
The Comparative Effectiveness of Rodents and Dung
Beetles as Local Seed Dispersers in Mediterranean Oak
Forests
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Abstract

The process of seed dispersal of many animal-dispersed plants is frequently mediated by a small set of biotic agents.
However, the contribution that each of these dispersers makes to the overall recruitment may differ largely, with important
ecological and management implications for the population viability and dynamics of the species implied in these
interactions. In this paper, we compared the relative contribution of two local guilds of scatter-hoarding animals with
contrasting metabolic requirements and foraging behaviours (rodents and dung beetles) to the overall recruitment of two
Quercus species co-occurring in the forests of southern Spain. For this purpose, we considered not only the quantity of
dispersed seeds but also the quality of the seed dispersal process. The suitability for recruitment of the microhabitats where
the seeds were deposited was evaluated in a multi-stage demographic approach. The highest rates of seed handling and
predation occurred in those microhabitats located under shrubs, mostly due to the foraging activity of rodents. However,
the probability of a seed being successfully cached was higher in microhabitats located beneath a tree canopy as a result of
the feeding behaviour of beetles. Rodents and beetles showed remarkable differences in their effectiveness as local acorn
dispersers. Quantitatively, rodents were much more important than beetles because they dispersed the vast majority of
acorns. However, they were qualitatively less effective because they consumed a high proportion of them (over 95%), and
seeds were mostly dispersed under shrubs, a less suitable microhabitat for short-term recruitment of the two oak species.
Our findings demonstrate that certain species of dung beetles (such as Thorectes lusitanicus), despite being quantitatively
less important than rodents, can act as effective local seed dispersers of Mediterranean oak species. Changes in the
abundance of beetle populations could thus have profound implications for oak recruitment and community dynamics.
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Introduction

Plant-animal interactions are key components in the regener-

ation process of many plant species with strong implications for

population viability and community dynamics [1–2]. Seed

dispersal, which connects the end of the reproductive cycle of

adults with the recruitment of their offspring [3], is frequently

mediated by biotic agents [4]. There is growing evidence that the

number of new adults produced by the activity of a disperser (seed

dispersal effectiveness, or SDE) not only depends on the quantity

of dispersed seeds but also on the quality of the seed dispersal

process [5]. In turn, the qualitative component of SDE depends on

other factors such as the probability that a dispersed seed remains

viable after the activity of the dispersal agent or the recruitment

suitability of the microhabitat where the seed is deposited [6].

However, the quality of seed dispersal has received far less

attention than the quantitative component, likely due to the

methodological complexity entailed in their measurement. First,

an accurate evaluation of dispersal quality implies an exhaustive

relocation and monitoring of the dispersed seeds in order to

determine the seed fate. Second, a complete determination of the

microhabitat suitability for recruitment requires a multi-stage

demographic approach where plant recruitment is explored across

multiple and consecutive stages [7]. Nevertheless, most studies

linking seed dispersal and plant demography have focused on early

demographic processes, such as seedling emergence and first-year

survival, often ignoring the delayed consequences of seed

deposition at later stages of recruitment [8]. Since the suitability

for recruitment of different microhabitats may change over the life

cycle of the plant [9–10], studies based only on early life-history

stages can lead to incomplete and misleading conclusions.

Recent studies have shown that both the quantity and the

quality of seed dispersal are highly context-dependent, highlighting

habitat structure as one of the main drivers of the spatiotemporal

variation in SDE [6]. On the one hand, the foraging pattern of
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dispersers is not random, usually responding to preferences for

certain habitats or microhabitats and rejection of others [8], [11].

On the other hand, the spatial distribution of seed deposition

across different microhabitats will alter the subsequent stage-

specific probabilities of recruitment [1], [12]. Empirical studies on

SDE explicitly considering the heterogeneity of habitat structure

are therefore necessary for better understanding the role of this

source of variation in plant-animal interactions.

In most cases, the seed dispersal of animal-dispersed plants is

due to a small set of biotic agents [5]. However, the contribution

that each of these dispersers makes to overall plant recruitment

may differ largely [13–14]. Broad differences in effectiveness

among dispersers may have important ecological and evolutionary

consequences for the plant as well as profound implications for the

conservation of the most effective dispersers [15–16]. However,

comparisons among seed dispersers in SDE have seldom been

explored [13–14], [17], especially in scatter-hoarding animals. In

the specific case of temperate tree species with large-seeded dry

fruits such as oaks, jays and rodents (such as those belonging to the

genera Apodemus, Mus, Sciurus, etc.) are broadly considered the

main guilds of seed dispersers worldwide [18]. Nevertheless, a

novel and striking feeding behaviour has been recently described

for some species of geotrupid dung beetles inhabiting Ibero-

Mediterranean [19–20], and North American oak forests [21].

These species of dung beetles are able to bury and feed on acorns,

and this rare habit confers on them important ecophysiological

advantages, such as a significant increase in their ovarian

development, thermal tolerance and pathogen resistance [22–

23]. This burying behaviour could also bring reproductive benefits

to the oaks because a portion of the buried acorns could be

abandoned partially eaten or even intact (i.e., with the embryo

undamaged) with the ability to emerge and become established as

seedlings.

In this paper, we compared for the first time the relative

contribution of two local guilds of scatter-hoarding animals

(rodents and dung beetles) with contrasting foraging behaviours

and metabolic requirements (rodents are basically endothermic

organisms capable of maintaining stable internal body tempera-

tures, whereas beetles are ectotherms in which internal physio-

logical sources of heat are relatively small or quite negligible) to the

overall short-term recruitment of two oak species co-occurring in

the forests of southern Spain. Despite the unquestioned role of jays

for oak regeneration at large distances [24–25], we selected

rodents for this comparative study because of their potentially

redundant role with beetles and their quantitative importance as

acorn dispersers at small spatial scales [18].

We used a multi-stage demographic approach (from seed

dispersal to third-year seedling survival) and followed the

framework described by Schupp et al. [6] for disentangling the

relative importance of the quantitative and qualitative components

of SDE. Seed dispersal and recruitment were explored along a

wide and natural range of microhabitat conditions, which allowed

us to incorporate the role of forest habitat heterogeneity in order to

evaluate the effectiveness of local acorns dispersers on a spatial

scale. Specifically, we aimed to answer the following questions: (i)

What is the comparative effectiveness of rodents and dung beetles

as local acorn dispersers of oak species in a Mediterranean forest of

southern Spain?; (ii) Which one of the two SDE components

(quantity or quality) better contributes to overall short-term

recruitment of these oak species?; (iii) How do these plant-animal

interactions change with microhabitat conditions?; and (iv) What

are the ecological and management implications of these findings

for forest stand dynamics and species conservation?

Methods

Ethics Statement
All necessary permits were obtained for the field studies

described herein thanks to J. Manuel Fornell Fernández, Director

of Los Alcornocales Natural Park.

Study Area and Species
The study was conducted in La Sauceda forest (530 m above

sea level, 36u319540N, 5u349290W), located in the mixed-oak

forests of the Aljibe Mountains in southern Spain. The climate is

subhumid Mediterranean, with mild and wet winters alternating

with hot and dry summers. Annual mean temperature ranges from

14.6 to 18.4uC (mean of 17uC). Annual mean rainfall varies from

900 to 1800 mm (mean of 1265 mm). Vegetation is dominated by

evergreen cork oak (Quercus suber) forests mixed with winter-

deciduous oaks (Q. canariensis), which are more abundant near

streams [26]. The shrubby understory is diverse and rich in

endemic taxa [27]. Most of the forested area was protected in 1989

as Los Alcornocales Natural Park, covering approximately 1680

km2.

The two dominant oak species show a strong inter-annual

variability in seed production [28]. Acorn production was

relatively low during the two sampling periods (2009/2010 and

2010/2011 cycles). The estimated acorn crop size for the two

sampling periods was, respectively, 7 and 10.8 g m22 y21 beneath

mature trees of Q. suber and 22.4 and 14.7 g m22 y21 beneath Q.

canariensis. Acorns mainly fall to the ground during autumn and are

potentially dispersed by animals: over large distances by jays and

locally by rodents and dung beetles (in particular Thorectes lusitanicus

[19–20]). Thorectes lusitanicus Jeckel (Coleoptera, Scarabaeoidea,

Geotrupidae) is a flightless, medium-sized species of dung beetle

(mean dry body weight of 130–175 mg specimen), endemic to the

southern Iberian Peninsula [29]. This species is classified as a

‘telephagic tunneller’ which has acquired the ability to ship dung

from its source to the nesting site, occasionally several metres

distant, and bury it up to 10–15 cm deep. Recent studies have

shown that this burying behaviour is also followed when they

manipulate acorns [19–20]. Large herbivores, such as red deer

Cervus elaphus, roe deer Capreolus capreolus and free-ranging cattle are

abundant in these forests and could act as potential acorn

predators.

Sampling Design and Data Collection
We collected acorns of Q. suber and Q. canariensis in the study

area from several trees (at least ten of each species) to encompass

intra-specific variation. We selected healthy medium-sized acorns,

discarding those infested by moth or beetle larvae through

flotation [30]. The selected acorns were stored on a moist

substrate at 2–4uC until used in the experiments and individually

weighed to the nearest 0.01 g. The mean 6 SD (standard

deviation) acorn fresh weight was 5.3761.70 g for Q. suber and

5.8161.52 g for Q. canariensis. Acorns of known weight were

further distributed in 54 experimental units (a minimum distance

of 25 m relative to one another) and equally separated into three

types of microhabitat, which spanned a wide gradient of plant

cover and light availability: (i) inside dense shrub and tree

overstory; (ii) under oak trees without shrub understory; and (iii)

open microsites. In general, these three types of microhabitats

appear intermingled in the understory forming a mosaic of

different microsites separated among them by similar distances.

Open areas tend to suffer events of sporadic soil waterlogging

during the wet period due to less interception of rain by the

canopy and, in most cases, a higher proportion of clay [31]. The
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shrubby vegetation comprised mainly Pistacia lentiscus, Phillyrea

latifolia, Viburnum tinus, Erica arborea and Erica scoparia.

Seed handling. To explore spatiotemporal patterns of seed

handling by local dispersers, we individually numbered with a

permanent maker groups of 30 acorns (15 per oak species) and

randomly placed them on the forest floor in each of the 54 above-

mentioned experimental units (18 in each type of microhabitat).

Acorns were protected from birds and large herbivores in each

experimental unit by wire cages (80680625 cm) with 4-cm2 mesh

that allowed the entrance of only rodents and beetles. In mid-

autumn (November of 2009 and 2010), coinciding with the onset

of the acorn-crop, we intermixed each group of 30 acorns and

distributed them inside each cage in five equidistant lines of six

acorns (three per oak species). We periodically checked all the

experimental acorns during a whole reproductive-cycle (from

December to October-November of the next year). To avoid

interference with beetle foraging during the process of acorn

consumption, we visited each of the five lines of six acorns once at

different dates. The first line of acorns was checked 10–14 days

after starting the experiment, coinciding with the peak of

maximum beetle activity [19]; the remaining censuses were

carried out at four regular intervals of time (approximately every

two months). On each visit, we recorded the status of the acorns

(intact, removed, or consumed in situ), noting when possible the

identity of the dispersal agent (rodent or beetle). The acorns

consumed in situ by rodents were easily identified by signs of

gnawing, whereas those handled by beetles usually showed a

circular (beetle-sized) hole in the coat. When we did not locate an

experimental acorn in its original site, we dug 10–15 cm deep

within a circle 50 cm in radius to verify evidence of handling by

the dung beetle Thorectes lusitanicus. When a buried acorn was

found intact, it was assigned to T. lusitanicus handling only when a

beetle was also buried together with it.

Seed deposition and caching. To investigate patterns of

seed deposition and caching, we carried out a parallel experiment

with acorns freely exposed to all the animals (i.e., without the

protection of cages) to avoid the interference of cages with the

process of seed dispersal. In mid-autumn (November 2009 and

2010), we randomly distributed 54 additional groups of ten acorns

(five per oak species) along the same above-mentioned experi-

mental units to determine acorn fate (seed status and microhabitat

destination). In each experimental unit, we placed five acorns

(without cupule) per species on the ground, four in the corners and

one in the centre of a 0.5-m2 quadrat. These acorns were

individually weighed and attached to a metal wire (10 cm long by

0.6 mm wide) by drilling a hole with a needle. We marked both

the metal wires and the corners of the quadrats with numbered

coloured flags for monitoring acorn fates. We used this method of

seed tracking (other examples in [32–33]) because it has been

demonstrated that it does not significantly alter acorn dispersal

patterns by small dispersers [34].

We periodically visited (at the same censuses specified above) all

the experimental acorns and also classified them as intact,

removed, or consumed in situ. We searched outwards for the

removed acorns in the experimental units in expanding circles to a

maximum distance of 30 m. We considered an acorn to be

dispersed when it was moved horizontally and/or vertically (i.e.,

cached) from its original point by rodents or beetles. To

characterise spatial patterns of seed dispersal and caching, we

recorded the distance from the experimental unit and the type of

microhabitat where the acorn was dispersed (i.e., microhabitat

destination). We also noted whether the relocated acorn remained

potentially viable (i.e., intact or partially consumed with the

embryo undamaged) or not (i.e., completely or partially eaten with

the embryo damaged, hereafter ‘preyed upon’). Those removed

acorns that were not further relocated (i.e., missing acorns) could

not be assigned to any of these two categories and were excluded

from statistical analyses. Although we detected some evidence of

seed re-dispersal over the sampling periods, we only considered the

final fate of experimental acorns (i.e., seed status and microhabitat

destination at the last census) for statistical analyses due to its

higher relevance for recruitment.

We repeated the experiments of seed handling and seed

deposition during two consecutive sampling years (2009/2010

and 2010/2011), making a total of 4320 experimental acorns

(2160 per oak species) that were individually monitored to explore

the spatiotemporal patterns of seed handling and dispersal.

Seedling recruitment. Microhabitat suitability for seedling

recruitment (seed germination6seedling emergence6seedling sur-

vival for three years) was previously assessed by conducting a

parallel seed-sowing experiment at the same study site where seed

handling and dispersal were evaluated. In December 2003, we

randomly placed a total of 1200 acorns (600 per oak species)

across 60 experimental units evenly distributed along the same

previously mentioned three types of microhabitats. We sowed ten

acorns per species in each experimental unit at 1–3 cm depth,

simulating biotic seed dispersal and burial by European jays [24–

25], rodents [29] or dung beetles [19]. In this case, the

experimental units were protected by smaller wire cages

(25625625 cm and 1.3 cm mesh size) to exclude all potential

acorn consumers. We indirectly assessed seed germination after

the first summer by unearthing non-emerged seeds and inspecting

for the presence of radicles. We periodically monitored seedling

emergence and survival during three sampling years (2003/2004,

2004/2005 and 2005/2006). Censuses were carried out bi-weekly

during the first year and every six months (in late-winter and after

summer, coinciding with the peaks of maximum seedling

mortality) during the two remaining years (see [32] for further

details).

Data Analyses
Spatiotemporal patterns of seed handling, caching and

deposition. We first studied seed handling patterns for rodents

and dung beetles using Generalized Linear Models (GLMs; [35])

and classifying the acorns in two possible states: intact versus

handled (including both consumed in situ and removed acorns).

We assumed a logit link function between this binomial dependent

variable and two independent variables (oak species and micro-

habitat of origin). This analysis was applied separately for the five

censuses carried out in each of the two sampling years.

Second, we examined seed viability in the experiments on seed

deposition and caching using Generalized Linear Mixed Models

(GLMM). The dependent variable was fitted to a multinomial

distribution with four categories depending on the combination of

the dispersal agent (rodents or beetles) and the final seed status

(preyed versus undamaged). The explanatory variables in this case

were the two sampling years (2009/2010 or 2010/2011), the oak

species (Q. suber or Q. canariensis) and the three microhabitats of

origin (shrub, tree or open). Seed mass was also included in the

analyses as a continuous co-variable. The microhabitat distribu-

tion of dispersed acorns (i.e., microhabitat destination) was also

studied using GLMM. In this case, the dependent variable was

treated as a multinomial with three categories (shrub, tree or

open), using the same explanatory factors described in the previous

analyses. Seed dispersal distance (log-transformed) was fitted to a

normal distribution and, therefore, the effects of the above-

described factors were evaluated using Linear Mixed Models

Dung Beetles and Rodents as Local Seed Dispersers
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(LMM). In all these analyses, the experimental unit was included

as a random factor.

Finally, microhabitat suitability for seedling establishment was

assessed by testing the differences between microhabitats for the

different stage-specific probabilities of recruitment considered in

this study. Seed germination, seedling emergence and seedling

survival were fitted to binomial distributions and analysed with

Generalized Linear Models. GLMMs were performed using the

lme4 package in R (v. 2.12.0, R Development Core Team, 2006).

The remaining analyses were carried out using Statistica (v. 6,

StatSoft Inc., 2001).

Seed dispersal effectiveness. Seed dispersal effectiveness

(SDE) was calculated for each of the two scatter-hoarding animals

considered in this study (rodents and beetles) as the proportion of

seeds dispersed by each dispersal agent (i.e., quantity of dispersal)

multiplied by the probability that a dispersed seed becomes

established as a third-year seedling (i.e., quality of dispersal) (see a

recent review [6]). The qualitative component of SDE was in turn

separated into two subcomponents: the probability of a dispersed

seed being cached and undamaged rather than preyed (i.e., seed

viability) and the probability of overall recruitment in the

microhabitat where the seed was transported (i.e., quality of seed

deposition). Thus, we obtained six values of SDE (two dispersal

agents6three types of microhabitats) for each oak species. In

addition, we calculated a global value of SDE for Quercus grouping

the two studied oak species.

Results

Seed Handling
The percentage of seeds handled by local dispersers was close to

100%, especially for the second sampling year (2010/2011; Fig. 1).

These high rates of seed handling were mainly due to rodents,

which reached values over 80% from mid-spring (Figs. 1A and

1B). A lower proportion of the experimental acorns (less than 11%)

were handled by dung beetles (Thorectes lusitanicus), with the highest

rates of handled seeds during the first census (December 2009 and

2010; Figs. 1C and 1D). Rodents and beetles showed contrasting

differences in the spatial pattern of seed handling depending on

the type of microhabitat where the seeds were experimentally

placed. The percentage of seeds handled by rodents was

significantly higher under shrubs compared with the other two

types of microhabitats, although these differences disappeared as

seed handling approached 100% (Figs. 1A and 1B). In contrast,

beetles showed higher rates of seed handling under trees, followed

by open sites and finally under shrubs (Figs. 1C and 1D). No

statistically significant differences were found between the seeds of

the two oak species (data not shown).

Seed Deposition and Caching
Results provided by the experiment on seed deposition and

caching corroborated those previously obtained, as we recorded

final seed handling rates of over 98% (n = 766). Of these handled

acorns, animals removed more than 85% and consumed the rest in

situ (on the forest surface; Fig. 2). Nearly half of the removed

acorns were dispersed (horizontally and/or vertically) by local

dispersers, the vast majority by rodents (92.2%, n = 272) and only

a small proportion by beetles (7.8%, n = 23; Fig. 2). The rest of the

acorns were not relocated and were not used for statistical

analyses.

The process of seed deposition differed greatly when the two

dispersal agents were compared. In the case of rodents, the

destination of the dispersed acorns was strongly affected by the

seeds’ microhabitat of origin (Table S1). On the one hand, rodents

dispersed acorns mostly to the same type of microhabitat in which

they found them (76.1% of the total). Separating by microhabitat

types, 100% and 73.2% of the dispersed acorns coming from

shrub and tree understory, respectively, remained in the same type

of microhabitat, whereas only 43.6% of seeds coming from open

sites remained under these conditions. On the other hand, rodents

showed a clear preference for those microhabitats located under

shrubs when moving acorns from their microsites of origin; 26.8%

and 55.1% of the acorns located under trees and in open sites,

respectively, were dispersed under shrubs. These changes of

microhabitat were less marked in the case of Q. suber acorns, as

indicated by the significant effect of this factor in the fitted model

(Table S1). In summary, rodents dispersed 66.5% of the acorns to

shrubs, 20% under trees and 13.5% to open sites (Fig. 2). In

contrast, beetles moved very few acorns outside the original

microhabitat patch; they displaced them only a few centimetres

around the original point and buried most of them in the soil

(vertical dispersal). Most of these beetle-handled acorns were

located in microhabitats beneath a tree overstory (69.6%),

followed by open sites (21.7%) and finally under shrubs (8.7%;

Fig. 2).

The distance to which seeds were moved by rodents from their

original point was significantly influenced by the microhabitat of

origin and the sampling year (Table S2). In 2009/2010, the

experimental acorns were dispersed farther than in the 2010/2011

cycle, with longer dispersal distances detected in acorns located

beneath trees (1.1360.37 m, respectively) compared with those

located under shrubs (0.8460.15 m) and in open conditions

(0.8960.31 m). In 2010/2011, the acorns placed in open sites

were dispersed farther (1.2560.19 m) than those protected under

shrubs (0.9260.13 m), but the acorns located under trees were

dispersed to shorter distances (0.5360.10 m) compared with the

previous year.

The probability of an experimental acorn being preyed upon or

undamaged by rodents or beetles (i.e., seed viability) only

depended on the microhabitat of origin (Table S3). Thus, the

percentage of acorns preyed upon by rodents was higher under

shrubs than beneath the tree overstory, with only a small

proportion of acorns cached by rodents and beetles (less than

5%) in the most closed microhabitats (Fig. 3). However, the

percentage of acorns handled by beetles was much higher in those

microhabitats located under trees, with half of them remaining

undamaged at the last census (Fig. 3). Acorn fate was not

significantly affected by either the sampling year or the oak species

(Table S3).

Finally, seed mass did not affect any of the aspects related to the

process of seed dispersal that were considered in this study (Tables

S1, S2 and S3).

Seedling Recruitment
We found significant differences among microhabitats for each

of the stage-specific probabilities of recruitment considered in this

study. Seed germination and seedling emergence were much lower

in open sites than in the other two types of microhabitats (x= 25.2,

p,0.001 and x= 15.6, p,0.001 for seed germination and seedling

emergence, respectively; Fig. 4). Seedling survival was similarly

low in open sites and under shrubs, with the highest probabilities

of survival in those microhabitats located beneath tree overstories

without shrubs (x= 13.4, p = 0.001 and x= 24.1, p,0.001 for the

first and the second year, respectively; Fig. 4). After three years,

seedling survival rate increased strongly and mortality was nearly

null in the microhabitats located under trees (x= 11.5, p,0.001;

Fig. 4). As a consequence of these differences among microhab-

itats, the highest cumulative probability of seedling recruitment

Dung Beetles and Rodents as Local Seed Dispersers
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was registered under trees (0.16) but similarly low in the other two

types of microhabitats (0.03 and 0.05 for open sites and shrubs,

respectively, Fig. 4).

Seed Dispersal Effectiveness
The two dispersal agents compared in this study (rodents and

beetles) showed remarkable differences in seed dispersal effective-

ness (SDE) due to large variations in the quantitative and

qualitative components of SDE. Rodents dispersed a large

percentage of acorns of the two oak species, especially under

shrubs. However, they consumed more than 95% of these

dispersed acorns (265 from a total of 272 dispersed seeds) and

only cached a very low proportion of them (less than 3%, n = 7)

without signs of embryo damage, resulting in a very low quality of

dispersal (Fig. 5). In contrast, beetles handled a comparatively

smaller quantity of acorns but they were much more effective than

rodents regarding the qualitative component of SDE. Thus,

beetles successfully cached (i.e., with the embryo undamaged) a

very high proportion of the acorns (15 of a total of 23 dispersed

seeds), mostly in microsites located under trees, the microhabitat

with the highest quality for seedling recruitment (Fig. 4). The

highest SDE value was detected in precisely these microhabitats

located under trees (Fig. 5), where the highest rates of seed

handling by beetles were registered. In the other two types of

microhabitats, however, we found similarly low values of SDE for

both beetles and rodents (Fig. 5).

Discussion

Scatter-hoarding animals (mainly rodents and dung beetles)

handled a very large proportion of experimental acorns in the

study area (over 98%). This emphasises the seed–seedling

transition as a crucial step for the regeneration process of the

two oak species studied, as was previously documented for other

Mediterranean Quercus species [36–38]. The estimated rates of

seed handling and removal were lower during the first sampling

year (2009/2010), likely due to the relatively higher acorn crop

size quantified in that year, which led to more abundant food

resources for seed consumers on the forest floor. Unexpectedly,

scatter-hoarding animals did not show any feeding preference for

either of the two oak species, most likely because similar-sized

acorns were used in this study for both Quercus species. This fact

likely mitigated the inter-specific differences in seed removal

promoted by variations in seed mass that were previously detected

in the study area [39]. Most of the dispersed acorns (over 92%)

were due to the action of small rodents. Dung beetles (Thorectes

lusitanicus) only contributed to a low proportion of acorn dispersal,

but with potential repercussions for recruitment and population

dynamics for the two study oak species.

Spatiotemporal Patterns of Seed Dispersal and
Recruitment

Spatial patterns of seed dispersal and seedling recruitment were

largely explained by the heterogeneity of the forest habitat

structure. The microhabitat type where a seed was placed affected

both the quantitative component and the two qualitative

subcomponents (seed viability and seed deposition) of seed

dispersal effectiveness (SDE).

Seed handling and viability. The microhabitat of origin

strongly determined the quantity of seeds handled and predated by

scatter-hoarding animals, highlighting the relevance of habitat

structure as mediator of plant-animal interactions in heteroge-

neous environments [40]. The highest rates of seed handling and

predation occurred in those microhabitats located under shrubs,

mostly due to the higher foraging activity of rodents. It is well-

known that rodents show a clear preference for the most

structurally complex microhabitats, where they find more protec-

tion against their own predators [39], [41]. However, the

Figure 1. Temporal dynamics of seed handling by rodents and beetles during the two sampling years. Significant differences among
the three types of microhabitat considered in this study are indicated as follows: *p,0.05; **p,0.01; ***p,0.001; nsnot significant.
doi:10.1371/journal.pone.0077197.g001
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probability of being successfully cached (i.e., with the embryo

undamaged) was higher in microhabitats located beneath a tree

canopy due to the activity of beetles. Previous studies in

Mediterranean oak forests have demonstrated that acorn-burier

beetle species such as T. lusitanicus are more abundant in closed

microhabitats compared with open sites [28], [42]. This type of

microhabitat most likely attracts a higher number of beetles due to

the higher acorn availability on the forest floor and the

microclimatic conditions harboured by these habitats. As expect-

ed, the highest rates of seed handling and dispersal by beetles were

registered in late autumn/early winter, coinciding with the peak of

maximum activity of these summer-aestivation insects [30].

Seed deposition. The microhabitat distribution of dispersed

seeds was largely heterogeneous and mostly promoted by the

foraging patterns of rodents. These non-random patterns of seed

deposition may have profound implications for the regeneration of

both oak species, in accordance with recent studies focused on

other Mediterranean Quercus species (e.g., [29], [33]). Although

rodents tended to disperse most acorns within the same type of

microhabitat where they found them, they also moved a relatively

important proportion of them from their microsites of origin. Most

of these movements between different microhabitats came from

acorns placed in open sites, which consequently travelled longer

distances. Rodents spent less time in open sites, likely due to the

higher risk of predation that they suffer in this type of

Figure 2. Summary diagram of acorn fate. The values next to the arrows indicate the transition probabilities among the different categories; the
values inside boxes indicate the proportion of the initial experimental acorns (N= 1080) still alive at each of these categories. Transition probabilities
were calculated by mixing the two sampling periods (2009/2010 and 2010/2011) and the two oak species (Q. suber and Q. canariensis). ‘Cached’ and
‘undamaged’ have been grouped into the same category because we did not find any case of removed and non-cached acorns that remained viable
over the whole sampling period.
doi:10.1371/journal.pone.0077197.g002
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microhabitat, and preferred to disperse acorns to more protective

microsites such as shrubs [43–44]. Interestingly, acorns were

dispersed farther during the lower-production year, most likely

because a higher competition for seed resources favours a less

clumped distribution of acorns in order to increase spacing of

caches and reduce seed pilfering [33], [45].

Seedling recruitment. From the plant’s perspective, it is

essential to know whether the different microhabitats in which

acorns were dispersed fulfil further requirements for seedling

recruitment. Our multi-stage demographic approach allowed us to

detect strong differences in microhabitat suitability, which slightly

changed over the life-cycle of the plant. Open sites were less

suitable for seed germination, seedling emergence and survival

owing to the unfavourable environmental conditions generated by

events of temporal waterlogging, which are more frequent in this

type of microhabitat [32]. The negative effects of excess water on

these early life-history stages could be attributed to the slow

diffusion rates of gases in water-saturated soils, which hampers

oxygen supply to the roots and consequently may impede radicle

development and impair seedling survival over the dry summer

[46–47]. Seedling survival was similarly low in the most closed

microhabitats, most likely due to the excess shade provided by the

Figure 3. Seed viability after the activity of the two guilds of scatter-hoarding animals evaluated in this study. The percentage of
acorns preyed upon (non-viable) or cached and undamaged (viable) by rodents and beetles is represented as a function of the microhabitat of origin
(under shrubs, beneath tree canopies and open sites). Percentage values were averaged for the two sampling periods (2009/2010 and 2010/2011)
and the two oak species (Q. suber and Q. canariensis).
doi:10.1371/journal.pone.0077197.g003

Figure 4. Cumulative probability of transition from seed germination to 3rd-year seedling survival in the three microhabitat types.
Values of probability were averaged for the two oak species (Q. suber and Q. canariensis). Microhabitat suitability for each of the demographic
processes was assessed by using wire cages with a small mesh size to exclude all potential acorn consumers.
doi:10.1371/journal.pone.0077197.g004
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dense canopy of trees and shrubs and the lack of sufficient

radiation to fix carbon. As a consequence of these conflicting

tendencies through plant ontogeny, microhabitats of intermediate

shade (i.e., those located under trees) showed the highest quality

for overall recruitment in the short term (until the three-year-old

sapling stage), precisely where dung beetles act as effective acorn

dispersers (see details below).

The two studied oak species usually form long-living sapling

banks under the closed canopy of adults [10] and are able to

survive a long time with suppressed growth (‘sit-and-wait’ strategy)

until a canopy gap occurs (e.g., after the death of a tree). When

exposed to high light conditions, suppressed saplings are able to

grow rapidly to reach the canopy layer and potentially colonise

these vacant microsites [48]. This strategy is particularly relevant

in the study oak forests, where disturbances in canopy cover are

occurring at rates much higher than expected as a consequence of

one or several threats acting together (i.e., climatic change,

diseases and pathogens; [49]). Although the net effect of the tree

canopy on recruitment could switch ontogenetically from positive

to negative [50], we hypothesise that these microsites of

intermediate shade could be used as suitable habitats for oak

recruitment in the long term. Nevertheless, further studies on later

life-history stages (i.e., juveniles and sub-adults) are necessary to

determine whether the estimated high quality of microhabitats

located beneath tree overstory will remain invariable throughout

the whole life-cycle of the two studied oak species.

Seed Dispersal Effectiveness: Rodents and Beetles
Rodents and beetles showed remarkable differences in their

effectiveness as local acorn dispersers as a consequence of their

distinct foraging behaviours and metabolic requirements. Quan-

titatively, rodents were much more important than beetles because

they dispersed the vast majority of acorns. However, they were

qualitatively less effective than beetles for two main reasons. First,

they consumed most of the dispersed acorns (over 95%), a

common feature of disperser assemblages where the main dispersal

agents are also major seed consumers [29]. Second, they moved a

large proportion of acorns under shrubs, a less suitable micro-

habitat for seedling survival and thereby for overall recruitment of

the two oak species. In contrast, the beetle T. lusitanicus dispersed a

lower proportion of acorns, but most of them were successfully

cached. Thus, a high percentage of these buried acorns were left

intact or only partially consumed (most of them with the embryo

undamaged), likely due to their lower metabolic requirements

compared with rodents. Although beetles only displaced acorns a

few centimetres around the original point, they buried nearly all

the handled acorns into the soil at a depth (10 cm maximum)

compatible with seedling establishment. This type of vertical

dispersal could have significant benefits for oak recruitment

because burial avoids seed desiccation, stimulates germination

and reduces pilferage risk by other seed predators [51–52]. In

addition, seed caching by beetles occurred predominantly beneath

tree overstory – a high-quality microhabitat for overall recruitment

(at least in the short term) – mainly because of their marked

foraging preferences for this habitat and their restricted ability for

pulling back acorns over long distances. As a consequence of these

large differences in the qualitative component, the estimated SDE

provided by beetles in these microhabitats of intermediate shade

was up to ten-fold greater compared with that of rodents.

Therefore, the quality of dispersal was the component that

better explained the SDE of scatter-hoarding animals in the

Mediterranean oak forests studied and was inversely related to the

quantitative component. These results are in accordance with a

recent study on a Mediterranean fleshy-fruited species [53], but

they contrasted with others reporting positive or negative

relationships between both components depending on the habitat

Figure 5. Two-dimensional representation of seed dispersal effectiveness (SDE) landscape. Isoclines represent all combinations of
dispersal quantity (x-axis) and quality (y-axis) that yield the same SDE value. Symbols represent the position on the SDE landscape of the two dispersal
agents (rodents represented by circles and beetles by triangles) depending on the microhabitat of origin (shrub in black, tree in grey and open in
white colour).
doi:10.1371/journal.pone.0077197.g005
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[14] or the plant species considered [54]. Thus, the relative

importance of each of the two components of SDE for recruitment

of a given plant species appears to be influenced by several factors,

including the plant-disperser assemblage, the habitat structure, as

well as other potential external factors such as food availability for

seed consumers or abundance of disperser populations [55–56].

Our findings reveal the importance of considering the quality of

dispersal for an accurate quantification of SDE and support other

studies reporting that the quantitatively most important dispersers

are not necessarily the most effective contributors to plant

recruitment.

Implications for Oak Recruitment and Management
The results from this study demonstrate that certain species of

dung beetles can act as effective local seed dispersers for some oak

species and, thereby, changes in the abundance of their

populations could have profound implications for plant recruit-

ment and community dynamics [14–15]. Due to their high-quality

dispersal, small changes in the quantity of seeds dispersed by

beetles (through population increases, for example) could substan-

tially enhance SDE. This hypothetical situation can be easily

simulated from the SDE-isocline diagram, where small movements

along the x-axis could result in large increases in the SDE provided

by these high-quality dispersers (Fig. 5). Due to the strong spatial

dependence of beetles with dung availability – their main source

for nesting and feeding [57] – management policies directed

toward controlling the population size of large herbivores may be

essential for allowing the persistence and conservation of beetle

populations, thus promoting the natural regeneration of Quercus

species.

Despite their lower effectiveness as local seed dispersers, the

potential role of rodents as complementary seed dispersers might

be particularly beneficial for oak recruitment in high-production

years, where the ‘competitive dispersal’ established between these

two guilds of scatter-hoarding animals (i.e., competition between

rodents and beetlesas seed dispersal agents) will be most likely less

marked [58]. Although we recognise that the rates of successful

acorn dispersal by rodents could have been underestimated in this

study due to the relatively low seed production quantified in the

two sampling years, the estimated values of SDE due to beetles

were also most likely underestimated. Thus, in a previous study

carried out during a mast year, we detected a very large

proportion of acorns (up to 40%) manipulated and buried by

beetles, most of them keeping their ability to establish as seedlings

[19]. The higher percentage of ‘positive’ burials found for such a

year of high seed crop was most likely promoted by a process of

seed consumer satiation, enhancing not only the quantity of seeds

dispersed by beetles (by reducing competition for resources with

rodents) but also the quality of seed dispersal (increasing the

probability of an acorn being buried and abandoned later with the

embryo undamaged). Nevertheless, further studies in high-

production years comparing the effectiveness of rodents and

beetles as local seed dispersers are necessary to evaluate the role of

these two guilds of scatter-hoarding animals for oak recruitment

under a broader range of acorn crop sizes. A multi-species

dispersal system including both types of acorn dispersers may be

relevant to ensure seedling recruitment and sustain the population

equilibrium of Mediterranean Quercus species such as the two

studied oak species, which have serious regeneration problems in

the study area [10], [48]. Understanding and preserving this

‘interaction biodiversity’ (sensu [59]) must be considered for

improving ecologically based management and restoration strat-

egies in Mediterranean forests.

Supporting Information

Table S1 Results from the Generalized Linear Mixed
Models testing the different factors (sampling year, oak
species and microhabitat of origin) affecting the micro-
habitat destination of acorns dispersed by rodents. Seed

mass was included in the analysis as a counting covariable.

Experimental unit was considered as a random factor. The

dependent variable was fitted to a multinomial distribution with

three possible categories (shrub, tree or open). Significant factors

are highlighted with bold letters.

(TIF)

Table S2 Results from the Linear Mixed Models
evaluating the factors (sampling year, oak species and
microhabitat of origin) affecting the dispersal distance
(log-transformed) of those experimental acorns dis-
persed by rodents. Seed mass was included in the analysis as

a counting covariable. Experimental unit was considered as a

random factor. Significant factors are highlighted with bold letters.

(TIF)

Table S3 Results from the Generalized Linear Models
analysing the effect of different factors (sampling year,
oak species, microhabitat of origin and their interac-
tions) on the final status of experimental acorns (i.e.,
seed viability). Seed mass was included in the analysis as a

counting covariable. Experimental unit was considered as a

random factor. The dependent variable was fitted to a multinomial

distribution with four possible categories depending on the

combination of dispersal agent (rodents or beetles) and the final

seed status (preyed upon versus successfully cached). Significant

factors are highlighted with bold letters.

(TIF)
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28. Pérez-Ramos IM (2007) Factores que condicionan la regeneración natural de

especies leñosas en un bosque mediterráneo del sur de la Penı́nsula Ibérica. PhD
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29. Martı́n-Piera F, López-Colón J (2000) Coleoptera, ScarabaeoideaI. In: Ramos
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42. Verdú JR, Lobo JM, Numa C, Pérez-Ramos IM, Galante E, et al. (2007) Acorn

preference by the dung beetle, Thorectes lusitanicus, under laboratory and field
conditions. Anim Behav 74: 1697–1704.

43. Manson RH, Stiles EW (1998) Links between microhabitat preferences and seed

predation by small mammals in old fields. Oikos 82: 37–50.

44. Mohr K, Vibe-Petersen S, Jeppsen LL, Bildsoe M, Leirs H (2003) Foraging of
multimammate mice, Mastomys natalensis, under different predation pressure:

cover, patch-dependent decisions and density-dependent GUDs. Oikos 100:

459–468.

45. Moore JE, McEuen AB, Swhart RK, Contreras TA, Steele MA (2007)

Determinants of seed removal distance by scatter-hoarding rodents in deciduous

forests. Ecology 88: 2529–2540.

46. Schmull M, Thomas FM (2000) Morphological and physiological reactions of

young deciduous trees (Quercus robur L., Q. petraea Liebl., Fagus sylvatica L.) to

waterlogging. Plant Soil 225: 227–242.
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