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Abstract

Network meta-analysis synthesizes direct and indirect evidence in a network of trials that compare multiple interventions
and has the potential to rank the competing treatments according to the studied outcome. Despite its usefulness network
meta-analysis is often criticized for its complexity and for being accessible only to researchers with strong statistical and
computational skills. The evaluation of the underlying model assumptions, the statistical technicalities and presentation of
the results in a concise and understandable way are all challenging aspects in the network meta-analysis methodology. In
this paper we aim to make the methodology accessible to non-statisticians by presenting and explaining a series of
graphical tools via worked examples. To this end, we provide a set of STATA routines that can be easily employed to present
the evidence base, evaluate the assumptions, fit the network meta-analysis model and interpret its results.
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Received May 16, 2013; Accepted August 27, 2013; Published October 3, 2013

Copyright: � 2013 Chaimani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: AC, DM and GS received funding from the European Research Council (IMMA 260559 project). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: gsalanti@cc.uoi.gr

Introduction

Network meta-analysis (NMA) synthesizes data from a network

of trials about more than two competing healthcare interventions.

The integration of direct evidence (from studies directly comparing

interventions) with indirect evidence (information about two

treatments derived via a common comparator) increases the

precision in the estimates and produces a relative ranking of all

treatments for the studied outcome [1,2]. The assumption of

consistency (agreement between direct and indirect sources of

evidence) underlies the methodology and if it holds, NMA can give

valuable information to patients, practitioners and decision makers

[3,4].

The advantages of NMA have made it an increasingly popular

method in comparative effectiveness research. However, NMA

remains, to a large degree, a privilege for researchers with

advanced computational and statistical knowledge. It has been

criticized for its complexity, for involving assumptions that are

difficult to evaluate and for producing outputs that cannot be

easily understood and interpreted by clinicians. The lack of a user-

friendly implementation framework with tools to evaluate the

assumptions of the analysis and present the results has contributed

to this criticism.

Graphical tools can provide comprehensive and easily under-

standable ways to present results of statistical analyses, particularly

when a large amount of data is involved [5]. Various plots have

been suggested for summarizing the evidence from studies on the

relative effectiveness or acceptability of two interventions [6,7].

Many of these tools are difficult to apply to NMA without

modifications. For example, forest plots facilitate the inspection of

the evidence base and its characteristics but may be less

informative when several comparisons are present. Heterogeneity

and its impact on summary estimates are also difficult to display

graphically – or even numerically – in an understandable way.

Funnel plots to identify the presence of small-study effects provide

further challenges in a NMA context because observed effect sizes

refer to different treatment comparisons.

Valid results from NMA depend on the evidence network being

internally consistent: direct and various sources of indirect

evidence should be in agreement. Graphical tools may help

investigators to spot parts of the evidence network that appear

inconsistent, or to inform judgments about the plausibility of

consistency [8]. Finally, NMA results are not easy to interpret and

do not always facilitate decision-making [9,10]. As the number of

competing treatments included in a networks of interventions

increases, the need for a concise and informative presentation of

results becomes more important.

A recent update in the multivariate meta-analysis routine in

STATA (mvmeta command) makes NMA possible within one of

the most widely used software for meta-analysis, and we expect

that this will popularize the method [11]. With this important

development as our starting point, we introduce a suite of

STATA routines to evaluate the assumptions and graphically

present NMA results. We created STATA routines that extend

existing graphical tools used in pairwise meta-analysis and we also

developed new tools specifically for NMA. Emphasis is placed on

practical issues of applying and presenting NMA. A thorough

review of statistical methodology for NMA has been described

previously [12,13].

We first present in Section 2 three working examples that will be

used to present the developed STATA routines. The structure of

the rest of the paper follows a typical analysis of a network of

randomized controlled trials. In Section 3 we discuss graphs that

enhance understanding of the dataset and facilitate the visualiza-

tion of the evidence with respect to its characteristics. Section 4
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briefly summarizes how to fit a NMA model using mvmeta in

STATA. In Section 5 we describe graphical and numerical ways

to display important assumptions of the joint analysis. Finally,

Section 6 focuses on suggestions for graphical and numerical

presentation of the results. We provide the script files for the full

analysis in the Appendix S1.

Materials and Methods

1 Examples of network meta-analyses and STATA
routines

To enhance interpretation of all presented graphical and

numerical summaries we used three worked examples of NMAs.

The first example compares 14 antimanic drugs for acute mania

[14]. The network included 47 studies reporting on efficacy

(measured as the number of responders out of total randomized)

and 64 studies reporting on acceptability (measured as the

number of dropouts out of total randomized). The second

example is a network of 62 studies that evaluate the effectiveness

of four different percutaneous coronary interventions for non-

acute coronary artery disease [15]. The third example is a

network of 27 studies forming a star-shaped network (i.e. all

active treatments are compared only with placebo) that evaluated

the effectiveness of six biologic agents for rheumatoid arthritis

[16]. The outcome in this network was benefit from treatment

defined as a 50% improvement in patient- and physician-

reported criteria of the American College of Rheumatology

(ACR50). The datasets and the STATA routines can be found

online in www.mtm.uoi.gr and more detail is provided in the

Appendix S1. To be able to carry out the analysis described

below, version 3.01 (or later) of the command metan, version

2.6.1 (or later) of metareg and version 2.5.5 (or later) of mvmeta

are required.

2 Presenting the evidence base
2.1 Network plot. The plot of a network of interventions is a

visual representation of the evidence base and offers a concise

description of its characteristics. It consists of nodes representing

the interventions being compared and edges representing the

available direct comparisons (comparisons evaluated in at least one

study) between pairs of interventions.

The amount of available information can be presented by

‘weighting’ the nodes and edges using different node sizes and line

thicknesses. For instance, each treatment node or each comparison

edge can be weighted according to the number of studies including

either that treatment or that comparison. This illustrates which

interventions are more frequently compared. Node weighting

according to other intervention-specific characteristics, such as

market price, may be useful depending on the review research

questions.

Rather than weighting edges by amount of information, the use

of weighted edges according to the distribution of study-specific

variables may assist in evaluation of the transitivity assumption

[17,12]. Transitivity in a network implies that the available

treatment comparisons do not differ with respect to the

distribution of effect modifiers. Adjusting the width of each edge

to be proportional to a continuous effect modifier (e.g. year of

publication, baseline risk) and visual inspection of the compara-

bility of the comparisons collated in the network can be a useful

aid in deciding whether the transitivity assumption is likely to hold.

We developed a STATA command, called networkplot, to

produce plots of the evidence base. Let t1 and t2 be two variables

that include the codes or names of the two treatments being

compared in each available direct comparison then typing

. networkplot t1 t2

gives a plot with both nodes and edges weighted according to

the number of studies involved in each direct comparison. To

Figure 1. Network plot of the acute mania network (efficacy outcome). Nodes are weighted according to the number of studies including
the respective interventions. Edges are weighted according to the mean control group risk for comparisons between placebo and active treatment.
Edges connecting two active treatments have been given minimal weight.
doi:10.1371/journal.pone.0076654.g001
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specify alternative weighting variables the options nodeweight()

and edgeweight() can be used.

In Figure 1 we plot the acute mania network for the efficacy

outcome. The size of nodes shows that placebo is the most

frequent comparator across the studies. Baseline risk might be an

important effect modifier in this synthesis, so we weight all edges

connecting placebo with an active treatment according to the

mean response rate in the placebo arms. The mean placebo

response rate ranged between 22% and 38% across the 12

placebo-controlled comparisons; no important differences in the

width of the edges can be seen.

A particularly important comparison-level characteristic is the

quality of the studies. Trials with design limitations may lead to

biased summary treatment effect estimates when included in a

meta-analysis. To present the risk of bias for each direct

comparison in the network, colored edges can be employed.

Green, yellow and red colors are being used to denote pairwise

meta-analyses of low, unclear and high risk of bias. For instance,

inadequate allocation concealment was considered an important

source of bias in the acute mania network (Figure 2). There are

four comparisons at low risk of bias and none at high risk. The

option edgecolor() in networkplot command allows for

colored edges; the default is according to a three-level study-

specific variable while more than three levels are allowed with

user-specified colors. A variable called bias that contains scores

for each study according to a particular bias component (low,

unclear or high or coded as 1, 2, 3 respectively) should be specified

in the data. Then the command

. networkplot t1 t2, edgecolor(by bias)

produces a network plot where the comparison-specific bias

level has been estimated as the bias level in the majority of

included studies in each comparison. A suboption allows

specification of alternative ways to summarize the study-specific

scores and obtain comparison-specific bias judgments (e.g. by

bias takes the average bias score; see the help file for more

details).

2.2 Contribution plot: presenting the influence of each

direct piece of evidence. Each direct comparison in NMA

contributes differently to the estimation of the network summary

effects. It is sometimes useful to identify the most influential

comparisons for each network estimate and for the entire network.

For instance, a comparison with high risk of bias but low

contribution to the network estimates may not be an important

threat to the validity of the NMA results. The weight that each

direct comparison has is a combination of the variance of the

direct treatment effect and the network structure [8,18]. Com-

parisons with much direct information are highly influential on

their ‘neighboring’ comparisons (e.g. comparisons in the same first

order loop). On the other hand, comparisons for which little direct

evidence exists are less influential for the rest of the network and

benefit the most of it. In other words, the less influential parts of

the network are those that benefit most from the network.

Important differences in the variance of direct estimates between

comparisons can affect their relative contribution to the other

comparisons [18,19]. The percentage contribution of each direct

comparison to each network estimate can be summarized in a

matrix with columns and rows corresponding to the direct and

network estimates respectively.

Figure S1 presents the coronary artery disease network and

Figure 3 presents the contribution plot for each direct comparison.

The columns represent the four observed direct comparisons and

the rows represent all possible pairwise comparisons. These are

informed by direct evidence alone (BMS vs. DES), by mixed

evidence (BMS vs. MT, BMS vs. PTCA and MT vs. PTCA) or by

indirect evidence alone (MT vs. DES and DES vs. PTCA). The

contribution of each direct comparison is presented by using

weighted squares along with the respective percentages. For

example, because there is no indirect evidence for BMS vs. DES,

Figure 2. Plot of the acute mania network (efficacy outcome) using coloured edges according to adequacy of allocation
concealment estimated as the level of bias in the majority of the trials and weighted according to the number of studies in each
comparison.
doi:10.1371/journal.pone.0076654.g002
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100% of the information comes from the direct evidence. The

NMA estimate for the DES vs. MT comparison is informed

(indirectly) by all four direct comparisons with contributions

45.7%, 37%, 8.7% and 8.7%. Thus the direct comparisons BMS

vs. DES and BMS vs. MT are the most influential when

comparing indirectly DES to MT. The most informative direct

evidence in the network is BMS vs. DES with an overall

contribution of 31.2% to the network estimates.

We developed the STATA command netweight to produce

the contribution plot. The netweight command needs four

arguments; the study-specific effect sizes (e.g. lnOR) for each

observed direct comparison, their standard errors (e.g. selnOR)

and the treatments being compared (e.g. t1 t2 assuming that all

effect sizes have been calculated as t1 vs. t2). The syntax to derive

the plot is

. netweight lnOR selnOR t1 t2

Note that the direct estimates are derived using a comparison-

specific random effects model; if a comparison is informed by less

than two studies a fixed effects model is employed. However, in

NMA we often assume a common heterogeneity parameter across

comparisons. If the heterogeneity value is known (e.g. estimated

from the mvmeta command), this can be taken as an argument in

netweight command and will be used in the estimation of all

pairwise direct treatment effects.

3 Performing network meta-analysis
A popular estimation of the NMA model is via a meta-

regression routine such as metareg in STATA. The model uses as

covariates the basic parameters (a set of comparisons sufficient to

generate all possible comparisons via the consistency equations)

and assumes that heterogeneity is independent of the comparison

being made [20]. However, the current meta-regression routines

fail to model properly the correlations induced by treatment effects

estimated in multi-arm trials. Thus, in the presence of multi-arm

trials, researchers have often preferred to perform NMA in a

Bayesian framework that offers more flexibility [21,22]. White et

al. and Higgins et al. recently described NMA as a multivariate

meta-analysis model [23,24]. A major update in the standard

STATA command mvmeta makes NMA possible within a

frequentist setting and properly accounts for correlations between

Figure 3. Contribution plot for the coronary artery disease network. The size of each square is proportional to the weight attached to each
direct summary effect (horizontal axis) for the estimation of each network summary effects (vertical axis). The numbers re-express the weights as
percentages. (MT = medical therapy, PTCA = percutaneous transluminal balloon coronary angioplasty, BMS = bare-metal stents, DES = drug-eluting
stents).
doi:10.1371/journal.pone.0076654.g003
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effect sizes from multi-arm studies [25]. Below, we briefly discuss

the use of mvmeta in STATA to obtain NMA estimates and we

refer to the original paper for more details [25].

In a network with T treatments, the model assumes that there is

a reference treatment A present in all studies and T{1 basic

parameters-‘outcomes’ formed by all contrasts AX with

X[f1,2, . . . ,Tg(X=A). A simple data imputation technique is

employed for studies that do not report treatment A that imputes

minimal information for the missing reference arm [23,25].

Consider for example the network of the interventions for

rheumatoid arthritis; the six basic parameters are the comparisons

of all active treatments versus placebo. The input in mvmeta

consists of all study-specific yAX pairwise effect sizes (in our

example the log-odds ratios), their respective variances SXX and

covariances SXY for all studies. A covariance is calculated only for

studies reporting more than two arms and is equal to the variance

of the common arm between comparisons (i.e. the reference arm

A). Once all variables yAX, SXX and SXY have been calculated,

typing

. mvmeta y S

gives the network meta-analysis estimates for all basic AX

comparisons. All other relative treatment effects can be derived

using the consistency equations. These can be derived using the

command lincom. For example, the network treatment effect

between two active treatments XY and its standard error can be

obtained by typing

. lincom yAY-yAX

The heterogeneity in the model can be assumed to be equal

across comparisons or different (options bscov(proportional

matexp) and bscov(unstructured) respectively).

4 Evaluating and presenting assumptions of the NMA
4.1 Inconsistency plot. Inconsistency refers to differences

between direct and various indirect effect estimates for the same

comparison [26]. Important inconsistency threatens the validity of

the results and if present, needs further exploration to identify

possible sources of disagreement. Several approaches have been

developed to deal with inconsistency in a network of interventions

[26–29]. A simple and easy method to apply is to look at each

closed loop in the network. We consider only triangular (formed by

three treatments all compared with each other) and quadratic

(formed by four treatments that each one is compared exactly with

two other treatments in the loop) loops. If a quadratic loop can be

decomposed into two (nested) triangular loops, we consider only

the latter. In each loop we estimate the inconsistency factor (IF) as

the absolute difference between direct and indirect estimates for

Figure 4. Inconsistency plot for the acute mania network (for the efficacy outcome) assuming loop-specific heterogeneity estimates
using the method of moments estimator. (PLA = placebo, ARI = aripiprazole, ASE = asenapine, CARB = carbamazpine, DIV = divalproex, HAL =
haloperidol, LAM = lamotrigine, LITH = lithium, OLA = olanzapine, QUE = quetipaine, RIS = risperidone, TOP = topiramate, ZIP = ziprasidone, PAL =
paliperidone).
doi:10.1371/journal.pone.0076654.g004

Graphical Tools for Network Meta-Analysis in STATA

PLOS ONE | www.plosone.org 5 October 2013 | Volume 8 | Issue 10 | e76654



one of the comparisons in the loop. We can also derive a 95%

confidence interval (CI) and a z-test for IF [17,29]. Not that IF is

the logarithm of the ratio of two odds ratios (RoR) from direct and

indirect evidence in the loop; RoR values close to 1 mean that the

two sources are in agreement. As statistical power of the z-test is

expected to be low, the CI of the inconsistency RoR should be

examined and if it includes large values, further investigation is

needed to identify possible sources of inconsistency.

To make inferences about inconsistency in a network of

interventions, which usually includes many closed loops, we need

to evaluate the inconsistency RoRs in every loop. All RoRs with

their 95% CI can be jointly presented in a forest plot. Our

command ifplot identifies all triangular and quadratic loops in a

network, estimates inconsistency and plots the absolute IF values

and confidence intervals (which are truncated at zero since the

direction of the IF is unimportant). Loops are ordered according to

the magnitude of the point estimate IFs (from larger to smaller).

The syntax is

. ifplot lnOR selnOR t1 t2 id

where id is a variable identifying the studies. The option eform

can be added to plot RoRs instead of the IFs.

In Figure 4 we illustrate the inconsistency in the loops of the

acute mania network (efficacy outcome) assuming a common loop-

specific heterogeneity variance estimated using the method of

moments. The plot shows that in a total of 21 loops there is none

with statistically significant inconsistency as all confidence intervals

for RoRs are compatible with zero inconsistency (RoR = 1).

However, several of the loops include values of high inconsistency

(e.g. mean RoR larger than 2) meaning that the direct estimate can

be twice as large as the indirect estimate or the opposite (the

indirect estimate is twice the direct). For those loops we cannot

draw a safe conclusion regarding the presence or not of

inconsistency. Whereas this approach is easy to implement, the

results require careful interpretation because of the presence of

many underpowered and correlated tests. The absence of

statistically significant inconsistency is not evidence against the

presence of inconsistency [12].

It has been shown that different estimators of the heterogeneity

parameter and the various assumptions about the similarity of

heterogeneity across comparisons can lead to different conclusions

about the presence of statistical inconsistency [30]. Hence we

allow for three different scenarios about heterogeneity: that each

comparison has a different heterogeneity parameter, that all

comparisons within a loop share a common heterogeneity variance

and finally that all comparisons in the network share a common

heterogeneity variance. The option tau2() in ifplot command

allows the choice between these options: tau2(comparison) for

comparison-specific heterogeneity, tau2(loop) for loop-specific

heterogeneity (estimated via meta-regression in the loop) and

tau2(#) to impute a specific value for the heterogeneity variance

(which would typically be obtained from results of a NMA that

assumes a common heterogeneity variance).

Numerous methods are available to estimate the heterogeneity

variance in meta-analysis [31]. Method of moments and restricted

maximum likelihood are those most commonly used and have

been implemented in STATA’s metan command along with an

empirical Bayes method [32,33]. To change between these three

estimators in ifplot the options mm, reml and eb are available

for the loop-specific heterogeneity approach.

The mvmeta command allows us to employ alternative

approaches to evaluate inconsistency [26,27]. It can incorporate

two types of inconsistency: differences between direct and indirect

estimates and differences between trials with different designs (e.g.

two-arm vs. multi-arm).

Figure 5. Comparison-adjusted funnel plot for the rheumatoid arthritis network. The red line represents the null hypothesis that the
study-specific effect sizes do not differ from the respective comparison-specific pooled effect estimates. The green line is the regression line. Different
colours correspond to different comparisons.
doi:10.1371/journal.pone.0076654.g005
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4.2 ‘Comparison-adjusted’ funnel plot. A funnel plot is a

scatterplot of the study effect size versus some measure of its

precision, often its inverted standard error. It is the most common

tool used to assess the presence of small-study effects in a meta-

analysis [34]. A funnel plot which is asymmetrical with respect to

the line of the summary effect implies that there are differences

between the estimates derived from small and large studies.

Extending the use of funnel plots into network meta-analysis

needs to account for the fact that studies estimate effects for

different comparisons. As a result, there is not a single reference

line against which symmetry can be judged. To account for the

fact that each set of studies estimates a different summary effect we

suggest the ‘comparison-adjusted’ funnel plot. Before using this

plot, investigators should order the treatments in a meaningful way

and make assumptions about how small studies differ from large

ones. For example, if they anticipate that newer treatments are

favored in small trials, then they could name the treatments from

oldest to newest so that all comparisons refer to ‘old versus new

intervention’. Other possibilities include defining the comparisons

so that all refer to an active treatment versus placebo or sponsored

versus non-sponsored intervention.

In the ‘comparison-adjusted’ funnel plot the horizontal axis

presents the difference between the study-specific effect sizes from

the corresponding comparison-specific summary effect [35]. For

example, in a triangleXYZ, we get the three direct summary

estimates mXY ,mXZ,mYZ from simple pairwise meta-analyses. The

treatments have been named, say, from the oldest to newest. Then,

for studies that compare treatments X and Y (providing and

observed effect yi) the horizontal axis represents the difference

yi{mXY . Similarly, it represents yi{mXZ and yi{mYZ for studies

comparing XZ and YZ respectively. In the absence of small study

effects the ‘comparison-adjusted’ funnel plot should be symmetric

around the zero line.

To produce a comparison-adjusted funnel plot in STATA our

command netfunnel can be used:

. netfunnel lnOR selnOR t1 t2, bycomparison

(assuming that effect size lnOR has been estimated as t1 vs. t2)

The option bycomparison adds comparison-specific colors to

the studies.

The routine netfunnel plots the comparisons as ‘treatment

alphabetically or numerically earlier versus later treatment’ (e.g. A

vs. B or 1 vs. 2) for string or numerical treatment identifiers.

Therefore, missing (small) studies lying on the right side of zero

line suggest that small studies tend to exaggerate the effectiveness

of treatments named earlier in alphabet compared to those later

for a harmful outcome. If the outcome is beneficial such

asymmetry would indicate that small-study effects favor treatments

later in the alphabetical or numerical order. A ‘comparison-

adjusted’ funnel plot is meaningless unless the treatments are

named in an order that represents a characteristic potentially

Figure 6. Predictive interval plot for the rheumatoid arthritis network on a logarithmic scale. The black solid lines represent the
confidence intervals for summary odds ratios for each comparison and the red dashed lines the respective predictive intervals. The blue line is the line
of no effect (odds ratio equal to 1).
doi:10.1371/journal.pone.0076654.g006
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associated with small study effects. Consequently, we recommend

its use only when specific assumptions about the directions of small

study effects can be made.

Figure 5 shows the funnel plot for the rheumatoid arthritis

network which provides an indication for the presence of small-

study effects. The plot indicates that small studies tend to show

that the active treatments are more effective than their respective

comparison-specific weighted average effect.

The options fixed and random in netfunnel command

specify whether the summaries will be derived from a fixed- or

random-effects model. A linear regression line of the comparison-

specific differences yi{mXY on the standard error of yi can be

fitted to the plot using the addplot option, e.g. addplot(lfit

selnOR _ES_CEN) (see the green line in Figure 5).

After running netfunnel a new variable is added to the dataset

named _ES_CEN that includes the differences between study-

specific effect sizes and comparison-specific summary estimates.

As with the conventional funnel plot, caution is needed in

interpretation. Asymmetry should not be interpreted as evidence

of publication bias. If the funnel plot suggests the presence of

small-study effects, investigators can explore this further by

employing appropriate network meta-regression or selection

models [36,37].

4.3 Predictive intervals plot. Heterogeneity is an important

feature in both pairwise and network meta-analysis. In pairwise

meta-analysis, visual inspection of the forest plot, the I2 measure,

the variance of the distribution of random effects t2and its 95%

confidence intervals, or the Q-test are used to infer about the

magnitude of heterogeneity and place the summary effect into

context. In NMA, the between-studies variance t2 often assumed

to be common across comparisons, is typically used to present

heterogeneity across the network. Although multivariate hetero-

geneity measures such as I2 for multivariate meta-analysis have

been developed [38], they have not been applied yet to NMA.

Note that in NMA we often assume a common heterogeneity

variance across all pairwise comparisons. Some comparisons can

be affected more than others by the magnitude of the common

heterogeneity variance estimate regarding the amount of addi-

tional uncertainty anticipated in future studies. We suggest the

presentation of NMA mean summary effects together with their

predictive intervals to facilitate interpretation of the results in the

light of the magnitude of heterogeneity.

Predictive intervals (PrI) provide an interval within which the

estimate of a future study is expected to be [39,40]. They are

computed as m̂m+ta
df |

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t̂t2zSE m̂mð Þ2

q
where ta

df is the

100|(1{ a
2

)% percentile of the t-distribution with df degrees of

freedom (in NMA we suggest this is set to number of studies –

number of comparisons with data – 1 [41]) and m̂m is the meta-

analysis summary effect.

A forest plot of the estimated summary effects along with their

confidence intervals and their corresponding PrI for all compar-

Figure 7. Plots of the surface under the cumulative ranking curves for all treatments in the rheumatoid arthritis network. Black solid
lines correspond to the unadjusted model and red dashed lines to the adjusted for small-study effects model.
doi:10.1371/journal.pone.0076654.g007
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isons summarizes in one plot the relative mean effects, predictions

and the impact of heterogeneity on each comparison. Such a plot

is presented in Figure 6 for the biologics in rheumatoid arthritis.

The estimated common between-study variance was 0.26 and all

six active treatments appear more effective than placebo. The plot

indicates that for only one of these comparisons (infliximab vs.

placebo) the PrI is wide enough compared with the CI to suggest

that in a future study the active treatment can appear less effective

than placebo, although the lower CI limit does not cross the line of

no effect.

Such a plot can be produced using our STATA command

intervalplot after running the mvmeta command as follows:

. intervalplot, mvmetaresults

For dichotomous outcomes the option eform can be added to

plot the estimates on the odds ratio or risk ratio scale (instead of

their logarithms).

5 Presenting the results
5.1 Ranking plots for a single outcome using

probabilities. One of the advantages of network meta-analysis

is that it can provide information about the ranking of all

evaluated interventions for the studied outcome [2,42]. Probabil-

ities are often estimated for a treatment being ranked at a specific

place (first, second, etc.) according to the outcome.

Ranking of treatments based solely on the probability for each

treatment of being the best should be avoided. This is because the

probability of being the best does not account for the uncertainty

in the relative treatment effects and can spuriously give higher

ranks to treatments for which little evidence is available. So-called

rankograms and cumulative ranking probability plots have been

suggested as a reliable and comprehensive graphical way to

present ranking probabilities and their uncertainty [2]. A

rankogram for a specific treatment j is a plot of the probabilities

of assuming each of the possible T ranks (where T is the total

number of treatments in the network). The cumulative ranko-

grams present the probabilities that a treatment would be among

the n best treatments, where n ranges from one to T. The surface

under the cumulative ranking curve (SUCRA), a simple transfor-

mation of the mean rank, is used to provide a hierarchy of the

treatments and accounts both for the location and the variance of

all relative treatment effects [2]. The larger the SUCRA value, the

better the rank of the treatment.

The mvmeta command can provide ranking probabilities using

the option pbest(min|max, all zero). Options min or max

specify whether larger or smaller treatment effects define a better

treatment, while all and zero specify the estimation of

probabilities for all possible ranks including the reference

treatment. The estimated probabilities can be stored as additional

variables in the dataset by adding the suboption gen()in pbest()

and predictive ranking probabilities (the probability that each

treatment will be placed in each rank in a future study [39,40]) can

be estimated with the suboption predict.

Our STATA command sucra produces rankograms and

computes SUCRA values using the ranking probabilities (e.g. as

estimated with the mvmeta) as input. If prob1 prob2 etc, is a list of

variables including all ranking probabilities (one variable per

treatment for each possible rank) as derived from mvmeta then

typing

. sucra prob*,mvmetaresults

plots the cumulative rankograms for all treatments.

In Figure 7 we present cumulative rankograms for the network

of rheumatoid arthritis trials. The SUCRA values provide the

hierarchy for the six active treatments; 1.8%, 59.9%, 66.2%,

21.8%, 75.9%, 41%, 83.4% for placebo, abatacept, adalimumab,

anakinra, etanercept, infliximab, rituximab respectively. The

cumulative rankograms can also be used to compare different

models. In Figure 7 we present also the results from a network

meta-regression accounting for small-study effects (using the

variance of the log-odds ratios as covariate). The graph shows

that small-study effects materially alter the relative effectiveness

and ranking of treatments and adjustment will put etanercept and

anakira in more favourable order compared with rituximab and

Figure 8. Ranking plots for the rheumatoid arthritis network. Treatments have been ranked (a) according to the surface under the
cumulative ranking curves (SUCRA) and (b) according to the unique dimension estimated from multidimensional scaling (MDS) approach. Red points
correspond to treatments ranked in different order by the two approaches. (PLA = placebo, ABA = abatacept, ADA = adalimumab, ANA = anakinra,
ETA = etanercept, INF = infliximab, RIT = rituximab).
doi:10.1371/journal.pone.0076654.g008
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abatacept respectively. The option compare() in the command

sucra can be used to compare two ranking curves.

5.2 Ranking plot for a single outcome using

multidimensional scaling. An alternative approach to rank

the competing treatments is by using multidimensional scaling

(MDS) [43], which was recently employed to examine the

inconsistency in a network of interventions [44]. Multidimensional

scaling is a family of multivariate techniques for the analysis of

proximity data on a set of stimuli aiming to reveal the latent

structure underlying the data and to represent them spatially or

geometrically, preferably on a system of coordinate axes.

The input to MDS is a square, symmetric matrix indicating

either similarities or dissimilarities among objects. We consider the

T treatments of a network to be the objects. We run a NMA model

(e.g. using mvmeta) to obtain the network estimates mij and their

standard errors for every possible pair of treatments

i,j~1,:::,Twith i=j. The absolute value of mij defines the

dissimilarity between treatments i and j. To apply MDS for

treatment ranking, we create a symmetric T|Tmatrix of

dissimilarities where dissimilarity for the i,jð Þ,(i=j) object is

defined as the absolute value of the effect size (estimated from

NMA) when treatment i is compared to treatment j and zero for

i~j. To ensure that all values in the matrix share a common

distribution we weight the absolute effect sizes by their inverse

standard errors or variances. The purpose of MDS is to transform

treatment effects into distances represented in multidimensional

space. More specifically, MDS uses stress majorization to find the

set of distances in a p-dimensional space (usually p~1,2,3 so that it

can be represented graphically) that are as close as possible to the

observed dissimilarities. Here, we assume that the rank of

treatments is the only dimension underlying the outcome. This

leads to a dimension reduction from the T|Tmatrix to a T|1
vector representing treatment order.

Figure 8 presents ranking plots for the network of rheumatoid

arthritis trials. The vertical axes show the treatments’ hierarchy

and the horizontal axes the numerical differences using SUCRA

values (panel a) and MDS dimension (panel b). There are

differences between SUCRA and MDS ranking, however the

differences pertains only to the treatments that are close in rank.

The readily-available command mdsmat in STATA performs

MDS for a T|T matrix. In case the T|T effect sizes’ matrix has

not been constructed we provide the command mdsrank that

constructs the T|T matrix and subsequently calls the mdsmat

command. The mdsrank command assumes four arguments; the

effect sizes (e.g. lnOR), their standard errors (e.g. selnOR) and the

treatments being compared (e.g. t1 t2). MDS finds an underlying

dimension of the T|T matrix that represents the distances

between the T treatments and is also used to indicate the ranking

of the treatments. The command

. mdsrank lnOR selnOR t1 t2

Figure 9. Clustered ranking plot of the acute mania network based on cluster analysis of SUCRA values for two different outcomes:
efficacy and acceptability. Each colour represents a group of treatments that belong to the same cluster. Treatments lying in the upper right
corner are more effective and acceptable than the other treatments.
doi:10.1371/journal.pone.0076654.g009

Graphical Tools for Network Meta-Analysis in STATA

PLOS ONE | www.plosone.org 10 October 2013 | Volume 8 | Issue 10 | e76654



produces a plot of the underlying dimension showing the

ranking of treatments.

The option best(min|max) in mdsrank is used to specify

whether smaller or larger values of the estimated unique

dimension correspond to better treatment order.

5.3 Clustered ranking plot for two outcomes. Several

factors typically need to be taken into account when recommend-

ing an intervention, such as its effectiveness, the cost and possible

adverse events. Many systematic reviews therefore examine

measures of both effectiveness and acceptability, and the ranking

of competing treatments for these two outcomes might differ

considerably. An appropriate analysis of multiple outcomes should

be undertaken using multivariate methods to account for the

dependency between outcomes [45,46]. However, in practice,

simultaneous consideration of multiple outcomes for multiple

interventions results in cumbersome models and meta-analysts

often prefer to analyze each outcome separately. For the case of

two outcomes, we recommend the use of two-dimensional plots

and clustering methods to obtain meaningful groups of the

treatments.

Cluster analysis is a common exploratory data mining technique

for grouping objects based on their features so that the degree of

association is high between members of the same group and low

between members of different groups [47]. Figure 9 presents the

ranking of the 14 antimanic treatments according to SUCRA

values for efficacy and acceptability. The different colors represent

the estimated clusters, and are used to group the treatments

according to their similarity with regard to both outcomes. For

instance, the cluster of treatments on the right upper corner (in

green) groups treatments that are acceptable and efficacious. In

the Appendix S1 we explain in detail the clustering methods we

use to group the treatments and define the optimal number of

clusters.

The results of both ranking approaches presented above

(SUCRAS and MDS) can be used to produce clusters of

treatments for two outcomes. In principle the treatments can be

grouped according to more than two outcomes, but the larger the

number of outcomes, the more difficult the graphical representa-

tion and interpretation of the results.

Clustered ranking plots can be produced in STATA using our

clusterank command. Let outcome1 and outcome2 be the

data variables containing the SUCRA or MDS scores for all

treatments in a network and t be the variable with treatments’

codes or names. Then the command

. clusterank outcome1 outcome2 t

returns the cluster ranking plot based on both outcomes.

Results and Discussion

Although NMA is a useful tool for evidence synthesis, it is often

viewed as a complex statistical procedure with many pitfalls. A

clear and concise overview of the evidence base and its

characteristics, careful consideration of all assumptions and correct

interpretation of the findings are crucial but challenging tasks

when meta-analyzing data from a network of interventions. In this

paper we suggest various graphical tools that can assist researchers

interpreting NMA results. We also offer STATA routines to

produce these graphical tools. To our knowledge, STATA is the

only frequentist software so far where flexible network meta-

analysis is possible within a multivariate framework [23,25]. Our

routines can be used jointly with the updated mvmeta command.

A recent implementation of NMA in R offers an alternative tool to

researchers to apply NMA in a frequentist environment [48].

All graphs presented in this paper address different steps of the

analysis. However, the usefulness and interpretation of each graph

depends on the nature of the data. For instance, inconsistency

plots cannot be used in star-shaped networks, where statistical

evaluation of the consistency is untestable. Also, comparison-

adjusted funnel plots need a sufficiently large number of studies to

judge asymmetry, and clustered ranking plots are not useful when

there are only three or four competing treatments. As with any

graphical tool, over-interpretation or interpretation in isolation

should be avoided and conclusions should be drawn in combina-

tion with the numerical results.

Supporting Information

Figure S1 Network plot of the coronary artery disease
network. Nodes are weighted according to the number of studies

including the respective interventions. Edges are weighted

according to the inverse variance of the direct treatment effect

estimates for the respective comparisons.

(TIF)

Appendix S1 Description of the example datasets and
script files for the full analysis in STATA.
(DOC)
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