable spatial

pattern scale. Additionally, our analysis shows that sensor

measurements for DOT are more local than EEG and MEG

measurements, indicating that DOT may be a good choice for

Figure 7. Correlation distances. Mean over sensors of the maximum
distance from the seed sensor to a correlated sensor at a correlation
threshold of r.0.5. Horizontal axis is spatial scale of modeled cortical
activity.
doi:10.1371/journal.pone.0083299.g007

Figure 8. Percentage of total sources contributing to each
sensor. The percentage of cortical sources where the absolute value of
the forward model is at or above 50% of the maximum sensitivity value
is mapped over sensor space for each modality.
doi:10.1371/journal.pone.0083299.g008
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network analysis because it should be able to record more

independent regions of the brain. High-density, whole-head DOT

may be an excellent method to measure network connectivity.

EEG and MEG have a high degree of spatial blurring at the

sensors according to the metrics presented in this work. The high

degree of blurring is usually attributed to volume conduction

[35,52], and explains why on an absolute scale the CTF values for

EEG and MEG are much smaller than those for DOT and fMRI.

A similar study using dipoles instead of patches of activity found

high coherence between sensors separated less that 10 cm for EEG

and less than 15 cm for MEG, which is similar to the results that

we found here of a correlation distance of 12.8 for EEG, 9.5 cm

for MEG magnetometers and 9.7 cm for MEG gradiometers [41].

For the linear forward models used in this work, there is no

effect of source strength on the input-output gain of the system

response. Our patterns of cortical activation are designed to have

the same distributions of source strength across the cortex, with the

only change being the spatial scale of activity patches. The

approach taken in the present analysis focuses attention on the

effects of spatial scale but does not allow for conclusions to be

drawn about the effects of source strength. Since a strong focal

source can give rise to a very similar electromagnetic field as a

weaker distributed source, it is possible that these two effects are

not discernible in real brain activations. For example, apparently

large spatial patterns measured by sensors may in fact arise from a

few strong focal sources, and apparently small spatial patterns may

arise from a myriad of closely located smaller active regions. When

considering real data, readers should take into account that the

present study focuses only on the effects of spatial scale in patterns

of brain activity.

The present work brings a comparative analysis perspective on

the effects of spatial pattern scale on the sensitivity of four different

neuroimaging techniques. This perspective is particularly useful

when evaluating experimental multimodal neuroimaging results.

Neurovascular coupling studies with simultaneous measurement of

neural and vascular dynamics may be carried out with EEG/fMRI

[53], EEG/DOT [54], and MEG/DOT [55]. Our analysis shows

that the CTF for EEG/fMRI is the least compatible pairing in

terms of how contrast is propagated to the sensors at each spatial

scale. One potentially good pairing of sensors would be DOT and

MEG magnetometers, as they appear to have similar CTFs for

cortical spatial scales that are below 77 cm2.

Conclusion

We have shown that the spatial scale of cortical activity affects

the sensitivity of MEG, EEG, DOT, and fMRI. We also reported

a new method for defining the resolvable spatial pattern scale of

functional neuroimaging modalities that accounts for the impact of

extended cortical activity. We then used the method to estimate

the effective resolutions of functional brain imaging modalities in

terms of the resolvable scale of cortical activation patterns. These

results suggest that that the nodes for network analysis performed

in sensor space should account for the desired spatial scale of

generating cortical activity.
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